分享

农林碳中和工程乃国之重器,应作为重大专项列入国家长期计划 | 石元春院士(附论文链接)

 老王abcd 2023-02-26 发布于广东

内容来源:  碳迹环保

图片

正文开始

图片

原文链接:http://clst.cau.edu.cn/art/2022/9/19/art_31156_881076.html

CCTC®0101

农林碳中和工程

一、碳交换的前世今生
地球大气圈的组成主要是氮和氧,二氧化碳很少。4亿年前,地球陆地出现生物,特别是出现光合力强的高等植物,利用太阳辐射能,吸收大气二氧化碳与土壤中的水分,合成碳水化合物,构成生物体,使碳和化学态能量得以保存和积累。生命与生物质的出现,是地球发展史上的一座伟大里程碑。
导致地球上碳与化学态能量不断加积的载体是生物质,在长期地质过程和地质作用下,生物质体的碳水化合物持续脱氧,转化为碳氢化合物,始有今日之煤炭、石油与天然气,故称之“化石能源”。生物体将地球大气圈的二氧化碳吸收富集并转移封存到了岩石圈
图片
18世纪工业革命至今的200多年里,人类打开了“潘多拉魔盒”,将深埋地下的煤炭、石油和天然气大量开采使用,将亿万年前封存地下的碳又放回到大气中,其温室效应导致全球气候变暖和人类生存环境恶化。
这些温室气体的80%来自于化石能源。
20世纪后半叶,人类社会开始觉醒,提出“可持续发展”的概念,于1992年签署《联合国气候变化框架公约》,并于2015年通过《巴黎协定》,急切要求替代化石能源,减少二氧化碳排放,放慢全球变暖步伐。
中国正在大规模进行工业化建设,能源消费剧增,2018年二氧化碳排放量约为100.2亿t,要在2060年实现碳中和,目标非常艰巨。
中国的第二、三产业是化石能源的主要消费者,主要碳排放者,是碳源;唯有从事生物性生产的第一产业是吸多排少的碳汇,是为二、三产业持续提供替代能源的重要基地。
图片
地质时期的生物质吸碳聚能,当代的生物质不仅能吸碳聚能,还可通过现代技术转化为可再生清洁能源,替代化石能源以减排二氧化碳。
生物质还可以实现负碳排放,防治大气污染与农业面源污染,生产绿色材料与有机化工产品,做强农业与振兴乡村经济等。
农林生态系统像个万花筒与百宝箱,需要人们去了解、探寻和开启它丰富的碳中和潜能。
解铃尚须系铃人,且观今日之生物质将何为!

图片

据国际政府间气候变化专门委员会(IPCC)第五次评估报告(2013)披露,“生物质能和碳捕获/封存(BECCS)是极少有的,能将近几百年来被大气吸收积存的二氧化碳吸出与移走的技术”。

二、负碳排放,潜力巨大
生物体吸碳排碳,理论上是零碳排放,怎么会有“负碳排放”?
畜禽粪便在自然条件下发酵释放出的甲烷,其温室效应是二氧化碳的25倍,如以其生产沼气与生物天然气去替代化石能源,即是“以污治污”,再加上饲料生长期间的吸碳,其全生命周期为负碳排放。
图片
据瑞典Lund大学研究,按每获得1 kW·h 做功,煤、天然气、风能、沼气与生物天然气的二氧化碳排放量分别是508~897 g、398 g、61 g、-414 g。即沼气的碳减排能力是风能和太阳能的4.6~18倍。
又据德国能源署资料,每行驶公里排放的二氧化碳当量,汽柴油、天然气、生物天然气分别为156~164g、124g、5g。即生物天然气的碳排放只是化石天然气的1/25。在欧洲,重型柴油车改用生物天然气后,微粒物(PM)和NOx排放量分别减少了97%和86%
国际能源组织(IEA)报告称,以生物天然气替代常规天然气是最有希望的减排技术。德国有沼气-天然气生产厂1万余家,全国生物发电产能的68%(7.1 GW)来自沼气-生物天然气。
生物天然气还有一个可贵禀赋,即物质循环优质。
图片
生物质在高温燃烧条件下,植物营养元素挥发固结殆尽,不能继续参与物质循环。而常温条件下的厌氧发酵,生物质的植物营养元素全部保留于沼渣沼液和以优质有机肥回归土壤。
负碳排放的微生物沼气发酵与提纯为生物天然气兼具去污、减排、保土、增收的效果,一石四鸟。
三、碳吸存中的“三擦边球”
农业稻麦棉,林业乔木树,五千年如是。
这里提的思路是,在既不能种庄稼又不能长乔木的边际性土地上种植抗逆性强,生命力旺盛的能源灌草,此一板打出了3个擦边球。
一民营企业在河北康保县沙地上种植了约5万hm2灌木柠条,既防风固沙,又用每3~4年平茬下来的枝条发电。该电厂替代了10万t标煤,输出了2.5亿kW·h绿色电力,年减排二氧化碳17万t,还为千余农民就业,千余农户脱贫作了贡献。
图片
又一民营企业在内蒙古毛乌素沙地种植约4万hm2灌木沙柳,防风固沙与平茬枝条发电并举,年发电2.1亿kW·h,还将电厂排放的二氧化碳收集起来养殖螺旋藻,叫“三碳经济”。
经联合国认证,该项目每年减排碳25.6万t,移存二氧化碳15万t,加上沙柳地下部的固碳量,每年可实现50~60万t二氧化碳的吸存与减排,并为社会提供8000多个就业岗位,人均收入1.2万元。该项目获联合国环境与发展大会2012年度颁发的“20年防沙治沙特别贡献奖”。
有资料称,新疆克拉玛依地区的灌木紫穗槐和柠条的年公顷生物量产出分别为16.162 t和10.541 t;年固碳量分别为7.866 t和5.185 t。
另有一种能在黄土高原和东北地区能安全越冬的芒草,年公顷生物量产出30 t,此二地有约1亿公顷边际性土地可种此芒草,其生物量产出与固碳量之大可想而知。
中国有多少不能种农作物和树木,但可种能源灌草的边际性土地?
根据国土资源部2015年更新的资料,基于全国1km栅格25个地类的土地利用数据,综合考虑了人口、交通和生态保护等因素,选出了灌木林、疏林地、低覆盖度草地、沙地、盐碱地等11类,面积1.44亿hm2,比现有耕地面积还大。每年可生产生物质14.4亿t,能源潜力为7.2亿t标煤。
据此绘制了自然条件下全国可能源用边际性土地的能源潜力分布图。
绿地、生物量产出,以及8.2 t标煤的绿色替代能源全部都是新增。
边际性土地实现能源灌草种植后,祖国大地将出现一道新的风景线,亿万公顷荒地秃岭将被灌林草丛所染,生态环境改观,绿色油田片片,美丽的座座“金山银山”。
四、三片农林碳中和场
中国有3片农林碳中和场,农田、能源灌草与乔木林,它们的面积分别为1.35亿、1.44亿、1.86亿hm2,合计4.65亿hm2。
图片

3个碳中和场的碳状况的主要计算参数是:1 t生物质年吸存0.5 t二氧化碳和产能0.5 t标煤;1 t标煤排放2.6 t二氧化碳;1 t生物质能的排放量是煤碳排放量的40%。
以上3片农林碳中和场的二氧化碳年增汇量合计37.4亿t。这是现量,如果考虑到2060年的40年间的增量,农林碳中和工程的贡献将在年增汇50亿t二氧化碳以上,约当于现年排放量的一半。
同时具有生产12.1亿t标煤生物质能源的潜力,相当于全国现年能源消费总量的30%。
农田碳中和场的碳交换最频繁。据资料,中国农田生物量产出15亿t,可吸存二氧化碳7.5亿t;另可供能源用农林有机废弃物产出量折标煤4.92亿t,转化替代能源可减排二氧化碳9.3亿t(含负碳减排);农林牧渔共消费化石能源8232万t标煤,排放二氧化碳2亿t。农田碳中和场汇多源少,合计年增汇潜力为14.8亿t二氧化碳。
图片
能源灌草碳中和场,建成后按年公顷地上及地下部生物量产出10 t计,年生物量产出14.4亿t,吸存二氧化碳7.2亿t,转化为替代能源折标煤7.2亿t,减排二氧化碳4.4亿t,合计年增汇潜力11.6亿t二氧化碳。
乔木林碳中和场是长时段碳吸存,现总生物量155亿t和年吸存二氧化碳11亿t(《中国森林资源报告2019》),林业三剩物的替代减排已计算在农田碳中和场。
以上3片农林碳中和场的二氧化碳年增汇量合计37.4亿t。这是现量,如果考虑到2060年的40年间的增量,农林碳中和工程的贡献将在年增汇50亿t二氧化碳以上,约当于现年排放量的一半
同时具有生产12.1亿t标煤生物质能源的潜力,相当于全国现年能源消费总量的30%

图片


五、农林碳中和工程,国之重器
农林生态系统和3片碳中和场具有碳吸存与替代减排双重功能,是实现国家碳中和目标的主要阵地,又是生物质资源库与生物质能田。
农林碳中和工程由2个部分组成:
第一部分是改善3片碳中和场的农作物、能源灌草及乔木林的群体结构与管理,增加碳吸存与生物量产出;
第二部分是非粮农林生物质与有机废弃物的资源化利用,发展生物质能、材料和化工产品等绿色产业,增加替代减排力度。
图片
农林碳中和工程具有年增汇37.4亿t二氧化碳和年增12.1亿t标煤生物质能的潜力。
农林碳中和工程的核心与重点是在3个碳中和场加强植物体培育和生物量产出基础上,全面、科学部署绿色供热与发电、液体生物燃料、沼气-生物天然气和全生物降解塑料4大支柱产业体系,以实现国家碳中和目标,改善全国能源消费结构,推进“第二农业”发展。
4大支柱产业的一代技术与商业化在中国已经成熟,热化学合成生物燃油与全生物降解塑料的二代技术已处世界前列,正蓄势待发,报效国家。
实施农林碳中和工程的建议是:
作为重大专项列为国家长期计划;
成立有相关业务部门参加的“农林碳中和工程”办公室,建议办公室设在农业与农村工作部;
成立基于5G的“农林碳中和工程”研究设计院,为工程实施提供技术支撑与指导;
设置“第二农业”学科、专业与学院,培养人才;
选择300~600个县(市)进行不同类型农林碳中和工程项目先行示范,争取在2030年碳排放达峰前为中国乃至世界找到碳中和绿色方案。
农林碳中和工程是集保护环境、能源换代、做强农业-乡村振兴-惠及农民于一役的国家工程,乃国之重器。

CCTC®0202

减排降碳,生物质能不该缺位

“2019年,全球大气中二氧化碳的浓度已经达到410.5ppm。如果要实现本世纪末全球温升控制在2℃以内的目标,大气中的二氧化碳浓度就不能超过470ppm。近年来,二氧化碳浓度的增长速率一直维持在3ppm/年,按此计算,上述温控目标恐难实现。”
在第三届全球生物质能创新发展高峰论坛上,中国科学院、中国工程院院士石元春指出,要想实现“碳中和”的最终目标,“单纯依靠减少碳排放量是远远不够的,还需要用负排放产生的减量抵消掉相当一部分的排放量。但目前在国内,具有负碳排放作用的生物质能却并没有得到应有的重视甚至很少有人提及。”
图片
一、废弃生物质材料增温效应巨大
“废弃的农林生物质等原材料如不加以处理任其自然分解,便会产生大量甲烷和氧化亚氮。这两种温室气体若直接向大气排放,将会产生更严重的后果。”石元春指出,由于当前人类活动产生的温室气体排放大部分是二氧化碳,因此在各国提出的中和或净零排放目标中,常用碳来代指温室气体。“但温室气体其实不止二氧化碳,甲烷和氧化亚氮如果直接排放到大气中,其增温效应将分别是二氧化碳的28倍和310倍。”
事实上,甲烷减排已经开始在国际范围内引起高度重视。就在刚刚结束的《联合国气候变化框架公约》第二十六次缔约方大会上,甲烷减排正式成为会议主题。100多个国家共同签署了“全球甲烷承诺”协定,旨在到2030年使甲烷排放水平较2020年降低30%。特别是在大会期间发布的《中美关于在21世纪20年代强化气候行动的格拉斯哥联合宣言》也提出,将制定一项甲烷国家行动计划,“争取在21世纪20年代取得控制和减少甲烷排放的显著效果”。
图片
“将生物质原料进行统一收集、加工,阻断甲烷等温室气体的产生和排放,发展沼气、生物天然气等能源化利用,将会形成显著的负排放效应。”石元春强调,如果再将生物质能和碳捕获与留存技术相配套,就可以大幅度减少二氧化碳的排放。“加之,各类农林作物在生长过程中,通过光合作用吸收了空气中的二氧化碳,从全生命周期的角度看,生物质能具有明显的负碳排放属性。”
二、生物质能利用长期未获足够重视
但中国农业大学教授程序指出,纵观国内现状,生物质能的发展始终未能得到足够的重视。以农作物秸秆为例,当前我国年产秸秆量超过10亿吨,但作为生物质能的主要原材料之一,其能源化利用率仅为3%左右。“为了避免露天焚烧秸秆带来的大气污染,目前相关主管部门对于秸秆利用的主导政策还是还田。但秸秆还田不仅会不同程度地影响土地和播种质量、加重病虫害,而且秸秆入土不久便会迅速分解产生大量温室气体,加重温室效应。”
图片

“同样是废弃物处理,城市的有机废弃物被归结为'市政垃圾’,有专项的处置经费,而农村产生的秸秆等农林废弃物和畜禽粪便就没有这个待遇。生物质能企业不但得不到处置经费,反过来还需要自己掏钱购买原料。目前,原材料成本已经占据生物质能企业生产总成本的60%左右,行业发展不景气,很难吸引新的投资。”程序坦言,“归根结底,最关键的就是缺乏真正落地的支持政策。”
三、应将生物质能广泛纳入碳市场
程序指出,针对负碳排放的特性,在推广使用生物质能的过程中,更应当将其广泛地纳入到碳市场交易的范畴中。
今年9月,中共中央办公厅、国务院办公厅联合印发《关于深化生态保护补偿制度改革的意见》,明确将林业、可再生能源、甲烷利用等领域温室气体自愿减排量项目纳入全国碳市场。程序认为,《意见》虽然释放出了国家政策对于甲烷减排的关注,“但《意见》只覆盖了很少几个试点省、市,而且规定冲抵配额占碳排放配额的比例最高不超过5%,加之当前农业领域列入的项目过少,事实上示范作用并不明显。下一步,应逐步加大纳入碳排放权交易的生物质特别是甲烷减排的份额。”
图片
据程序测算,如果达到国家能源局中期规划指标,即到2030年年产200亿方生物天然气,折合发电量约860亿千瓦时,按照1千瓦时产生414克的二氧化碳当量排放计算,则可产生3650万吨二氧化碳当量的负排放;如果按照我国生物天然气的年总潜力4000-5000亿方计算,年减排潜力将达到7.3-9.1亿吨二氧化碳当量。
石元春说:“如此技术现成、成本低廉、效益显著的能源利用技术和形式,绝不能让它在我国'碳达峰、碳中和’的进程中缺位。”
图片石元春
中国农业大学土地科学与技术学院教授,中国科学院院士、中国工程院院士

END

让世界多一分爱

图片

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多