分享

张招崇等:大火成岩省的成矿效应、矿床系列、研究进展

 changyz001 2023-06-20 发布于河南

-宣扬地学成果,传播勘查技术方法-

点击上方“覆盖区找矿”,关注更精彩!             

图片

本文为《地质学报》创刊100周年特邀论文

大火成岩省的成矿效应

张招崇,侯通,程志国

中国地质大学(北京)地质过程与矿产资源国家重点实验室

作者简介:张招崇,教授,博士生导师,主要从事火成岩岩石学以及相关金属矿产的教学和研究。
         
导读:
我国与大火成岩省有关的矿床很多。大火成岩省是地质历史上重大的地质事件其带来的巨量的热和物质不仅可导致地质历史上全球性的环境变化并引起生物的大规模绝灭而且为大规模的成矿作用创造了有利的条件形成了丰富的矿产资源。
大火成岩省成矿作用类型众矿床的类型与岩浆的演化过程岩体的规模以及物质组分有密切的关系研究大火成岩省与成矿作用的关系、总结不同类型矿床基本特征对指导地质找矿具有重要意义!
本文介绍了前人研究与大火成岩省有关的矿床类型分类情况和本文分类方案(见内容提纲)论述各个矿床类型的基本特征及其矿床成因的研究现状本文研究成果构建了大火成岩省矿床系列,有利于指导找矿
         
------内容提纲------
           
0 引言
1 与大火成岩省有关的矿床类型
2 与大火成岩省直接相关的成矿作用
2.1 岩浆矿床
2.1.1 与镁铁质-超镁铁质岩体有关的矿床
2.1.1.1 氧化物型矿床
2.1.1.2 硫化物型(PGE)矿床
2.1.1.3 与镁铁-超镁铁质岩体有关的不同类型矿床的关系
2.1.2 与超基性熔岩有关的铜镍硫化物矿床
2.1.3 与碳酸岩有关的REE-Nb-P矿床
2.1.4 与金伯利岩有关的金刚石矿床
2.2 热液矿床
2.2.1 岩浆热液矿床
2.2.2 变质热液矿床
3 与大火成岩省间接相关的成矿作用
3.1 大火成岩省为后期成矿提供了重要的物质基础
3.1.1 风化壳型
3.1.2 热液改造型
3.1.3 沉积改造型
3.2 大火成岩省为后期成矿提供了有利的成矿环境和成矿场所
4 结论与展望
---------------
0  引言

大火成岩省(Large Igneous Province,LIP在全球广泛分布既分布在大陆上也分布在大洋中1),在形成时间上从太古宙到新生代的不同时间均有形成。LIP的概念是Coffinetal.(1991)提出的指的是主要由镁铁质岩石包括喷出岩和侵入岩组成的面积超过105km2的岩浆省并强调了岩浆不是形成于大洋中脊的环境。后来Bryanetal.(2008)在此基础上对LIP的定义作了纠正,不但强调了岩浆的面积,而且还强调了岩浆的体积要在105km3以上,并且75%以上的岩浆体积形成于15Ma之内。另外,他们将大火成岩省划分为2种类型,即以镁铁质岩石为主的镁铁质大火成岩省以及由长英质岩石为主的硅质大火成岩省他们分别代表了大火成岩省的两个端元Cheng Zhiguo et al.(2020)发现还有介于两者之间的大火成岩省类型,即镁铁质岩石和长英质岩石各占一定比例的过渡型大火成岩省。目前,对于镁铁质大火成岩省的成因尽管还存在一定的争议,但主流的观点认为大规模的镁铁质岩浆的形成与起源于地幔深部主要是核幔边界的D”层)的地幔柱有关而对于硅质大火成岩省,目前研究的相对较少Ernst(2014)认为硅质大火成岩省之下存在一个隐伏的镁铁质大火成岩省,其产生的大量的热导致富水的地壳发生高程度部分熔融形成,但是至今未发现硅质大火成岩省之下存在镁铁质大火成岩省的实例,因此该模型尚需进一步的检验。

图片

图1  全球铁镁质和硅质大火山岩省的分布

无论是镁铁质大火成岩省还是硅质大火成岩省,不管其成因如何,其带来的巨量的热和物质不仅可导致地质历史上全球性的环境变化并引起生物的大规模绝灭而且为大规模的成矿作用创造了有利的条件近年来大火成岩省与成矿作用的关系日益受到关注也取得了许多令人瞩目的成果。本文首先简略介绍前人对于大火成岩省有关的矿床类型的分类情况以及本文的分类原则再论述各个矿床类型的基本特征及其矿床成因的研究现状,最后指出相关研究中存在的薄弱环节。
1  与大火成岩省有关的矿床类型
迄今为止已有多位学者对于大火成岩省或地幔柱有关的成矿作用开展了研究并划分了矿床类型。尽管不同学者划分的类型有所不同,但都有一个共同点,即划分为与大火成岩省或地幔柱直接相关间接相关的成矿作用类型其中直接相关的成矿作用类型指的是地幔部分熔融形成的岩浆在岩浆作用过程中形成的矿床即岩浆矿床其他的过程(如热液作用)形成的矿床都归为间接有关的成矿作用类型,即非岩浆矿床。
大火成岩省是地质历史上的一类重大地质事件,这类重大地质事件形成的产物都应该属于大火成岩省的组成部分如镁铁质大火成岩省中的长英质岩石被公认为是大火成岩省的组成部分但长英质岩浆并非地幔直接部分熔融的产物,而是幔源岩浆底侵作用导致地壳部分熔融形成的或者是幔源基性岩浆通过高度分离结晶抑或是不混溶作用的产物既然长英质岩石被认为是大火成岩省的重要组成部分,那么与长英质岩浆作用(包括岩浆期后的热液作用)密切相关的特殊岩石——矿石,也应该是大火成岩省的组成部分之一。基于此,本文按照成矿作用是否发生在LIPs事件的时间范围内,将成矿作用划分为两种类型:①直接相关的矿床类型即成矿作用与LIPs事件直接相关,两者时间一致或者成矿作用稍晚,但是与LIPs的岩浆作用有内在的成因联系②间接相关的矿床类型,即成矿作用与LIPs在时间上有明显的间断,成矿作用不和LIPs事件同步,而是与LIPs事件之后的其他地质过程有关LIPs与成矿作用有间接的联系,LIPs为后期的成矿奠定物质基础或者为成矿作用提供有利的环境或沉淀场所等。
2  与大火成岩省直接相关的成矿作用
镁铁质大火成岩省主要由溢流玄武岩、层状镁铁-超镁铁质岩体和放射状岩墙群组成。另外,还有少量的其他岩石类型,如苦橄岩和科马提岩,酸性喷出岩以及各类侵入岩,如碱性岩和碳酸岩等。其中苦橄岩和科马提岩是接近于地幔部分熔融的原始岩浆常被作为地幔柱成因的岩石学标志作为最常见的溢流玄武岩实际上是原始岩浆(一般为高温的超镁铁质岩浆)经过岩浆房演化过程的产物而层状岩体则是代表了岩浆在岩浆房演化堆晶的结果,所以层状岩体和溢流玄武岩往往存在互补关系放射状岩墙群则是代表了岩浆上升的通道被晚期岩浆充填的产物三者之间的成因关系见图2尽管如此也有少部分地幔柱部分熔融形成的苦橄质岩浆可能在岩浆作用早期阶段直接喷出地表如峨眉山LIP云南丽江地区的苦橄岩此外,幔源岩浆带来的大量热也可以导致地壳发生部分熔融形成中酸性岩浆(3)这些不同阶段形成的岩浆可以形成不同类型的矿床
图片

2 大火成岩省溢流玄武岩、层状镁铁-超镁铁质岩体以及岩墙的成因关系

图片

3 大火成岩省中长英质岩浆的形成示意图

由于不同大火成岩省剥蚀程度不同,所以很多大火成岩省出露的岩石类型和岩石组合有可能不同在某些剥蚀程度浅的新生代大火成岩省以及大洋大火成岩省中,有时只能见到溢流玄武岩,而见不到岩墙和层状岩体而在剥蚀程度高的大火成岩省特别是时代比较古老的大火成岩省有时甚至没有相应的溢流玄武岩,如加拿大北部1270MaMackenzieLIP,只存在代表通道的放射状岩墙群。然而,我国的峨眉山大火成岩省由于各地剥蚀程度不同,所以三者均可见到,比如中部剥蚀程度较高的攀西地区出露层状镁铁-镁铁质岩体,而在剥蚀程度较低的峨眉山大火成岩省东部(滇东—黔西地区),则只能见到喷发的溢流玄武岩,没有出露层状岩体和岩墙。因此,不同大火成岩省的成矿类型和特色不同除因本身的地质背景不同之外,还有可能与剥蚀程度有关。

根据成矿作用的方式,即成矿作用是否发生在岩浆阶段,可以分为两种类型,一是LIPs岩浆作用形成的岩浆矿床二是与LIPs岩浆作用有关的热液阶段形成的矿床。
2.1 岩浆矿床
岩浆矿床指的是在岩浆形成和演化过程中金属元素富集形成的矿床,包括:①与镁铁-超镁铁质岩体有关的氧化物矿床和铜镍硫化物±PGE)矿床其中前者包括铬铁矿床如南非的Bushveld)V-Ti-Fe矿床如我国的攀枝花后者包括与大型镁铁-超镁铁质岩体有关的PGE矿床(如美国蒙大拿的Stillwater)以及与小型岩体有关的铜镍硫化物±PGE)矿床(如俄罗斯的Norilsk)②与超基性熔岩有关的镍矿包括与太古宙科马提岩有关的镍矿(如西澳的Kambalda)和与岩浆管道系统上覆的铁质苦橄岩有关的镍矿(如俄罗斯的Pechenga)③与碳酸岩有关的REE-Nb-P等矿床④与金伯利岩有时为钾镁煌斑岩和方解霞黄煌岩有关的金刚石矿床(金刚石只是其中捕获的捕虏晶)。上述各类矿床的关系见图4下面介绍上述类型的矿床特征以及探讨其可能的形成机制。
图片

4 与大火成岩省有关的岩浆矿床分类图

2.1.1与镁铁质-超镁铁质岩体有关的矿床
这是大火成岩省最重要的一种矿床类型,矿床的形成主要发生于岩浆房中(图2)。按照矿石的性质又可以进一步分为氧化物型和铜镍硫化物(铂族元素)矿床,其中前者又可以进一步分为铬铁矿床和钒钛磁铁矿床,后者可以分为铂族元素矿床和铜镍硫化物士铂族元素矿床。
2.1.1.1氧化物型矿床
氧化型矿床根据成矿金属元素又可以分为两种类型:铬铁矿床和钒钛磁铁矿床,这两种类型虽然都与镁铁-超镁铁质岩体有关但是前者超镁铁质岩组分更高,全岩成分相对于钒钛磁铁矿床的围岩具有高的Mg/Fe比值,贫Ca和碱。
1)铬铁矿床:全球有两种类型的铬铁矿矿床其中一种类型是蛇绿岩型中的豆荚状铬铁矿体,如我国西藏的罗布莎;另一种是产在层状岩体中呈层状的铬铁矿体,与LIP有关。富铬铁矿层可以几乎由铬铁矿组成,也可以与橄榄石和斜方辉石共生,但不和斜长石共生,一般为几毫米到几米厚。Cr/Fe比值一般比蛇绿岩中的铬铁矿要低。结晶于早期,其结晶温度大于1150,早期一般认为是就地结晶形成的后来也有一些学者认为并不是就地结晶形成的,而是富Cr的浆状物(slurries)注入到半固结的堆晶体中形成的。全球最大的铬矿资源来自于南非Bushveld岩体关键带Criticalzone),占全球的75%其他的铬矿来自于津巴布韦2575Ma的大岩墙2710Ma美国StillwatercomplexBalticLIP2450MaFennoscandian岩体也有人称之为East Scandinavian LIPSumian LIP)。Vogeletal.1998)对Fennoscandian岩体研究发现贫铬岩体主要为辉长苏长岩而富铬岩体具有更高的超镁铁质组分超镁铁质组分/镁铁质组分接近11

2)钒钛磁铁矿床矿石主要由钛磁铁矿和钛铁矿组成有时和镁铁尖晶石和铁尖晶石交生。没有独立的钒矿物与其共生的硅酸盐矿物主要有普通辉石、易变辉石、富铁橄榄石和斜长石。在高度分异的岩浆中磷灰石也可以大量出现钒钛磁铁矿体可以呈层状,既可以产于岩体的底部(如峨眉山LIP的攀枝花)也可以产于岩体的中部和上部。岩性包括辉长岩、橄长岩、斜长岩、铁质辉长岩、闪长岩和铁质闪长岩。该类型铁矿的富铁矿石比较少,大多为呈浸染状的贫铁矿石。通常而言,在层状的岩体中,可以形成块状的富铁矿石,如我国的攀枝花和红格矿床,而层状构造不发育的镁铁质-超镁铁质岩体中,几乎不存在富铁矿石,如塔里木大火成岩省的瓦吉里塔格岩体。Pirajno(2000)认为岩体层状构造发育与否与多次的岩浆补充有关,在只有一次岩浆进入的岩浆房,则会出现从底部的超镁铁质逐渐过渡到镁铁质到长英质,而当岩浆房中有多次岩浆补充时层状构造发育。钒钛磁铁矿床的含矿岩体的母岩浆一般认为是富铁钛的玄武质岩浆是原始的富铁钛的苦橄质岩浆在深部岩浆房发生演化的结果。然而,虽然对于岩体和铁矿石的成因总体上认为是分离结晶作用占主导地位,但是对于该类矿床中的富铁矿石的成因还存在着比较大的争议归结起来主要有2种不同的认识,一是分离结晶作用,二是岩浆不混溶作用。前者很难解释几乎没有硅酸盐矿物的形成,因为磁铁矿可以在高氧逸度条件下先结晶,但是在磁铁矿结晶过程中硅酸盐也会同时结晶;后者得不到实验的支持,因为相关的不混溶实验均无法得到纯的磁铁矿熔体,而是富铁的硅酸盐熔体,这是与磁铁矿极高的熔点有关(在常压下1500℃,并随压力升高而增加)Song Xieyan et al(2013)基于攀枝花钒钛磁铁矿床的研究,提出在高氧逸度条件下磁铁矿先结晶,然后再发生流动导致磁铁矿的富集,该模式可以较好解释富铁矿层厚度的变化以及矿物的定向排列

2.1.1.2硫化物型(PGE)矿床

1883年全球第一个铜镍硫化物铂族元素矿床发现于加拿大的Sudbury大型层状岩体的底部,于是地质学家试图用Sudbury模式在大型层状岩体中寻找铜镍硫化物铂族元素矿床,但是在此类岩体中只找到富铂族元素的硫化物层,而新的超大型岩浆型铜镍硫化物矿床大多发现在小型的镁铁质-超镁铁质岩体中后来的研究发现Sudbury是全球唯一的与陨石坑有关的铜镍硫化物矿床所以该类矿床也可以再分为两类,一是与大型层状镁铁-超镁铁质岩体有关的铂族元素矿床,另一类是与小型镁铁-超镁铁质岩体有关的铜镍硫化物(PGE)矿床。

(1)铂族元素矿床:以铂族元素为主的硫化物矿床产于大型层状的镁铁-超镁铁质岩体中Naldrett(2004)将其划分为6种类型,其中前3类最重要的类型都与LIPs有关,因此LIPsPGE的主要来源。Naldrett(2004,2010)认为这些层状岩体的母岩浆与两种不同类型的岩浆有关一种是富硅的高镁玄武岩有关(U)另一种是拉斑玄武岩有关(T)前者类似于玻安岩,可能是科马提岩被地壳混染后形成的但是Halletal.(1990)则认为U型的苏长岩岩浆是原始地幔熔体与俯冲板片相互作用的结果产铂族元素矿床的著名岩体有南非的Bushveld大型岩体(含矿层为Merensky层和UG2铬铁矿岩)美国蒙大拿州Stillwater(含矿层为J-M)以及津巴布韦大岩墙(含矿层为主硫化物带,Mainsulfidezone)3个大岩体都属于Naldrett(2004)类型的第一类,被认为是LIPs的组成部分,其中Bushveld岩体是属于Kaapvaal克拉通之上的一个21002055Ma大火成岩省;Stilwater岩体形成于2710Ma与怀俄明州广泛分布的基性岩墙的年龄一致(27102680Ma),是属于新太古代的一个大火成岩省;津巴布韦大岩墙形成于2575Ma,550km出露面积达0.6X105km2这些岩体既包含U型也包含T型岩浆但以U型为主Bushveld岩体赋含世界上最大的铂族元素矿床其中PtPdRh分别占全球的755282如此大量的铂族元素如何聚集成矿一直存在争论但总体上有2种不同的认识一是与富Cl的流体作用有关二是由于岩浆混合或压力波动导致硫化物和铬铁矿堆积在底板造成铂族元素富集

2)铜镍硫化物(PGE)矿床Naldrett(2004,2010)将岩浆型铜镍硫化物矿床划分为7种类型认为其中的4种类型与LIPs有关但比较肯定的是只有3即图4中的与超基性熔岩有关的2种类型以及与小型镁铁-超镁铁质岩体有关的矿床。而其中一种类型即与苏长岩一斜长岩一花岗岩有关的铜镍硫化物矿床因为岩浆作用规模不大并且时间较长所以可能不属于大火成岩省当然还有人认为我国的金川也是属于825Ma的大火成岩省中亚造山带的大约280Ma的一系列铜镍硫化物矿床属于塔里木大火成岩省的一部分。也有一些学者认为全球岩浆铜镍硫化物矿床大多与大火成岩省有关甚至位于地幔柱中心及其附近。如果按照重要性而言与小型镁铁-超镁铁质岩体有关的铜镍硫化物矿床最为重要,如全球第二大的俄罗斯的Norilsk矿床即赋存于小岩体中。不管是哪种类型,在矿石矿物组合上都比较相似,且比较简单,主要矿物为磁黄铁矿、镍黄铁矿和黄铜矿,次要矿物为古巴矿和黄铁矿。矿石以浸染状矿石和块状矿石为主,矿体可以呈层状、透镜状甚至是脉状,大多产于岩体的底部,常与超镁铁质单元共生。常见的硅酸盐矿物包括橄榄石、斜方辉石、单斜辉石和斜长石,其镁铁质矿物含量通常要高于赋存钒钛磁铁矿的岩体,并且斜方辉石普遍出现,这一点与含钒钛磁铁矿岩体有明显的区别,因为后者斜方辉石比较少见。

相比于岩浆型其他矿床,对于岩浆型铜镍硫化物矿床的成因认识总体上较为一致,成矿与硫化物熔体的熔离有关,造成硫化物熔离的原因是由于硫原来的不饱和变为过饱和。因此,要形成铜镍硫化物矿床需要两个条件,一是开始的原始岩浆必须是硫不饱和,否则早期硫饱和就会导致硫化物分散;二是使得硫不饱和变为过饱和。

如何保证原始岩浆硫不饱和?众所周知,硫在地幔中是不相容元素,所以为了保证原始岩浆硫不饱和,需要地幔发生高程度的部分熔融。由于碱性岩浆是地幔低程度部分熔融的产物,所以碱性岩浆不利于铜镍硫化物矿床的形成,而相对较高程度部分熔融形成的拉斑玄武质岩浆有利于铜镍硫化物矿床的形成

如何使得硫不饱和变为过饱和?这主要是涉及硫在岩浆中的溶解度,控制硫的溶解度的因素很多,如岩浆成分、温度、压力、氧逸度和硫逸度等,所以改变这些条件都有可能会导致硫的过饱和。对于岩浆的演化,导致硫过饱和的主要因素有地壳混染、岩浆混合、分离结晶作用等其中地壳混染作用被认为是导致硫过饱和最有效的因素,这是因为地壳混染可以导致:①温度迅速下降(硫的溶解度与温度呈正相关关系)②岩浆中铁的含量降低和硅的含量升高(硫的溶解度与熔体铁的含量呈正相关而与硅的含量呈反相关)③混染作用还有可能混染地壳中的硫使得岩浆中硫的浓度升高而饱和;④地壳的混染作用会加速岩浆的分离结晶作用(也就是AFC过程)使得硫饱和。很多岩浆铜镍硫化物矿床都有地壳混染的岩石学和地球化学证据,岩石学证据表现在普遍存在斜方辉石(地壳混染导致岩浆硅的浓度升高有利于斜方辉石的结晶)以及高的O同位素和87Sr/86Sr以及低的Nd同位素。然而,要形成大型-超大型的铜镍硫化物矿床地壳硫的加入应该是最有效的途径这是因为要形成铜镍硫化物矿床不仅需要有金属镍而且要有相应的硫。对于超镁铁质岩浆镍的含量比较高而硫的含量则有限所以地壳硫的加入就为形成超大型铜镍硫化物矿床提供了重要的物质基础一个典型的例子就是全球第二大镍矿的Norilsk,该地区地层中膏盐层为成矿提供了丰富的硫源,这一点已达成共识然而我国的峨眉山大火成岩省虽然也有一些铜镍硫化物矿床但是可能是由于该地区缺乏膏盐层导致硫化物熔离的原因可能是地壳长英质岩石的混染所以地壳混染产生的外来硫的加入十分有限这可能是该地区迄今没有发现大型-超大型的铜镍硫化物矿床的主要原因

从物质来源分析大型的超镁铁质岩体因为体积大可以提供丰富的金属来源那么为何大型-超大型铜镍矿床一般赋存在小岩体中?近年的研究表明大型层状岩体不利于大规模硫化物的堆积而目前所见的小岩体并不代表岩浆房分离结晶的产物其体积的大小不代表参与成矿岩浆的体积。小岩体只是代表了岩浆的通道系统大量已经发生硫化物熔体熔离的岩浆已经通过岩浆通道迁移到别处形成新的不含矿岩体或喷发因此参与成矿的岩浆的量实际上依然是很大的岩浆通道系统成矿模式既可以很好地解释所谓“小岩体成大矿”的现象也可以解释铜镍矿体的产出部位。按照传统的观点不混溶的硫化物熔体下沉富集在岩浆房的底部所以矿体应该主要产出在岩体的底部但是无法解释矿体产出在岩体的其他部位甚至呈脉状产出在围岩之中。而按照岩浆通道系统成矿模式岩浆在一个动态的岩浆通道系统(dynamic magma plumbing system)中流动发生聚集(即流动分异)并在岩浆通道(magmaconduit)的流速变缓处被携带的硫化物乳珠发生重力沉降富集成矿,由此可形成块状和浸染状矿石。

值得指出的是,铜镍硫化物矿床往往伴生有铂族元素矿床,如俄罗斯的Norilsk,但也有的矿床的铂族元素含量很低,构不成工业价值,如中国攀西地区的力马河矿床目前的一个主流观点是与深部是否发生过铜镍硫化物的熔离作用有关。因为铂族元素在硫化物中的分配系数在1000以上,所以少量硫化物的熔离就会带走绝大多数的铂族元素,从而导致残留熔体铂族元素的亏损。

2.1.1.3 与镁铁-超镁铁质岩体有关的不同类型矿床的关系

综上所述可以看出与镁铁-超镁铁质岩体有关的矿床有铜镍硫化物矿床、铂族元素矿床、铬铁矿床和钒钛磁铁矿床。不同类型的矿床与岩体的规模以及超镁铁质组分有密切的关系,如钒钛磁铁矿床有关的岩体一般规模较大(几平方千米到10km2)但超镁铁质组分相对较低,多数以辉长岩为主铜镍硫化物矿床有关的岩体规模一般较小,多数小于1km2但超镁铁质组分明显要高,并且岩石中一般含斜方辉石铂族元素矿床一般产于大型的超镁铁质岩体中与铬铁矿床有关的岩体的超镁铁质组分最高,岩体的规模也较大。其中铬铁矿床和钒钛磁铁矿床的形成主要与岩浆的分离结晶作用有关而铜镍硫化物(铂族元素)矿床则主要与岩浆的熔离作用有关,尽管不同的岩浆演化过程也有可能在矿床形成过程中起到了不可或缺的作用。因此,尽管在同一个大火成岩省中可以同时存在不同类型的岩浆矿床(如峨眉山大火成岩省同时存在钒钛磁铁矿床和铜镍硫化物铂族元素矿床)但同一个岩体中很少存在有不同类型的矿床。这样,一些学者认为不同类型岩浆矿床的形成可能主要与源区有关,其中钒钛磁铁矿床的源区中可能存在榴辉岩和辉石岩等富铁岩石,其部分熔融形成的岩浆为富铁钛的苦橄质岩浆,而铜镍硫化物矿床和铂族元素矿床则需要地幔橄榄岩发生高程度部分熔融形成低钛苦橄质岩浆

然而,也有少数岩体同时存在不同类型的矿床如著名的南非Bushveld杂岩体的Main and Upper Series含有一系列的含V-Ti磁铁矿层,分别占全球的30.1%V9.7%的钛铁矿PGE赋存于Merensky层和UG2铬铁矿岩中,占全球PGE70.9%全球最大的铬铁矿石(占全球的75%)赋存于关键带(Critical zone)安大略西北部可能是一个太古宙的LIP,其中的2730Ma Ringof Fire杂岩体有数个世界级的铬矿床包括BlackbirdBigDaddyBlackThorBlackLabel并且同时有Cu-Ni-PGE矿床和大型V-Ti矿床但是在空间位置上并不同其中铜镍硫化物矿床位于下部具有脉状的构造中部为席状的铬铁矿岩上部为层状的Ti-V矿体。我国峨眉山大火成岩省的新街岩体上部为钒钛磁铁矿床下部为铜镍硫化物铂族元素矿床红格钒钛磁铁矿床是我国最大的钒钛磁铁矿床最近在百草矿区发现了大量的镍钴硫化物矿体,在下部的磁铁矿中具有高的Cr含量,属于高Cr磁铁矿,其Cr的储量可以达到大型规模。上述实例表明,不同类型矿床可以在同一个岩体中共生暗示LIP岩浆通过不同的演化途径形成不同类型的矿床。然而,具体是如何演化的,还在进一步的探索中。

值得注意的是,近年来的研究发现我国岩浆型矿床是关键金属Co的重要来源之一其主要与富镍的硫化物有关因而是铜镍硫化物矿床的重要伴生金属。然而,在钒钛磁铁矿床中也存在储量可观的Co的储量,甚至可以达到大型规模,如我国攀西地区的攀枝花和红格矿床,并且研究发现Co主要赋存于其中的硫化物(0.25%)在钒钛磁铁矿中也有少量的Co(0.012%0.024%)显然,阐明岩浆的演化过程,特别是钒钛磁铁矿床中硫化物的形成机制不仅对于理解两类岩浆型矿床的成因具有重要的意义,而且对于揭示Co超常富集机制也具有重要的意义并且有可能成为岩浆型矿床研究的主要方向之一和热点问题。

2.1.2 与超基性熔岩有关的铜镍硫化物矿床

与超基性熔岩有关的铜镍硫化物矿床有2种类型一种与太古宙科马提岩有关,如西澳的Kambaklda和加拿大的AbitibiThompson等;另一种与铁质苦橄岩有关,如俄罗斯的Pechenga其中以前者为主,后者目前仅此一例。在成矿机制上,与其他岩浆型铜镍硫化物矿床相似都是与硫化物熔体的熔离有关

与科马提岩有关的铜镍硫化物矿床中矿体一般呈似层状产于科马提岩和拉斑玄武岩中。对于该类矿床的形成通常用热机械侵蚀模式(Thermomechanical erosion model)来解释即低黏度高密度的科马提岩熔岩在玄武岩之上快速流动并对其进行热侵蚀形成凹槽熔离的硫化物熔体沉淀到下部。当硫化物熔体达到一定的厚度时就会对玄武岩进行侧向挤压形成似层状矿体

与铁质苦橄岩有关的Pechenga铜镍矿床中硫化物矿体的产出形式有4种:①呈浸染状产于铁质苦橄岩的橄榄石堆晶岩中;②以块状矿石的形式产于铁质苦橄岩与片岩的接触带中;③角砾状矿石产于铁质苦橄岩和片岩的接触带或平行于围岩底板;④黄铜矿脉或细脉产于围岩底板中。在硫化物熔离机制认识上都较为一致地认为是围岩地层中硫的加入所致这一点也得到硫化物的硫同位素的支持。但是对围岩硫加入岩浆系统中的方式还存在不同的认识。

2.1.3 与碳酸岩有关的REE-Nb-P矿床

碳酸岩通常和碱性岩共生组成碱性岩-碳酸岩杂岩体。与大火成岩省有关的碳酸岩的实例有:66Ma的印度Deccan130Ma的南美Parana-Etendeka,252Ma的西伯利亚,370Ma的俄罗斯Kola-Dneiper(包括Kola碱性岩浆省)280Ma的中国塔里木LIP11151085Ma的美国KeweenawanLIP21002055Ma的南非Bushveld这些碳酸岩通常被认为是和裂谷事件有关

碳酸岩中经常有很重要的矿床REENbFPFeThUCuZrTaAuAgPGE以及有工业价值的蛭石矿床我国的白云鄂博REE-Nb-Fe矿床可能与元古宙的燕辽LIP有关,但没有得到普遍认可。目前对于这类矿床,还存在如下的问题:①碳酸岩类型(如钙质、镁质和钙镁质)和特殊的矿种是否有关,如有的与稀土有关,有的与Nb-Ta有关。即使有的与稀土有关,哪种碳酸岩对稀土的形成更有利?ChengZhiguo et al.(2018)对塔里木LIP的瓦吉里塔格稀土矿的研究发现,钙质碳酸岩和重稀土有关,而镁质碳酸岩和轻稀土有关,但原因尚不清楚。②过去的研究表明,有的碳酸岩产于地幔柱中心附近,有的产于远离地幔柱中心位置。在时间上碳酸岩既可以形成于LIP的早期,也可以形成于主期和晚期,哪个位置、哪个时期形成的碳酸岩更加有利于成矿?③碳酸岩是稀土的主要来源之一。过去的研究表明,碳酸盐矿物中稀土的含量很低,那么碳酸岩中的稀土是如何富集的?通过岩浆过程还是热液过程?如果岩浆过程和热液过程均对稀土富集有贡献,那么哪种过程对稀土的富集起到关键的作用?④岩浆碳酸岩可能有3种形成机制,即碳酸盐化地幔橄榄岩低程度部分熔融、不混溶作用以及碳酸盐硅酸盐熔体的分离结晶作用,如果这3种成因都有可能,那么哪种成因的碳酸岩更有利于成矿,或者更有利于形成哪种类型的矿床?

2.1.4 与金伯利岩有关的金刚石矿床

金伯利岩和钾镁煌斑岩是一种富挥发分钾质的超基性火成岩,也是一种碱性岩石。虽然它们并不一定都含金刚石,但是因为是金刚石的母岩而为大家所熟知。Crough et al.(1980)最早提出金伯利岩与地幔柱有关近年来深部地球物理探测的一个重要进展是,发现地球核幔边界存在两个大的剪切波低速异常区(Large low shear wave velocity provinces,LLSVPs)一个在非洲,一个在西南太平洋。而且通过古地磁构造重建发现全球绝大部分大火成岩省(除了中国塔里木等少数几个LIPs)按照其形成时间的位置都落在这两个低速异常区的边缘说明两个LLSVPs至少存在了500Ma,并且自形成之后一直维持不动Torsvik et al.(2010)将重建的含金刚石的金伯利岩的古地理位置投影到两大LLSVPs中,发现全球85%的金伯利岩落在两大LLSVPs范围内强烈暗示金伯利岩的形成可能与超级地幔柱的活动有关

金伯利岩可以分为Group IGroup GroupIIMitchell(1995)命名为'orangeites'对与金刚石共生的硅酸盐矿物定年结果发现其形成年龄明显比寄主的金伯利岩要老所以很多学者认为金刚石是岩浆在上升过程中捕获的捕虏晶,而不是斑晶。一些金刚石中的包裹体指示金伯利岩岩浆起源的深度超过180km甚至是核幔边界。虽然绝大多数金刚石被认为是起源于深部岩石圈的根部,但是某些金刚石含有镁铝石榴子石和钠质辉石-玩火辉石固溶体,指示其起源于过渡带(410660km)也有一些其他包裹体指示了下地幔成因还有一些金刚石有Fe,FeC和碳硅石(SiC)等矿物指示其有可能起源于地核这些都说明其为地幔柱成因,相关实例包括12080Ma的金伯利岩,如北美、印度、西伯利亚、巴西和非洲,这些均与太平洋的超级地幔柱有关。另外,还有印度的Deccan

前已述及,并不是所有的金伯利岩都含金刚石。那么LIPs是否能用于评估金伯利岩中金刚石的成矿潜力?过去的研究表明,金伯利岩是否含金刚石取决于大陆岩石圈的热结构和成分即要有厚、冷和含有碳的岩石圈,温度不需要那么高,否则就会处于金刚石的稳定域之外。厚的(>200km)冷的岩石圈根属于古老的太古宙克拉通,因此这一类岩石圈是寻找含金刚石金伯利岩的重要方向但是如果有后期的地幔柱作用,可能会导致含金刚石的岩石圈变成软流圈,如1270MaMackenzie地幔柱、180MaKaroo地幔柱和130MaParana-Etendeka地幔柱大火成岩省形成之后的金伯利岩往往不含金刚石,因为地幔柱的作用导致金刚石稳定区的岩石圈被破坏,特别是地幔柱的中心部位。所以地幔柱的中心位置破坏早,然后逐渐蔓延到周围。当然地幔柱作用之后,慢慢地冷却,逐渐在1Ga之后可以恢复到含金刚石的岩石圈

除了金伯利岩和钾镁煌斑岩含金刚石外,还有一种不为大家所熟知的岩石也含金刚石即方解霞黄煌岩(ailikite)方解霞黄煌岩为碱性、贫硅、富碳酸盐的超镁铁质煌斑岩,其岩石名称来自于最早的发现地:加拿大的AillikBay该岩石在结构及矿物组成上与金伯利岩非常相似,因此很多地区的方解霞黄煌岩被误认为金伯利岩,如加拿大魁北克的Torngat和印度的Wajrakarur中国塔里木大火成岩省也存在十余个呈岩筒状和脉状的方解霞黄煌岩,其最初也被误认为是金伯利岩,并且在其中曾分选出一颗金刚石。然而,其后再也没有发现金刚石,这就导致人们思索其是否为金伯利岩。后来的研究发现,其在矿物组成上与金伯利岩还是有一定的区别,属于不太典型的金伯利岩,并且分别用不同的岩石名称来命名,如闪辉煌斑岩、角砾云母橄辉岩金伯利质角砾橄榄岩最近Wang Changhong et al.(2021a,2021b)通过对岩相学和矿物学的详细研究提出其为方解霞黄煌岩而非金伯利岩。然而,迄今为止,其金刚石的成矿潜力尚不清楚,有待进一步研究。

2.2 热液矿床

热液矿床指的是LIPs形成过程中与岩浆作用和变质作用有关的热液矿床,所以成矿作用在时间上基本上和LIPs同步或稍晚。对于镁铁质大火成岩省,大规模的幔源岩浆作用底侵到地壳时可引起地壳发生部分熔融形成中酸性岩浆,或者在地壳岩浆房中发生AFC过程形成中酸性岩浆这些中酸性岩浆可以再发生演化产生成矿流体而成矿。对于硅质大火成岩省,长英质岩浆由于黏度很高基本上不可能像镁铁-超镁铁质岩浆那样在岩浆阶段发生分离结晶作用直接堆积形成岩浆矿床,但可以经过演化形成热液矿床。另一方面,LIPs提供巨大的热源引起高温低压变质作用,并引起变玄武岩和变沉积岩发生脱水作用形成变质热液。在这些热液作用过程中可以形成相应的热液矿床。大火成岩省在热液矿床形成过程中的作用有3个方面:①为热液矿床的对流循环提供热源;②为热液矿床提供金属和矿化剂,通过岩浆分异直接形成含矿热液,或者热液通过与已固结的岩浆岩发生相互作用淋滤其中的成矿物质;③提供沉淀的场所。热液矿床的相关类型见图5

图片

与大火成岩省有关的热液矿床类型

2.2.1 岩浆热液矿床

与大火成岩省有关的岩浆热液型矿床大致有3个类型:与硅质大火成岩省有关的IOCG矿床和浅成低温热液型金矿床;②与碱性岩和碳酸岩有关的热液稀土-稀有金属矿床;③与中酸性岩有关的斑岩铜钼矿床及其他热液矿床在此只介绍与硅质大火成岩省有关的矿床,其他与大火成岩省有关的矿床在成矿特点和成矿机理上与产在其他构造环境的相关矿床相似,本文不再论述。

硅质大火成岩省中的热液成矿系统的形成与火山塌陷构造、破火山机构周边断层和沿地堑的伸展性断层关系密切,这些断层为热液的运移提供了通道。相关矿床的成矿时代通常对应各硅质大火成岩省中岩浆活动主峰期的最后阶段,指示热液成矿作用主要发生在硅质大火成岩省形成的末期,即岩浆活动的强度在中-上地壳达到峰值的时期(Bryan2007)与硅质大火成岩省有关的常见矿床类型有2IOCG矿床(铁氧化物--金矿床Ironoxide-copper-golddeposits)和浅成低温热液型金矿。

全球最著名的IOCG矿床是澳大利亚世界级的奥林匹克坝矿床(铁氧化物-Cu-U-Au-Ag)该矿床赋存全球最大的U铜矿位居第四。矿床的形成与1590MaGawerLIP有关。巨量的硅质岩浆可以产生大量富金属的岩浆流体以及金属迁移的矿化剂。硅质大火成岩省中与IOCG矿床有关的长英质岩浆显示出高的F含量,如前面提到的澳大利亚的GawerLIP以及位于澳大利亚中西部的Warakurna LIP和墨西哥的Sierra Madre Occidental LIP等。因此岩浆中高的F含量可能对IOCG矿床的形成有重要的作用,因为富F的长英质岩浆有利于富F流体的形成,而富F的流体可以导致很多金属元素的溶解度升REEUF流体可以通过两种途径形成一是直接通过岩浆的演化出溶出富F的含矿流体,二是通过淋滤富F的长英质岩石。虽然富F流体可以提高REEU等金属在流体中的溶解度,但是CuAu不与F形成络合物,而是受其他矿化剂如CO2S的控制。因此,富F的火成岩虽然有利于IOCG矿床的形成也许是必要条件但是并不是唯一条件不一定能指示IOCG矿床当然,贫F的长英质岩浆不利于IOCG矿床的形成,如美国的SnakeRiverPlain LIP斑岩矿床和浅成低温热液型矿床主要产于与大洋板块俯冲有关的岛弧和活动大陆边缘环境。然而最近的研究发现浅成低温热液型矿床也是硅质大火成岩省常见且重要的矿床类型其中尤以低硫型更为常见,如Sierra Madre OccidentalGuanajuato Ala Guitarra矿床Chon AikeCerro VanguardiaLa Josefina矿床我国华南地区被认为是一个中生代的硅质大火成岩省也发现一些低硫型浅成低温热液型矿床如湖南水口山地区的Au-Ag-Pb-Zn矿床福建德化地区金矿床浅成低温热液型金矿最发育的是Sierra Madre Occidental大火成岩省,目前在5X105km2的面积内已发现800多个浅成低温热液型金矿除了低硫型外在硅质大火成岩省中还有高硫型金矿和斑岩型铜金矿床Sierra Madre Occidenta中国华南的福建紫金山斑岩铜矿-高硫型金矿。

2.2.2 变质热液矿床

大火成岩省产生巨量热的作用可以引起周围岩石发生变质作用并释放出金属参与到热液成矿系统中同时巨大的热可以引起大规模的热液流体对流而成矿。目前与大火成岩省有关的变质热液的生成有2个模式:

(1)Etheridge etal.(1983)提出的地幔热源之上的变质流体形成模式(6)。在该模式中幔源的热导致地壳发生部分熔融在熔融区之上形成一个热液对流带。其中下部的角闪岩相带比其上部的绿片岩相带的热液循环要弱两个相带之间的边界相当于韧性剪切带和脆性剪切带的界线变质流体只在这两个带中循环因为其上有一个低渗透的岩层“盖'(Less permeable cap)阻隔了上部的大气降水循环。当变质流体压力超过静岩压力时就会引起“盖'的破碎这样下部的变质流体可以穿过韧性剪切带、脆性剪切带进入到脆性剪切带并在脆性剪切带中形成热液矿床。

图片

6 地幔热源之上的变质流体形成模式

(2)Fyfeetal(1985)提出的渐进式脱水变质流体形成模式。在该模式中,花岗岩的侵入使得变质玄武岩和变质沉积岩围岩发生渐进式变质而脱水形成变质流体(7)
图片

7 由岩体侵入引起的渐进式脱水变质流体形成

Ernst et al(2013)认为与变质流体有关的矿床有两类一类是产在溢流玄武岩中的自然铜矿,另一类是中温脉状矿床。
最著名的自然铜矿床是美国的1115~1085MaKeweenawan LIP,Cu的储量超过500t,同时回收Ag另外,1270Ma Mackenzie LIP也有自然铜矿床Ernst et al.(2013)认为我国的东天山自然铜矿塔里木大火成岩省有关,但是迄今为止,尚缺乏有力的证据。该类铜矿的铜以自然铜的形式产出,可能与低级变质作用有关,玄武岩中的CuAg在变质流体的作用下发生活化渗透到地层中或沿断裂迁移,以自然金属或者在高氧逸度条件下以高的Cu/S比值的硫化物在断裂、杏仁或者角砾中的充填物发生沉淀
值得指出的是,我国峨眉山大火成岩省东部的峨眉山玄武岩中的自然铜矿床,似乎只是空间的联系,其形成时间明显要晚所以不属于此列
中温脉状矿床的形成与脱水反应形成的变质流体有关,典型例子包括太古宙绿岩带内的脉状金矿床(也被称为造山型金矿)南非的Sabie-Pilgrims Rest金矿田以及美国西北部Belt盆地的中元古代的贱金属、银矿床。其中产在太古宙花岗-绿岩带内的脉状金矿是澳大利亚、加拿大、南非、津巴布韦、印度、俄罗斯和巴西等国家金的主要来源。金矿体主要产在绿岩带内的绿片岩相岩石中,尤其是条带状铁建造和其他富铁岩石中受韧性剪切带、脆-韧性剪切带和脆性构造控制。金矿形成时间是在变质峰期到峰期之后。Sabie-Pilgrim's Rest金矿的成因虽然还存在不同的认识,但是普遍认为其热源来自于Bushveld杂岩体因为矿床的形成时间基本上与Bushveld杂岩体一致。
3  与大火成岩省间接相关的成矿作用
该类型矿床并非形成于LIPs时期,LIPs的形成时间有明显的间断(gap)即成矿作用时间明显发生在LIPs之后。因此,虽然前人对与大火成岩省或与地幔柱有关的成矿类型进行过大量的总结,但是很少将这些矿床归为大火成岩省或地幔柱成矿系统中。
近年来越来越多的研究表明,很多原来被认为与大火成岩省无关的矿床实际上也与LIPs存在着密切的成因联系。LIPs与成矿作用的间接关系主要体现在两个方面一是LIPs可能为成矿作用提供了巨量的物质来源;二是LIPs提供了有利于成矿的环境和沉淀场所。由此可以将该类矿床划分为两种类型,并且每种类型有可以进一步划分为若干亚类,具体见图8

图片

8 与大火成岩省间接有关的矿床类型

3.1 大火成岩省为后期成矿提供了重要的物质基础

大火成岩省产生的巨量岩浆不仅为岩浆和热液直接成矿奠定了物质基础,同时也为后期的风化、沉积以及热液改造成矿奠定了物质基础。与大火成岩省有成矿物质继承关系的矿床类型有风化壳型、热液改造型和沉积改造型.。

3.1.1 风化壳型

大火成岩省岩石风化后可以形成一系列不同的红土型矿床,如铁、铝、镍、金、磷、铌等,矿床的种类主要取决于源岩的性质,即与源岩中元素的丰度有关,高的丰度有利于形成该元素的红土型矿床,如超镁铁质岩由于其具有高的NiCo含量,所以其风化后形成Ni-Co矿床,玄武岩和粒玄岩风化后形成铝土矿,碳酸岩风化后形成NbP这些红土型矿床形成于热带地区,有利于化学风化。

澳大利亚有大量的红土型镍矿,如MurrinBulong and Cawse其源岩为厚的橄榄石堆晶层,形成于西澳大利亚Yigarn克拉通的太古宙LIP澳大利亚中部的Wingelina镍矿,其源岩为Warakurna LIP(1075Ma)的超镁铁质岩另外在加勒比地区(90Ma的加勒比-哥伦比亚LIP),也有广泛分布的红土型镍矿包括哥伦比亚西北部的Cerro Matoso SA红土型镍矿其源岩为橄榄岩岩基。

全球大约有19的铝土矿形成于玄武岩并且绝大多数玄武岩与LIPs有关另有17%与粒玄岩岩床和岩脉有关。LIPs有关的铝土矿包括印度中部和西部,其形成与Deccan的玄武岩和粒玄岩有关。另外,西非巨型的Guinea铝土矿(91亿t)来自于200Ma的中大西洋岩浆省(CAMP)的岩床和岩脉的风化。我国云南东南部峨眉山大火成岩省分布区也有一系列的铝土矿这些铝土矿均赋存于峨眉山玄武岩之上的上二叠统宣威组/龙潭组/吴家坪组地层底部被认为是峨眉山玄武岩风化作用的产物,铝土矿的形成实际上是去硅富铝的过程

在峨眉山大火成岩省东部,除了红土型的铝土矿之外,还有一系列与峨眉山玄武岩风化作用有关的矿床:①红土型金矿,这一类型主要分布在云南东堡、胜境关,贵州盘县砂锅厂、芹菜坪、火铺、干沟、砂厂、炼山坡、晴隆老万厂、安龙豹子洞等地,金矿被强烈风化的玄武岩红土或强烈风化的凝灰岩所控制,特别是凝灰岩风化的风化壳,金矿往往最为富集;②红土型铜矿分布在贵州西部和云南东北部,风化壳往往由玄武岩残积层、坡积层、冲积层和含植物化石的古土壤层组成玄武岩中丰富的自然铜以及高含量的铜,是形成该类型铜矿的物质基础(ZhangZhaochongetal2006b)③硫铁矿床贵州西部上二叠统峨眉山玄武岩与火山碎屑-黏土岩交接相带往往形成一系列硫铁矿床,如毕节林口、大方猫场、古蔺大树等。这些矿床产在晚二叠世煤系地层底部、中二叠世茅口组灰岩侵蚀面上。风化壳在硫铁矿的形成过程中主要起到将玄武岩中的镁铁质矿物(辉石)中铁解析出来,二价铁离子经过搬运至还原环境的黏土岩相带并与HS-结合形成黄铁矿④稀有稀土矿床滇东-黔西地区的宣威组底部广泛发育一套Nb-Ga-REE多金属矿化富集层,其岩性为高岭石硬质黏土岩和高铝高岭石硬质黏土岩,底板为峨眉山玄武岩Chen Qietal(2020)通过对峨眉山玄武岩的岩相学和地球化学研究发现,玄武岩的基质中有大量的磷灰石和榍石,并且这些副矿物高度富集NbGaREE他们认为这些副矿物在后期风化淋滤过程中形成黏土矿物,成为宣威组底部Nb-Ga-REE多金属矿化富集层的主要成矿物质来源。

另外,大火成岩省不仅提供了红土型矿床形成的巨量物质基础,而且会导致气候的变化,由此为化学风化奠定了重要基础。值得注意的是,古地磁研究发现,有很多大火成岩省在形成时处于赤道附近,这样也为与大火成岩省有关的红土型矿床的形成创造了有利的条件。

3.1.2 热液改造型

大火成岩省岩浆在形成和演化过程中有一部分金属元素可能得到初步富集,并为后期的热液改造成矿奠定了重要的物质基础。在中国峨眉山大火成岩省可能有两类矿床属于该类型:一类是滇东北的自然铜矿,分布于鲁甸、茂林、逸车向斜的峨眉山玄武岩与上覆宣威组地层之间,分布面积达3000km2然而,与自然铜矿化有关的蚀变矿物——浊沸石的40Ar/39Ar坪年龄和等时线年龄为228~226Ma,明显晚于峨眉山大火成岩省的年龄,这一点和美国的Keweenawan LIP的自然铜矿床有明显的区别。对峨眉山大火成岩省的研究发现在很多地区的玄武岩中肉眼可见有零星分布的自然铜颗粒,说明玄武岩形成过程中铜得到了初步富集。另外,苦橄岩橄榄石斑晶中也发现包裹有自然铜颗粒这些都可能说明了峨眉山玄武岩铜发生了初始的富集,并为后期的热液叠加改造成矿提供了重要的物质来源

另一类是卡林型金矿,该类型是金矿的重要类型,目前对于其成因主要有两种模型,即岩浆模型和非岩浆模型。岩浆模型认为深部有一个中酸性岩体,流体为循环的大气降水和岩浆热液的混合。非岩浆模型认为,流体的形成是由于在伸展条件下高的地热梯度加热地下水形成但不论是哪种模型,均认为金来自富金的沉积地层但也有少部分学者认为金来自受洋壳俯冲作用改造后的岩石圈地幔中国滇黔桂“金三角”地区(右江盆地)位于峨眉山大火成岩省的东部是全球排在美国内华达地区之后的第二大卡林型金矿省其金储量估计超过800t大量的热液矿物的测年结果显示右江盆地的卡林型金矿主要形成于约235~200Ma和约150~130Ma其明显晚于峨眉山大火成岩省活动的时间(260Ma),因此,峨眉山大火成岩省被认为与右江盆地卡林型金矿之间不存在密切的成因联系最近Zhu Jiang et al.(2020)基于MELTS软件的热力学模拟和热液锆石的SIMSU-Pb年代学与O同位素的分析,同时结合前人的地球物理以及岩石地球化学研究成果提出峨眉山大火成岩省为金矿的形成奠定了重要的物质基础,即在低氧逸度的条件下,地幔柱产生的岩浆经历高程度(>80%)的分离结晶作用,在峨眉山大火成岩省的下地壳形成了厚的富金堆晶岩其厚度和深度模拟结果与地球物理数据一致;其中峨眉山大火成岩省苦橄岩橄榄石斑晶捕获的自然金以及超镁铁质岩体中的自然金提供了富金堆晶岩存在的证据右江盆地卡林型金矿形成于古太平洋(235~155Ma)与新特提斯(140115Ma)洋壳俯冲事件所导致的弧后伸展环境;峨眉山地幔柱事件形成的富金下地壳(堆晶岩)在氧化性流体的作用下导致金发生活化再沉淀形成。该研究建立了峨眉山大火成岩省与右江盆地卡林型金矿之间的成因联系并且也为揭示峨眉山大火成岩省内其他类型金矿(如峨眉山大火成岩省西部的北衙斑岩-矽卡岩型金矿)与峨眉山大火成岩省的成因联系提供了新的线索。

3.1.3 沉积改造型

条带状铁建造(BIF)是全球最重要的铁矿资源其形成明显受时间的控制形成于全球大氧化事件之前(3.8~19Ga),1.85Ga的全球大氧化事件之后LIP效应只局限在局部的还原环境(如小型的缺氧盆地)所以BIF很少形成新元古代'雪球地球(Snowball Earth)'事件也形成少量该类型铁矿。一些学者注意到BIFLIPs具有同步性如澳大利亚Pilbara克拉通的Hamersley省的苏必利尔型铁矿,其形成事件与津巴布韦的大岩墙的年龄一致大规模的BIFs形成于25002450Ma,包括巴西的Quadrilatero Ferrifero地区,乌克兰的Krivoy Rog地区以及俄罗斯的Kursk Magnetic Anomaly地区而全球在2500~2450Ma时有多个大火成岩省。最后形成于715MaRapitanBIFs的形成时间也与Franklin LIP-该事件导致了Rodinia超大陆的裂解我国的华北克拉通的BIF绝大多数属于阿尔戈马型(Algoma-type)沉积于新太古代晚期(2.552.50Ga)),主要集中在华北克拉通东部的辽宁鞍山一本溪、冀东和鲁西等地区构成一个弧形的巨型BIF型铁矿成矿带Zhao Guochun et al(1998)基于华北克拉通在新太古代晚期发育科马提岩等岩石,认为255Ga时期的构造背景为地幔柱环境,是一个太古宙大火成岩省。如果我们承认这个观点是正确的话华北克拉通的BIF也与大火成岩省同步。

对于BIF的成因,目前主要有两种不同认识①海底喷流模式:大规模海底火山-热液喷发活动带来的大量铁质和硅质由于温度下降Fe2+被氧化,在海底沉淀,热液流体的脉动式喷发形成条带状构造②上升洋流模式:深部缺氧的富Fe2+海水上涌到大陆边缘浅海盆地和陆棚时,与上部富氧水体混合Fe2+氧化成Fe3+大量沉淀形成BIF。但不管是哪种观点,都认为大规模的海底火山作用提供了海水中高浓度Fe2+的来源。因此,前寒武纪的大火成岩省虽然没有在岩浆以及期后的热液阶段形成BIFBIF铁矿的形成(Fe2+氧化成Fe3+)与海底大规模的基性-超基性火山岩密不可分

Bekker et al.(2010)认为高温的VMS矿床和低温的BIF矿床代表了LIPs事件的近源和远源效应BIF代表远源的低温的沉积铁矿,而高温的VMS矿床沉淀于海底火山-水的界面。然而VMS矿床是否与LIPs有关目前尚没有确切的依据,需要进一步的研究。

锰与铁的地球化学性质相似所以沉积型锰矿的形成机制与BIF相似,都需要海水中有高浓度的Mn2+然后再氧化成Mn3+Mn4+沉淀成矿南非Cape省北部的Kalahari锰矿是全球最大的锰矿,该矿床有80亿t矿石Mn的品位为20%48%,形成于2.652.05Ga3个纹层状矿石层组成,中间夹BIF1900Ma的热液作用和/或接触变质作用使得矿石变富。表生过程导致品位变高,这个事件可能与LIPs有关,如HartleyLIPMashonaland LIP以及Ongeluk LIP

3.2 大火成岩省为后期成矿提供了有利的成矿环境和成矿场所

目前已经达到共识的是大火成岩省可以产生大陆裂谷进而导致大陆的裂解并形成裂谷盆地。在裂谷盆地中可以沉积厚度达10km以上的沉积岩。产在裂谷环境中的矿床均赋存在这些沉积岩中,它们是贱金属的重要储库Pirajno(2000)Ernst et al.(2013)将产在这类环境中的矿床归为与地幔柱或大火成岩省间接有关的矿床,考虑到这类矿床与大火成岩省的关系不是那么明显,所以在此不再讨论。

然而,20多年来,越来越多的学者注意到大火成岩省不仅为大规模的金属矿床的形成创造了有利的条件,同时与油气藏的成因也有密切的关系主要体现在以下4个方面:

(1)形成石油的源岩(生油岩)———黑色页岩。富有机质的页岩是石油的主要源岩(大约占90%)这种富有机质页岩的生成往往与大洋中的LIPs导致大洋缺氧事件有关其中全球2次大洋缺氧事件(120Ma94Ma)形成的黑色页岩已成为油气的主要目标,另外,还有155146MaKimmeridgian-Tithonian油源岩与西太平洋的LIPs有关187178MaToarcian黑色页岩与Karoo-Ferrar LIPs有关

2)导致碳氢化合物的成熟度增高。LIPs产生大量的热使得周围很大范围温度升高由此导致碳氢化合物的成熟度增加并且从油到气有机物的复杂程度降低其中一个典型的实例是200MaCAMP南美200Ma岩床的侵位使得上泥盆统石油源岩的成熟度明显升高另外最近大量的研究表明四川盆地下古生界烃源岩的成熟度在二叠纪时迅速增高并且靠近大火成岩省中心位置成熟度达到最高值表明烃源岩成熟度的增高是受峨眉山大火成岩省热的影响的结果

3LIPs中的岩床可作为盖层或圈闭层。除了构造和岩性圈闭外其中之一的圈闭是大火成岩省中的岩床一个典型例子是北大西洋火成岩省的North SeaRockall Trough粒玄岩岩床起到了构造圈闭的作用。

3)提供部分气体的来源。大火成岩省岩床加热富有机质的沉积岩可以释放出大量的温室气体这些气体可以通过热液通道释放到地表由此导致环境剧变,并引起全球生物的大规模绝灭当然产生的气体往往有部分被沉积岩捕获由此产生富碳的源岩形成天然气矿床

综上所述无论是与裂谷有关的层状矿床还是油气矿床其形成与大火成岩省的成因关系更为间接。

4  结论与展望

无论是镁铁质大火成岩省还是硅质大火成岩省或者是介于两者之间的过渡型大火成岩省产生的巨量岩浆不仅为成矿作用提供了巨量物质来源而且为后期热液(岩浆热液和变质热液)的形成提供了巨量的热源。

对于镁铁质大火成岩省地幔柱部分熔融形成的岩浆一般为苦橄质岩浆由于其密度大当其上升到地壳时会在地壳形成岩浆房并发生分离结晶作用、地壳物质的混染、不混溶作用等过程同时在演化过程中还可能存在深部相对原始岩浆的补充并与岩浆房中的演化岩浆混合等过程在这些过程中形成氧化物(包括铬铁矿床和钒钛磁铁矿床)铜镍硫化物(铂族元素)和铂族元素矿床不同类型的矿床的形成与岩浆源区以及原始岩浆的性质和演化过程有关钒钛磁铁矿床的源区中可能存在榴辉岩和辉石岩等富铁岩石其部分熔融形成的岩浆为富铁钛的苦橄质岩浆而铜镍硫化物矿床和铂族元素矿床则需要地幔橄榄岩发生高程度部分熔融形成低钛苦橄质岩浆铬铁矿床和钒钛磁铁矿床等氧化物矿床主要与分离结晶作用有关而铜镍硫化物(铂族元素)矿床则主要与地壳混染导致的硫化物熔体的熔离作用有关铂族元素是否亏损主要与深部是否发生硫化物的熔离作用有关。

当地幔源区含有碳酸盐时其部分熔融形成的岩浆为富碱的岩浆如金伯利岩和碳酸岩。金伯利岩岩浆在上升过程中穿过厚的岩石圈时有可能捕获其中的金刚石形成金刚石矿床。碳酸岩岩浆在演化过程以及随后的热液过程可以形成REE以及Nb等矿床。

巨量的镁铁质-超镁铁质岩浆上升到地壳时可以导致地壳发生部分熔融形成中酸性岩浆其发生演化可以形成一系列热液矿床。另外巨量的热量也可以导致围岩发生变质脱水形成变质流体形成与变质流体有关的矿床如中温热液脉状金矿床。

硅质大火成岩省因为以长英质岩石为主所以不能在岩浆阶段形成岩浆矿床但可以形成大量与长英质岩石有关的热液矿床,如IOCG矿床、斑岩矿床以及浅成低温热液型矿床等。

大火成岩省形成之后在后期的地质作用下成矿物质可发生进一步的富集形成一系列矿床从大火成岩省与成矿作用的关系而言一是为后期成矿提供物质来源与此有关的矿床主要涉及2个过程即地表风化过程和热液叠加改造过程地表的风化作用可形成红土型矿床常见的有与超镁铁质岩石有关的红土型镍(钴)矿、与玄武岩有关的铝土矿以及与碳酸岩有关的Nb-REE-P矿床。热液叠加改造成矿是在大火成岩省阶段已经初步富集的基础上后期的热液叠加改造进一步富集成矿与此相关的矿床类型包括自然铜矿和卡林型金矿等;二是大火成岩省为后期的成矿提供了有利的成矿环境和沉淀的空间如大火成岩省导致裂谷盆地的形成为在裂谷盆地中形成各类金属矿床奠定了基础。另一方面大火成岩省可以导致还原环境为与黑色岩系有关的多金属矿床的形成创造了有利的环境同时也为油气的形成创造了有利的条件:形成石油的源岩(生油岩)——黑色页岩、提高碳氢化合物的成熟度、形成盖层或圈闭层以及提供部分气体的来源

总之LIPs为金属和能源矿床的形成提供了巨量的物质和能量基础并且随着研究的深入有越来越多的矿床被证明与LIPs有着直接和间接的联系。尽管如此仍然有一些重要的问题有待进一步解决:①不同类型的岩浆矿床与岩浆源区以及地幔柱的热-成分结构之间的关系即为什么不同类型大火成岩省有着不同的成矿特色其关键的控制因素是什么?②岩浆演化对金属元素富集的控制机理,即岩浆演化是如何控制不同金属元素富集的?为什么不同类型的岩浆矿床出现在同一个岩体中其演化过程仍然不清楚。很显然搞清楚不同类型矿床与岩浆演化之间的关系对于建立成矿序列以及开展深部成矿预测具有重要的意义;③相对于镁铁质大火成岩省硅质大火成岩省成矿作用研究的较少其成矿系列有待建立;④与大火成岩省间接有关的矿床,由于其成矿时间明显要比大火成岩省的时间晚所以一些产在大火成岩省之内或者周边的矿床其是否和大火成岩省存在间接的关系往往缺乏有力的证据。

因此,加强LIPs与成矿作用的关系研究不仅在成矿理论上有着重要的意义同时对于提升矿产资源的保障能力也有着现实的意义。

原文来源:张招崇,侯通,程志国.2022.大火成岩省的成矿效应.地质学报,961131154di10.19762/j.cnki.dizhixuebao.2022262.

导读评论和排版整理等《覆盖区找矿》公众号.

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多