然而,由于试验结果不一,再加上论文多处存疑,且论文未正式公开发表,都为LK-99是室温超导体的结论蒙上阴影。 韩国团队论文作者在ScienceCast公布的画面,LK-99在室温下展现抗磁性。争议中的LK-99很快迎来反转,8月2日,韩超导学会宣布成立“LK-99 验证委员会”,随后8月3日,“验证委员会”LK-99未表现出迈斯纳效应,无法证明是超导体,也因此,所谓的“第四次工业革命”在数日内宣告结束。 抛开现象看本质,什么是超导、高温超导、室温超导,它们的特性和差别在哪里,为什么说室温超导能引发如此的轰动,目前科学界对室温超导的研究都有哪些路径,取得了什么样的成果? 腾讯新闻特邀中科院物理所研究院、科普作家罗会仟,线上直播解读室温超导那点事儿。 以下为直播实录脱水版: 超导那点事儿 Q:历史上,是谁率先发现了超导现象,它产生的必要条件是什么? 罗会仟:超导研究历史挺长,到今年应该是有112年了。 1911年,荷兰莱顿大学卡莫林-昂尼斯的团队在研究低温金属导电性的实验,选择了水银作为材料,意外发现其温度降到4.2K(摄氏度-269℃)以下电阻消失,后来这个现象被称之为超级导电,即进入最完美的导电状态。1933年,沃尔特?迈斯纳发现了超导的另外一个现象——完全抗磁性,当进入超导态之后,磁场无法进入超导体内部,形成一个抵御外磁场的能力,即磁化率等于-1。 总结下来,超导材料的的两个关键特征,其一是电阻彻底消失,绝对零电阻;其二是进入超导态后具备完全的抗磁性。 Q:很多科幻作品在探索超导应用,现实情况如何,它们又带来了哪些价值? 罗会仟:大家印象深刻科幻电影《阿凡达》,电影中的 一些星球上的山,好多是在天上,山体内部有很多室温超导体,进而实现了磁悬浮效应,这是超导的一个典型的现象;类似的电影还有《太空旅客 》,其中提到的人工可控核聚变发动机,也是超导的应用场景。 、 超导应用分为两大块:强电和弱电。 强电即在零电阻的状态下,可以通过很强的电流,可以用于输电,在很多地方已经有应用,而强电流可以带来强磁场,它的应用场景包括核磁共振成像、可控核聚变、高速磁悬浮列车等等。另外,物理研究中各种实验都可能涉及磁场,比如大型粒子加速器、极端条件测试平台等,都有超导磁体的用武之地。 弱电指的是借助超导体本身的一些性质,比如利用阻抗好的特点去做滤波器,最热门的则是近年来比较火的量子计算,也就是在超导材料上刻蚀量子比特,构造超导芯片。简单来说,弱电方面的应用不需要太多的超导材料,其扮演关键作用即可,而且它还有个特点,并不因为超导温度低而受到极大限制。 Q:超导在材料学的探索当中,属于什么样的地位? 罗会仟:超导研究在材料探索里面其实比较普通,没有想象的占比那么大。我们凝聚态物理研究除了超导实验室之外,还有磁学实验室,表面物理实验室,纳米实验室,这些实验室都很大,研究方向甚至比超导大的多。 但反过来看,超导研究有一个非常有趣的现象,可以带动整个材料学的发展,发现其他有趣的物理现象,比如庞磁阻、量子磁体、拓扑电子态等等。 举个例子,有10位直接从事超导研究的科学家获得诺贝尔奖,而整个物理得主诺奖也就200多人,凝聚态物理总共就60-70个人,这个比例是非常了不起的,这也可以解释为什么大家对超导、室温超导如此关注。 室温超导简史 Q:超导、高温超导、非常规超导,室温超导这这些名词非常多,它们有什么关联,差异点又是什么? 罗会仟: 大家可能听说过高温超导、室温超导,高低在物理学中是相对的,前面提到的水银,也就是金属汞,4.2K(摄氏度-269℃)就可以实现超导效应。 随着BCS超导理论(该理论以其发明者约翰?巴丁、利昂?库珀和约翰?施里弗的名字首字母命名,用于解释常规超导体的超导电性的微观理论)建立起来,科学家就可以预测材料的超导温度,而40K就是其理论预言的上限。直到80年代,大量40K以上的铜氧化物超导体被发现,大家发现不能再用BCS超导理论解释其高温超导现象。业界于是将40K作为低温、高温超导的分界线,不过这个分界线其实并不很明确。 按物理学来讲,判断一个材料是不是高温超导不需要严格按照40K的标准。高温超导材料目前只有两种,一种是铜氧化物,一种是铁基超导。对于铜氧化物来说,只要它们材料结构接近,哪怕超导温度只有10K、5K,业界依然将其称之为高温超导体。铁基超导体里面超 |
|
来自: 新用户41015886 > 《科技》