分享

qlib里alpha158因子库的计算与缓存

 AI量化实验室 2023-10-12 发布于北京

今天是100天计划的第31天,关于“AI智能量化,财富自由与个人成长”相关。

由于篇幅问题,后续“财富自由与个人成长”这个部分会独立成文,成体系。

这个百天计划,来自“持续行动”里的一个“N阶行动”的概念,就是10的N次方天,100天差不多三个月,可以实现一个小目标;

1000天差不多3年,足以让你在一个领域斩露头角。

过去的30天,我们完成了qlib的学习,这是微软开发和维护的一个智能量化的框架,接下来的这个30天,我们重点关注AI部分,就是AI如何从数据中提供知识,支持决策

对于表格化的数据,gdbt是一个很好的工具。

我们结合kaggle比赛的真实案例,看gbdt如何使用数据来生成决策模型,进而后面我们把模型思路应用到qlib上做金融数据的建模

01 数据预处理

业务数据复杂,不完整,以及异常值我们都需要自己处理。

非数值型的数据是无法直接参与模型训练的,需要把非数值型,转为数值型,比如离散的,使用字典编码等。

这个案例里的数据集,交易记录超过3000万条,200多M,在pandas单机计算,笔记本的内存(16G)已经有点吃不消了。

02 特征工程与特征选择

特征选择有一个比较简单的办法,就是特征与label的相关性(金融上就是IC值),选择ic值高的进行建模。

03 参数优化框架

参数优化有网络搜索,hyperopt和beyesian。

04  时间序列

时间序列数据比之传统的表格数据,多了一个时间维度,信息更加丰富,除了树模型,像深度神经网络,CNN/LSTM都有了用武之地。

阿里天池有一个比赛,“预测地铁乘客流量”。

这个题目很有实际意义,因为超大城市,对地铁站的流量有预判,对于风险预警,防控,解决安全隐患有重大作用。

仔细读了kaggle关于这个案例的代码,对于数据预处理占了太大的篇幅,其次是针对性的“特征工程”。关于模型和参数优化的反倒不多。

进一步也验证了,如何获得高质量的数据和因子(也就是策略),比算法模型更为重要。

05 模型篇

qlib把前沿的模型基本都覆盖全了,而且还带来alpha158和alpha360两个因子库。

我们需要先把这些benchmark作为baseline跟通,然后在这之上做我们的优化,比如参数调优,或者补充新的alpha因子。

model的初始化与超参数都比较简单:

():
    qlib.contrib.model.gbdt LGBModel
    config ={
        : : : : : : : : : }
    model = LGBModel(**config)
    model

qlib内置了数据处理器alpha158,一共158个因子。

():
    qlib.contrib.data.handler Alpha158Alpha360
    config={
        : : : : : }
    handler = Alpha158(config)
    handler

300支股票,158个因子,计算量比较大,需要把dataset缓存下来。

filename = os.path.exists(filename):
    (filename) file_dataset:
        ds = pickle.load(file_dataset)
:
    alpha158 = load_alpha158_handler()
    (alpha158)
    ds = load_dataset(alpha158)

小结一下:

今天用kaggle案例分析,耽误了一点时间。

一是内存不足,二是kaggle的案例多花在数据预处理上,与我们金融量化参考价值有限。

明天回归到qlib因子,模型本身。

    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章