分享

射频术语与阻抗的理解

 李清龙1023 2023-11-06 发布于安徽
本文将涵盖一些天线的相关术语(也适用于接收器、发射器和收发器,以及任何与RF相关的器件)。

分贝


分贝是以对数刻度表示一个值与另一个值之比的测量单位。在音频领域,分贝(dB)是用来衡量声音强度的单位。RF应用还会使用不同形式的分贝,如dBA、dBm(有时只写作dB)、dBi和dBV。由于dB是“无单位”的,所以在讨论特定值时会添加某些后缀。以下列出了各单位的用途:


  • dBA:代表分贝放大器,在测量RF应用中的电流幅度时使用。

  • dBm或dB:这两个单位在描述RF应用中的功率(瓦特)时经常使用。“m”通常表示前缀“milli”。通常,RF功率测量值不会很高(取决于应用),因此dBm往往更常见。

  • dBi:该测量特定于天线的方向增益。

  • dBV:代表分贝伏特,在测量RF应用中的电压幅度时使用。


频率范围

频率范围是天线工作的有效频率。通常会指定最小频率和最大频率。该组件能够在此范围内以不同的“效率”进行接收或发射,具体取决于中心频率。天线如果具有宽带能力,也可以列出几个频率范围。


中心频率


中心频率是天线产生或传递最大信号强度(更佳增益)的位置。一些天线具有多个中心频率,它们可能可以进行宽带通信。在开发应用时,你无需匹配中心频率,有时甚至无法获取精确频率。最好靠近中间的位置,因为这样的性能更佳。


带宽


带宽是频率范围的总宽度。天线额定的最大频率减去最小频率等于其带宽。例如,如果天线的最小频率为1MHz且最大频率为50MHz,则总带宽为49MHz。无法仅依据带宽数值来推测频率范围。在已知带宽的情况下,还需要知晓最小额定值或最大额定值才能推导出另一个额定值。


带通和带阻


这两个术语是相关的:带通和带阻。它们通常适用于“通过”或“抑制”频率范围的特殊滤波器。研究RF滤波器时经常使用波特图,其中X轴表示不断增加的频率(通常以对数刻度表示),而Y轴通常表示以dBV(分贝伏特)为单位的信号幅度。以下面我绘制的带通信号波特图为例(忘了注明,两张图的Y轴均使用dBV):

图片

请注意 , 这并不是大多数器件所使用的典型频率范围 , 而且 X 并不是对数刻度 , 我只是借助一个较小的范围来进行说明。根据低端在810Hz左右截止、高端在777kHz左右截止的滤波器,我标记了哪些频率会保持在1V(0dBV)左右。该滤波信号的带宽约为776,190Hz(即776.19kHz),而所有其他频率的幅度都将急剧降低(衰减)。相反的滤波器称为带阻:

图片

某些应用有时需要抑制某些频率。对于RF组件,你会发现与这些极为相似的图(波特图)。

那么为什么要使用这些图形呢?如果是连续的正弦波,频率和幅度在不同的点上增长,那么看起来会相当乱。
图片
带通图如上图所示,如果是频率增加的正弦波,则随着频率的增加,它会变成一团乱七八糟的竖线。

宽带


该术语经常用来描述互联网连接,但它其实也是一个通用术语。具有宽范围频率以及数个中心频率的天线称为宽带天线。


增益


增益可以在没有背景的情况下描述几个属性,但它通常描述某种信号属性的增加。如果是天线,则增益并不是增加的功率(天线无法提高功率),而是一种“定向增益”。由于设计原因,天线产生的信号具有方向性。增益高并不总是有益的,如果不希望信号固定在特定方向上,则需要降低增益。方向增益取决于应用,这就是有些天线具有负增益(损耗)的原因。如果是滤波器或升压信号,则增益可应用于其他测量单位。你也可以增加功率、电流和电压,但这需要借助一定的外部电源才行。


回波损耗


回波损耗是天线接收和抑制的频率之比。


VSWR


VSWR表示电压驻波比。驻波表示不被接收器接收并在传输线上反射回来的功率。VSWR是无损耗线路上最大电压与最小电压之比。驻波高度依赖于传输线、接收器和发射器的阻抗。


阻抗


阻抗是电抗和电阻的组合。电抗也以欧姆为单位进行测量,但完全取决于信号的频率。


简而言之,阻抗可以理解为交流电路中的无源元件减少或阻碍电流的程度。这同样适用于高频无线电应用或高频数字电路应用,因为所有这些应用都具有共同之处,即,它们在任何周期性波形中都具有某种形式的电压变化。(注意:这并非仅局限于正弦波。)一些直流波形可以通过稳定的直流输入进行操作,其中包括方波、锯齿波、三角波和其他脉冲模式。


阻抗和电阻之间的主要区别在于电路工作频率。直流应用的输入和/或输出往往没有频率(暂时忽略时钟产生和其他振荡设计)。电路达人应熟悉电阻、电容、电感两端的电压、电流和功率的一般等式。在直流电路中用这些微积分表达式求解等式已经很难了。以下是电容上电压和电流的等式:

图片
以下是电感器上电压和电流的等式:
图片
由于目前输入电压随时间变化(电流也是如此),所以使用相同的等式在交流电中求解等式就变得更加困难。幸运的是,继傅立叶变换之后业界又发现了一个省时捷径。该方法将电感和电容的复杂等式转换为虚数(复数),因而可使用相同的基本直流分析技术(欧姆定律和直流分析中的其他方法)来求解电路。以下是通过转换到频域得出的适用等式:
1. 电阻
图片
其中:
Rn等于一个以欧姆为单位的电阻N的电阻值。
注意:采用 MLCC 设计的现代器件具有更高的工作频率,但仍有许多零件的频率在 1 至 3 兆赫的范围内。在较低频率(通常将低于1至3兆赫视为低频)下,电阻(Zr)的阻抗就等于电阻值。以下电容不变且电感不变的低频零件也是如此。
2. 电容
图片
其中:
图片
ω=2∗π∗f;f=频率(Hz)
Cn是一个以法拉为单位的电容N的电容值。
因为电流通常用字母“i”表示,所以引用字母“j”是电路分析中的惯例,从而避免引起混淆。此外,分析中的另一个惯例是使用弧度和角频率,而不是使用线性频率和度数。
3. 电感器
图片
其中:
图片
Ln等于以亨利为单位的电感器N的电感值。
在进行任何分析之前,必须转换交流电路中的每一项。阻抗的测量单位也是欧姆,并且当说或者写测量值时,通常省略 “j”/ 复数 部分。以下是阻抗计算示例:
对于电感值为50微亨利(50µH),且电压源/电流源的频率为1000赫兹(1kHz)的电感器,其阻抗的计算方式如下:
图片
欧姆测量值通常在“j”之后得出。当在报告中说出或写出j时,通常会将j删除,以免造成混淆。所以,此特定电感在1kHz频率下的阻抗是314毫欧。“j”只有在电路分析中使用时才重要,因为虚部决定了周期波的相移。相关分析主题可根据要求做进一步讨论。
请注意,大部分规格书所列出的阻抗都是关于整体输入/输出阻抗,而不会列出电路或设计中的所有阻抗值。除了专门讨论阻抗之外,这与直流电路中的总电阻或有效电阻都具有相同的概念。
确定脉冲直流信号等特殊应用的阻抗比我所述的知识更复杂,但总的来说,同样的理念仍然适用。现代设备可随处通过这些类型的信号以几兆赫到几千兆赫的频率运行。由于这些频率水平可能会引起不同组件混用方面的主要设计问题,所以仍然需要考虑阻抗。设计可具体到选择合适的电缆,从而确保PCB走线不要太靠近,且必须考虑电容、电感和电阻的正确值及其工作频率,接地层必须采用特殊设计,屏蔽必须采用特定材料来减少EMI辐射,并满足除此以外的更多要求。

延伸阅读:

一阶滤波器:低通、高通和带通

有时,应答器/收发器产生的频率在特定应用中并无用处,或纯粹是不需要的噪声。这就是许多器件通过不同的滤波器来过滤特定频率的原因。“一阶”一词在数学上只是表示,对所使用的任何变量而言,都只有一个指数。

在电子物理世界中,它指使用电阻-电容网络或电阻-电感网络的无源滤波器。“无源”表示系统中未添加额外的电源,因此电压只能因物理损耗(如热或任何其他形式的能量)而下降。这些滤波器通常与高阶(有源)滤波器配合使用,以提高滤波器的整体效果。

电阻 - 电容( RC )低通和高通滤波器


本文将只讨论RC网络,因为我并不常用RL网络进行滤波,不过完整的设计通常会根据应用的要求将二者组合使用。以下是RC低通滤波器的电路图:

图片

电阻允许较慢的频率通过,但会伴随一定的损耗,而电容可能没有时间充分充电以影响较低频率。R和C的值非常重要,但R值的选择几乎始终取决于是需要更多的电压还是需要更多的电流。R值的选择也是为了使C接近典型的电容值。然后,根据给定的要开始“截止”的频率来计算C值。计算方程式如下:

图片

假设需要1500Hz的截止频率和100欧姆的电阻,可得出以下电容值:

图片

我使用LTSpice来模拟频率扫描:点击Run并选择AC sweep即可。我用了1000个数据点,从1Hz扫描到5000Hz(5kHz),并利用线性扫描得到下图。

图片

我将X轴改为对数刻度,以便于查看。我测量了交流电压,也就是位于14dBV处的蓝线。绿线代表滤波器的反应,此外还有一个位于1500Hz处的垂直测量值,也就是-3dB滚降点的位置。换言之,这就是电压开始随着频率的增加而急剧下降的位置。

以下是高通滤波器的电路图:

图片

计算公式保持不变,但交换电容和电阻的位置。电容行为通常被描述为“拦截”较低频率而“通过”较高频率。在电气方面,它实际上是在交替的模式中充电和放电,但为了直观起见,通常以另一种方式描述该标准,以便新手理解。在本例中,电容会拦截低于1500Hz的频率,并通过1500Hz以上的频率。

图片

同样地,我使用了1000个数据点的交流扫描,并从1kHz扫描到10kHz。其幅度在1500Hz以下急剧下降,并缓慢恢复到接近14dB的水平(本例中存在一些损耗)。如果将这两个滤波器相结合,就得到了带通滤波器。通常,高通滤波器在前,低通滤波器在后(但也并非始终如此)。假设我们需要1500Hz到5000Hz的信号。高通滤波器的截止电容保持不变,而低通滤波器需要0.32uF电容。以下是电路图:

图片

频率响应如下:

图片

注意,频率并不会接近最初的14dB点,因为电路不是有源电路,所以会产生大量损耗。我标记了滤波器两端的截止点,实际上只允许9.1至9.9 dBV或2.8至3.1 V通过输出端。

高阶滤波器

二阶及以上滤波器更加高效,因为其中增加了外部电源。有源滤波器不仅可以提高功率,还可以帮助信号保持在某一电压阈值以上,直到截止点。此外,在-3dB滚降点之后,它还能更好地衰减信号。下图有助于理解我所表述的意思:

图片

所有的彩色线均始于5dB,只不过我不希望它们重叠在一起。在电子学的世界里,要达到黄线所示的完美滤波是不可能的。但很有可能通过使用高阶滤波器使线条变得更加陡峭,从而更加接近此效果。诸如此类的图形通常以“每十倍频率降的分贝”来描述截止的陡峭程度。实际上表达的是,在-3dB截止点之后的线路斜率。获得较高的斜率通常是良好滤波器的目标。这是否意味着计算更加困难?如果你想做电路分析,那答案是肯定的,但如果你只是想建立电路,那么频率的计算实际上是不变的。以下是三阶低通滤波器的示意图,这称为同相巴特沃斯滤波器设计:

图片

我给电路的各“部分”加上了标签,这样更容易理解。每个低通RC网络均使用相同的数值计算方式。

图片

这意味着所有电容的值均相同,且相应的电阻值也相同(并非增益电阻)。从研究来看,当增益为2时,增益的Ra和Rb的值通常相等。同样,不同的低通网络中使用的其他电阻的选值方法与一阶滤波器相同,然后根据给定的所需截止频率计算电容值。为了显示结果,我决定使用10kHz的截止频率运行模拟。我经常选择10k欧姆的电阻,因为我希望电压保持在同一水平上。基于这些值计算得出,电容应为1.59nF。我选择1k欧姆作为Ra和Rb的值。然后再次使用交流扫描:采用十倍扫描,每十倍扫描5000点,从1kHz扫描到50kHz。以下是标有各数值的电路图:

图片

此外,我还使用了-5和5VDC电源,以V+和V-表示。
下图是进行交流扫描后,常规无源滤波器与三阶滤波器的比较:

图片

蓝线表示有源滤波器,绿线表示设有相同截止频率的无源滤波器。请注意,蓝线保持恒定的时间更长,且更接近10kHz的截止点(这一点非常好)。另外,需注意10kHz点之后斜率的显著差异,蓝色滤波器的性能要好得多。高通滤波器看起来完全一样,只不过将10k欧姆电阻和电容进行了交换。

图片

要构建带通滤波器,只需将一个滤波器馈入另一个滤波器,即可将二者相结合。唯一的建议是在级间以及输出与负载之间增加一个单位增益缓冲器。该缓冲器在第一个运算放大器的输出和第二个运算放大器的输入之间充当“阻抗桥”,并可提高电流从输入到输出的效率。从数学的角度来说,一阶滤波器更改了下一级的阻抗。以下是具有10kHz低频截止和50kHz高频截止的带通滤波器的最终电路。

图片

最后,以下是使用交流扫描的模拟图:采用十倍扫描,每十倍扫描5000个数据点,从8kHz扫描到80kHz。蓝线表示未滤波的基本信号。红线表示无源滤波器响应。绿线表示有源滤波器响应。

图片

我在最后添加了一个分压器,因为低通部分的运算放大器实际上将信号再次放大到很高的电压电平上(两个滤波器使增益复合)。如你所见,有两个单位增益缓冲器分别桥接在高通滤波器和低通滤波器之间,以及低通滤波器的输出和分压器之间。
该图再次表明有源滤波器相对于无源滤波器的性能优势。稳定性和衰减能力对滤波器而言很重要。这些并不是唯一可用的滤波器(还有性能更加优越的先进滤波器),但它们在技术上的工作原理都是一样的。得出的结果将会与我所展示的图形高度相似。在超高频率下,情况也会变得更加复杂,因为理想的组件实际上可能会因谐振频率而开始表现出不同的行为。

来源:Digikey官网

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多