方程与方程组专项训练
5周一
1、已知关于的方程的解是,则的值是______.的解为___________________.关于的一元二次方程有一根为,则的值为( ) (B) (C) 或 (D)
4、关于x的方程(a-5)x2-4x-1=0有实数根,则a满足( )
A. B.C.D. (2x-1)2=(3-x)2
5周二1、方程组的解是( ).
A. B. C. D.
是二元一次方程组的解,则算术平方根为( )
A.4 B.2 C. D. ±2
3、有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人.绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为( ).
A.129 B.120 C.108 D.96
4、已知关于x的一元二次方程有实数根,则m的取值范围是 .
5、解分式方程(=
5周三
1、已知方程的两个解分别为,则的值为
A. B. C.7 D.3100人患了流感,那么每轮传染中,平均一个人传染的人数为( )
A.8人 B.9人 C.10人 D.11人
若分式的值为0,则的值等于 .
5、解方程: 解方程组:时,如果设,将原方程化为关于的整式方程,那么这个整式方程是( )
A. B. C. D.
2、若关于的分式方程无解,则 .
3、已知x1=-1是方程的一个根,求m的值及方程的另一根x2。
4、如图所示某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD求该矩形草坪BC边的长.
2、已知关于的一元二次方程有两个实数根和.
(1)求实数的取值范围;
(2)当时,求的值.
周六、日
1、某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完.第二次去采购时发现批发价上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件.两批玩具的售价均为2.8元.问第二次采购玩具多少件?
(说明:根据销售常识,批发价应该低于销售价)
2、随着经济收入的不断提高及汽车业的快速发展汽车已越来越多地进入普通家庭,为消费新点.据某市统计,200年底全市汽车拥有量为万辆,而截止到20年底,全市的汽车有量万辆.
(1)求200年底至20年市汽车拥有量的年平均增长率
3、解方程(组)
(1)、解方程组
(2)、解方程
(3)、解方程:─ ─ 1 = 0 (两种方法)
4、已知关于x的一元二次方程x2 = 2(1-m)x-m2 的两实数根为x1,x2.
(1)求m的取值范围;
(2)设y = x1 + x2,当y取得最小值时,求相应m的值,并求出最小值.
4、整理一批图书,如果由一个人单独做要花60小时。现先由一部分人用一小时整理,随后增加15人和他们一起又做了两小时,恰好完成整理工作。假设每个人的工作效率相同,那么先安排整理的人员有多少人?
A
B
C
D
16米
草坪
第17题图
|
|