分享

Python中Keras微调Google Gemma:定制化指令增强大语言模型LLM

 拓端数据 2024-03-26 发布于浙江

全文链接:https:///?p=35476

像谷歌、Meta和Twitter这样的大公司正大力推动其大型语言模型(LLM)的开源。最近,谷歌DeepMind团队推出了Gemma——一个由与创建谷歌Gemini模型相同的研究和技术构建的轻量级、开源LLM系点击文末“阅读原文”获取完整代码数据报告

本文,我们将帮助客户了解Gemma模型,如何使用云GPU和TPU访问它们,以及如何在角色扮演数据集上训练最新的Gemma 7b-it模型。

了解谷歌的Gemma

Gemma(拉丁语中的“宝石”)是谷歌不同团队开发的一系列文本到文本、仅解码器的开源模型,尤其是谷歌DeepMind。它受到Gemini模型的启发,设计轻量级且兼容所有主流框架。

谷歌已经发布了两种Gemma模型权重,即Gemma 2B和Gemma 7B,它们提供预训练和指令调整后的变体,如Gemma 2B-it和Gemma 7B-it。

众所周知,Gemma与Gemini具有相似的技术组件,在与其他开源模型(如Meta的Llama-2模型)相比时,其尺寸达到了同类最佳性能。它在所有LLM基准测试中均优于Llama-2。

如何访问谷歌的Gemma模型

在TPU上运行Gemma推理

您可以前往Keras/Gemma,向下滚动,选择“gemma_instruct_2b_en”模型变体,然后点击“新建笔记本”按钮。这将启动一个包含Gemma模型的输入目录的云笔记本。

在右侧面板中向下滚动,选择“TPU VM v3-8”作为加速器。

确保您已经安装并更新了所有必要的Python库。

bash复制代码
!pip install -q tensorflow-cpu

!pip install -q -U keras-nlp tensorflow-hub

!pip install -q -U keras>=3

!pip install -q -U tensorflow-text

要检查可用的TPU数量,您可以使用jax库和device函数来显示TPU设备。我们有权访问8个TPU。

我们现在将通过将jax设置为Keras后端来启用Keras 3的TPU。

完成初始设置后,访问Gemma模型并生成响应就变得相当简单。我们将使用keras_nlp库从Kaggle加载模型,然后将提示传递给generate函数。



gemma_lm.generate(prompt, max_length=100)

在GPU上运行Gemma推理

现在,我们将使用GPU和转换器框架(而不是Keras)来生成响应。

在新的笔记本中,首先更改标题,然后将加速器更改为GPT T4 x2。

安装并更新所有必要的Python包。

由于Kaggle GPU的VRAM有限,我们无法加载完整的Gemma 7b-it模型。为了解决这个问题,我们将使用BitsAndBytes库以NF4类型配置进行4位量化来加载模型。同时,加载分词器。




model = AutoModelForCausalLM.from_pretrained(

modelName,

device_map="auto",

quantization_config=bnbConfig

创建一个简单的提示模板,包括系统、用户和AI。我们要求模型生成Python代码来显示星号模式。

在新的笔记本中,我们首先修改标题,然后将加速器更改为GPT T4 x2。接下来,我们将按照步骤安装并更新所需的Python包,加载数据集、模型和分词器,并执行监督微调(SFT)和推理。



# 导入所需的库

import torch









# 加载模型和分词器

config = AutoConfig.from_pretrained(modelName)

tokenizer = AutoTokenizer.from_pretrained(modelName)



# 初始化模型

model = AutoModelForCausalLM.from_pretrained(modelName, config=config)



# 由于Kaggle GPU的VRAM有限,我们将使用BitsAndBytes进行4位量化

bnbConfig = AutoConfig.from_pretrained(modelName)





# 加载量化后的模型

quantized_model = AutoModelForCausalLM.from_pretrained(modelName, config=bnbConfig)



# 定义训练参数

training_args = TrainingArguments(

output_dir='./results', # 输出目录

num_train_epochs=1, # 训练周期数


# 初始化训练器

trainer = Trainer(

model=quantized_model, # 模型

args=training_args, # 训练参数


# 开始训练

trainer.train()



# 保存微调后的模型

trainer.save_model("./finetuned_gemma_model")



另外,微调大型模型可能需要大量的时间和计算资源。在Kaggle上,由于资源限制,您可能无法完成整个微调过程。如果您需要更强大的计算能力来微调大型模型,建议考虑使用云服务或本地高性能计算资源。

最后,请确保您已经正确地安装了所有必要的Python包,并且已经正确配置了Kaggle笔记本以使用GPU加速器。

为基准模型、数据集以及微调后的模型定义名称,我们稍后会将这些内容上传到Hugging Face Hub。

这些变量将在各个阶段中使用,例如加载数据集和模型、分词、训练和保存模型。


点击标题查阅往期内容

Python中TensorFlow的长短期记忆神经网络(LSTM)、指数移动平均法预测股票市场和可视化

左右滑动查看更多

01

02

03

04

登录到Hugging Face CLI

我们将从Kaggle的秘钥(环境变量)中加载Hugging Face的API密钥。

使用API密钥登录到Hugging Face CLI。这将允许我们访问模型并将其保存到Hugging Face Hub。

初始化W&B工作区

使用W&B API密钥初始化weights and biases(W&B)工作区。我们将使用这个工作区来跟踪模型训练。



# 监控LLM

wandb.login(key = secret_wandb)



加载数据集

复制代码
# 加载数据集



dataset["text"][100]

我们的数据集由用户与助理之间基于名人风格的连续对话组成,这是一种角色扮演。

加载模型和分词器

为了避免内存问题,我们将使用BitsAndBytesConfig以4位精度加载我们的模型。这可以直接从Kaggle加载模型。

复制代码
# 加载基准模型(Gemma 7B-it)

bnbConfig = BitsAndBytesConfig(

load_in_4bit = True,



加载分词器,并配置填充标记以修复fp16的问题。

复制代码
# 加载分词器

tokenizer = AutoTokenizer.from_pretrained(base_model)



添加适配层

通过在我们的模型中添加适配层,我们可以更高效地对其进行微调。这样,我们无需训练整个模型,而只需更新适配层的参数,这将加速训练过程。

我们的目标模块将是'o_proj'、'q_proj'、'up_proj'、'v_proj'、'k_proj'、'down_proj'和'gate_proj'。

model = prepare_model_for_kbit_training(model)
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,


训练模型

为了开始训练,我们需要指定超参数。这些参数是基础性的,可以通过调整它们来优化训练过程并提高模型的性能。

	training_arguments = TrainingArguments(  

output_dir="./gemma-7b-v2-role-play",

num_train_epochs=1,



为了设置监督微调(SFT)训练器,我们需要向它提供模型、数据集、Lora配置、分词器和训练参数作为参数。

	trainer = SFTTrainer(  

model=model,

train_dataset=dataset,

peft_config=peft_config,


接下来,我们将使用.train函数运行训练过程。微调过程大约花费了1小时1分钟的时间。训练损失逐渐减小,并且你可以通过增加epoch的数量来进一步减少这个损失。

python复制代码
trainer.train()

完成Weights & Biases(W&B)会话,并为推断配置模型。

wandb.finish()
model.config.use_cache = True

我们在两种类型的GPU加速器上训练了模型。看起来P100的速度是T4 2X的两倍。

保存模型

接下来,我们将把模型适配器保存在本地,然后上传到Hugging Face hub。push_to_hub命令将创建仓库并将适配器配置和适配器权重推送到hub。

模型推断

为了使用我们微调后的模型生成响应,我们需要遵循几个步骤。

首先,我们将按照角色扮演数据集格式创建一个提示。然后,我们将提示传递给分词器,再传递给模型以生成预测。

为了将预测的输出转换为可读的文本,我们将使用分词器对其进行解码。



text = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(text)

它还会提出相关的后续问题。

用一个新的角色再试一次:Michel Jordan。

python复制代码
prompt = '''<|system|>Michael Jordan an NBA legend known for his competitive drive six championship wins with the Chicago Bulls.


text = tokenizer.decode(outputs[0], skip_special_tokens=True)



print(text)

使用角色扮演适配器的推断

要生成响应,我们不能简单地加载保存的适配器。我们需要将微调后的适配器与基础模型(Gemma 7b-it)合并。

  1. 安装所有必要的Python库。

  2. 从Kaggle secrets加载API密钥并登录到Hugging Face CLI。

!huggingface-cli login --token $secret_hf
  1. 提供基础模型和适配器的位置。




new_model = "kingabzpro/gemma-7b-it-v2-role-play"
  1. 加载基础模型。




base_model_reload = AutoModelForCausalLM.from_pretrained(

base_model,



  1. 加载适配器并将其与基础模型合并。

  1. 加载分词器。


tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True

  1. 将提示通过分词器传递给模型进行响应生成。



text = tokenizer.decode(outputs[0], skip_special_tokens=True)



print(text)

解释了“自我”的含义。


    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多