分享

Python源码练习:探寻深度学习的奥妙!

 DATSIX 2024-05-12 发布于湖北

一、引言

二、Python源码练习在深度学习中的应用

通过对Python源码的深入练习,我们可以更好地理解深度学习算法的工作原理。在实践中,源码级的理解使我们能够灵活调整网络结构,优化模型性能。此外,通过编写和修改源码,我们可以将理论知识转化为实际操作,进一步提高深度学习技能。

三、案例分析

1、贪吃蛇

图片

import turtlefrom random import randrange
snake = [[0, 0]]aim = [0, 10]food = [-10, 0]

def change_direction(x, y): aim[0] = x aim[1] = y

def sqaure(x, y, size, color): turtle.penup() turtle.goto(x, y) turtle.pendown() turtle.begin_fill() turtle.color(color) for i in range(4): turtle.forward(size) turtle.left(90) turtle.end_fill()

import copy
def inside(head): return -250<head[0]<250 and -250 <head[1] <250
def snake_move(): #head = snake[-1][:] # 获取蛇头 head = [snake[-1][0],snake[-1][1]] # 最后一个加方向 head = [head[0] + aim[0], head[1] + aim[1]] # 加过后还在蛇里面,不在画布里面 if head in snake or not inside(head): # 红色 sqaure(head[0],head[1],10,'red') turtle.update() return if head == food: # 遇到食物 print('snake', len(snake)) food[0] = randrange(-15, 15) * 10 food[1] = randrange(-15, 15) * 10 else: snake.pop(0) # 删除蛇尾 snake.append(head) turtle.clear() sqaure(food[0], food[1], 10, 'green') for body in snake: sqaure(body[0], body[1], 10, 'black') turtle.update() turtle.ontimer(snake_move, 300)
turtle.setup(500,500)turtle.hideturtle()turtle.listen()turtle.onkey(lambda: change_direction(0, 10), 'Up')turtle.onkey(lambda: change_direction(0, -10), 'Down')turtle.onkey(lambda: change_direction(-10, 0), 'Left')turtle.onkey(lambda: change_direction(10, 0), 'Right')turtle.tracer(False)snake_move()turtle.done()

2、俄罗斯方块

图片

import tkinter as tkfrom tkinter import messageboximport randomprint('公众号:IT入门')cell_size = 30C = 12R = 20height = R * cell_sizewidth = C * cell_size
FPS = 200 # 刷新页面的毫秒间隔
# 定义各种形状SHAPES = { 'O': [(-1, -1), (0, -1), (-1, 0), (0, 0)], 'S': [(-1, 0), (0, 0), (0, -1), (1, -1)], 'T': [(-1, 0), (0, 0), (0, -1), (1, 0)], 'I': [(0, 1), (0, 0), (0, -1), (0, -2)], 'L': [(-1, 0), (0, 0), (-1, -1), (-1, -2)], 'J': [(-1, 0), (0, 0), (0, -1), (0, -2)], 'Z': [(-1, -1), (0, -1), (0, 0), (1, 0)],}
# 定义各种形状的颜色SHAPESCOLOR = { 'O': 'blue', 'S': 'red', 'T': 'yellow', 'I': 'green', 'L': 'purple', 'J': 'orange', 'Z': 'Cyan',}

def draw_cell_by_cr(canvas, c, r, color='#CCCCCC'): ''' :param canvas: 画板,用于绘制一个方块的Canvas对象 :param c: 方块所在列 :param r: 方块所在行 :param color: 方块颜色,默认为#CCCCCC,轻灰色 :return: ''' x0 = c * cell_size y0 = r * cell_size x1 = c * cell_size + cell_size y1 = r * cell_size + cell_size canvas.create_rectangle(x0, y0, x1, y1, fill=color, outline='white', width=2)

# 绘制空白面板def draw_board(canvas, block_list): for ri in range(R): for ci in range(C): cell_type = block_list[ri][ci] if cell_type: draw_cell_by_cr(canvas, ci, ri, SHAPESCOLOR[cell_type]) else: draw_cell_by_cr(canvas, ci, ri)

def draw_cells(canvas, c, r, cell_list, color='#CCCCCC'): ''' 绘制指定形状指定颜色的俄罗斯方块 :param canvas: 画板 :param r: 该形状设定的原点所在的行 :param c: 该形状设定的原点所在的列 :param cell_list: 该形状各个方格相对自身所处位置 :param color: 该形状颜色 :return: ''' for cell in cell_list: cell_c, cell_r = cell ci = cell_c + c ri = cell_r + r # 判断该位置方格在画板内部(画板外部的方格不再绘制) if 0 <= c < C and 0 <= r < R: draw_cell_by_cr(canvas, ci, ri, color)

win = tk.Tk()canvas = tk.Canvas(win, width=width, height=height, )canvas.pack()
block_list = []for i in range(R): i_row = ['' for j in range(C)] block_list.append(i_row)
draw_board(canvas, block_list)

def draw_block_move(canvas, block, direction=[0, 0]): ''' 绘制向指定方向移动后的俄罗斯方块 :param canvas: 画板 :param block: 俄罗斯方块对象 :param direction: 俄罗斯方块移动方向 :return: ''' shape_type = block['kind'] c, r = block['cr'] cell_list = block['cell_list']
# 移动前,先清除原有位置绘制的俄罗斯方块,也就是用背景色绘制原有的俄罗斯方块 draw_cells(canvas, c, r, cell_list)
dc, dr = direction new_c, new_r = c+dc, r+dr block['cr'] = [new_c, new_r] # 在新位置绘制新的俄罗斯方块就好 draw_cells(canvas, new_c, new_r, cell_list, SHAPESCOLOR[shape_type])

def generate_new_block(): # 随机生成新的俄罗斯方块
kind = random.choice(list(SHAPES.keys())) # 对应横纵坐标,以左上角为原点,水平向右为x轴正方向, # 竖直向下为y轴正方向,x对应横坐标,y对应纵坐标 cr = [C // 2, 0] new_block = { 'kind': kind, # 对应俄罗斯方块的类型 'cell_list': SHAPES[kind], 'cr': cr }
return new_block

def check_move(block, direction=[0, 0]): ''' 判断俄罗斯方块是否可以朝制定方向移动 :param block: 俄罗斯方块对象 :param direction: 俄罗斯方块移动方向 :return: boolean 是否可以朝制定方向移动 ''' cc, cr = block['cr'] cell_list = block['cell_list']
for cell in cell_list: cell_c, cell_r = cell c = cell_c + cc + direction[0] r = cell_r + cr + direction[1] # 判断该位置是否超出左右边界,以及下边界 # 一般不判断上边界,因为俄罗斯方块生成的时候,可能有一部分在上边界之上还没有出来 if c < 0 or c >= C or r >= R: return False
# 必须要判断r不小于0才行,具体原因你可以不加这个判断,试试会出现什么效果 if r >= 0 and block_list[r][c]: return False
return True

def check_row_complete(row): for cell in row: if cell=='': return False
return True

score = 0win.title('SCORES: %s' % score) # 标题中展示分数

def check_and_clear(): has_complete_row = False for ri in range(len(block_list)): if check_row_complete(block_list[ri]): has_complete_row = True # 当前行可消除 if ri > 0: for cur_ri in range(ri, 0, -1): block_list[cur_ri] = block_list[cur_ri-1][:] block_list[0] = ['' for j in range(C)] else: block_list[ri] = ['' for j in range(C)] global score score += 10
if has_complete_row: draw_board(canvas, block_list)
win.title('SCORES: %s' % score)

def save_block_to_list(block): shape_type = block['kind'] cc, cr = block['cr'] cell_list = block['cell_list']
for cell in cell_list: cell_c, cell_r = cell c = cell_c + cc r = cell_r + cr # block_list 在对应位置记下其类型 block_list[r][c] = shape_type

def horizontal_move_block(event): ''' 左右水平移动俄罗斯方块 ''' direction = [0, 0] if event.keysym == 'Left': direction = [-1, 0] elif event.keysym == 'Right': direction = [1, 0] else: return
global current_block if current_block is not None and check_move(current_block, direction): draw_block_move(canvas, current_block, direction)

def rotate_block(event): global current_block if current_block is None: return
cell_list = current_block['cell_list'] rotate_list = [] for cell in cell_list: cell_c, cell_r = cell rotate_cell = [cell_r, -cell_c] rotate_list.append(rotate_cell)
block_after_rotate = { 'kind': current_block['kind'], # 对应俄罗斯方块的类型 'cell_list': rotate_list, 'cr': current_block['cr'] }
if check_move(block_after_rotate): cc, cr= current_block['cr'] draw_cells(canvas, cc, cr, current_block['cell_list']) draw_cells(canvas, cc, cr, rotate_list,SHAPESCOLOR[current_block['kind']]) current_block = block_after_rotate

def land(event): global current_block if current_block is None: return
cell_list = current_block['cell_list'] cc, cr = current_block['cr'] min_height = R for cell in cell_list: cell_c, cell_r = cell c, r = cell_c + cc, cell_r + cr if r>=0 and block_list[r][c]: return h = 0 for ri in range(r+1, R): if block_list[ri][c]: break else: h += 1 if h < min_height: min_height = h
down = [0, min_height] if check_move(current_block, down): draw_block_move(canvas, current_block, down)

def game_loop(): win.update() global current_block if current_block is None: new_block = generate_new_block() # 新生成的俄罗斯方块需要先在生成位置绘制出来 draw_block_move(canvas, new_block) current_block = new_block if not check_move(current_block, [0, 0]): messagebox.showinfo('Game Over!', 'Your Score is %s' % score) win.destroy() return else: if check_move(current_block, [0, 1]): draw_block_move(canvas, current_block, [0, 1]) else: # 无法移动,记入 block_list 中 save_block_to_list(current_block) current_block = None check_and_clear()
win.after(FPS, game_loop)
canvas.focus_set() # 聚焦到canvas画板对象上canvas.bind('<KeyPress-Left>', horizontal_move_block)canvas.bind('<KeyPress-Right>', horizontal_move_block)canvas.bind('<KeyPress-Up>', rotate_block)canvas.bind('<KeyPress-Down>', land)

current_block = None

win.update()win.after(FPS, game_loop) # 在FPS 毫秒后调用 game_loop方法

win.mainloop()

四、总结

Python源码练习在深度学习领域具有重要意义。通过本文的研究,我们希望为广大深度学习爱好者提供一条从源码出发,深入理解深度学习技术的途径。在不断探索和实践的过程中,为我国人工智能领域的发展贡献力量。
未来,随着技术的不断进步,Python源码练习在深度学习中的应用将更加广泛。让我们共同探寻深度学习的奥妙,开启人工智能领域的新篇章。

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多