背景:人类神经系统中有超过40种神经递质,而多巴胺(Dopamine,DA)被认为是四种重要神经递质之一,另外三种是乙酰胆碱(Acetylcholine)、血清素(Serotonin)和谷氨酸(Glutamate)。 1. 什么是多巴胺,它的作用是什么?多巴胺是一种著名的脑化学物质(神经递质),它不仅作为一种维持体内平衡(稳态)的化合物,还作为身体的化学信使。它在神经细胞、大脑和身体其他部分之间传递化学信息。多巴胺的关键作用在于它充当我们的“奖励中心”和情绪状态。与血清素一起,多巴胺也被称为我们的“快乐”神经递质。多巴胺的功能包括记忆、学习、奖励、情绪、动机和运动(Speranza et al., 2021; Lewis et al., 2021)。 2. 低多巴胺的症状和相关疾病多巴胺缺乏会影响你的心理和身体健康,导致与多巴胺缺乏相关的多种疾病,如帕金森病(Parkinson’s disease)、抑郁症(depression)、不安腿综合症(restless legs syndrome)、焦虑症(anxiety)、注意力缺陷多动症(ADHD)、社交退缩和精神分裂症(schizophrenia)等。它还可能使你更容易冒险或发展成瘾(Cramb et al., 2023)。
帕金森病是一种由神经细胞退化引起的变性疾病,主要由于大脑内控制运动的黑质(substantia nigra)缺乏多巴胺而导致功能丧失。研究表明,超过80%的帕金森病患者在大脑中失去了多巴胺生成细胞,表现出震颤(手、臂和腿部)、僵硬、运动缓慢以及平衡和协调能力下降等症状(Emamzadeh & Surguchov, 2018)。
注意力缺陷多动症是一种多重神经发育障碍,有时被称为注意力缺陷障碍(ADD),但ADHD是医学上认可的术语,认为其由多种因素引起,尤其是遗传因素。研究发现,ADHD患者的多巴胺水平与非ADHD患者不同。许多研究表明,通过增加多巴胺的刺激,药物或天然补充剂对治疗ADHD有益(Volkow et al., 2009; Fusar-Poli et al., 2012)。
重度抑郁症(Major Depressive Disorder, MDD)是全球最普遍的心理疾病之一(Kessler & Bromet, 2013)。这种疾病复杂,可能涉及多种独特的神经回路,被认为是精神和行为障碍的主要致残和疾病原因之一(Belujon & Grace, 2017b)。多巴胺系统功能障碍与抑郁症的特定症状(如低动机)有关。
不安腿综合症(Restless Legs Syndrome, RLS)是一种依赖多巴胺的疾病,表现为强烈的移动冲动。多巴胺在大脑和神经系统之间帮助调节协调运动。如果神经细胞受损,脑内多巴胺减少,这将导致肌肉痉挛和不自主运动(Mitchell et al., 2018)。
精神分裂症是一种严重的精神疾病。最常见的理论认为,大脑某些部位的多巴胺受体数量过多,而前额叶皮层的多巴胺水平低下则导致幻觉、妄想和高度混乱的症状(Brisch et al., 2014)。
3. 如何自然增加多巴胺水平?
研究表明,饮食中摄入优质蛋白质是积极影响多巴胺水平的有效方法。蛋白质由22种氨基酸构成,其中一种氨基酸——酪氨酸(tyrosine),在大脑中制造多巴胺的过程中发挥着关键作用(Kühn et al., 2017)。
多项研究表明,肠道与大脑之间存在密切联系(肠脑轴)。某些种类的益生菌可以大量产生多巴胺,这可能会影响情绪,同时减少焦虑、抑郁和行为问题。然而,需要更多研究来确定具体的益生菌种类和菌株,以全面了解益生菌对多巴胺生产和情绪的影响(Lerner et al., 2017; MacQueen et al., 2017; Pinto-Sanchez et al., 2017)。
除了均衡饮食外,像Omega-3鱼油和维生素D等补充剂也可能有助于自然提升多巴胺水平。同时,研究表明,身体需要维生素B5、B6和B9以及铁等矿物质来合成多巴胺。有研究建议氨基酸L-茶氨酸(L-theanine)可以提高大脑中的多巴胺水平(Zielińska et al., 2023; Takeshima et al., 2016)。
研究发现,结合冥想的正念练习可以帮助提高多巴胺水平。然而,还需要更多研究来确定这种提升效果是否在有经验和没有经验的冥想者中都有效(Mosini et al., 2019; Knytl & Opitz, 2018)。接下来,让我们看看其他增加多巴胺水平的方法。
研究表明,早晨醒来时多巴胺的释放量最高,而在晚上入睡时则会下降(Kesner & Lovinger, 2020)。然而,缺乏睡眠可能会干扰自然的生物节律,从而影响多巴胺的生产(Tomasi et al., 2016)。
季节性情感障碍(Seasonal Affective Disorder)是一种在小部分人群中常见的疾病,通常在冬季和秋季出现,症状从轻微到中度再到严重。尽管其病理生理机制尚不明确,但一些数据表明多巴胺等神经递质可能是罪魁祸首(Rosenthal, 1984)。光疗法已被证明可以提高多巴胺功能,并提升个人的情绪和动机(Cawley et al., 2013)。
多巴胺对压力源的反应是相反的,这取决于暴露于心理社会压力的时间长度。急性心理社会压力会导致腹侧纹状体(ventral striatum)中多巴胺的显著释放,这一脑区涉及决策、运动控制、情绪、习惯形成和奖励等功能(Pruessner et al., 2004)。同时,研究发现,长期暴露于心理社会压力与纹状体多巴胺合成能力显著降低相关(Bloomfield et al., 2019)。
研究表明,富含糖分和脂肪的食物会增加多巴胺水平,并影响个人的饮食行为。多巴胺奖励系统被认为是控制食欲和对食物情感驱动的最重要结构,尤其是对高脂肪和高糖食物的摄入(Baik, 2021; Lenoir et al., 2007)。
4. 自然补充剂提升多巴胺水平
初步的动物(老鼠)和试管研究发现,银杏叶补充可以增加多巴胺水平,从而改善认知功能、记忆和动机。然而,在人类身上的进一步研究仍是必要的,以确定银杏叶对多巴胺水平的具体影响(Blecharz-Klin et al., 2009; Yoshitake et al., 2010; Ramassamy et al., 1992)。 产品推荐:Naka Platinum 银杏叶 60mg – 75颗胶囊
产品推荐:Naka Platinum 有机全根姜黄 500mg,120颗植物胶囊
产品推荐:Naka Platinum Pro 乳化维生素D 100ml
5. 总结总之,多巴胺是帮助我们感到愉悦和满足的重要化学物质。尽管我们体内通常能够很好地调节多巴胺水平,但某些医疗状况、不良睡眠习惯、咖啡因和压力可能会降低其水平。通过实施均衡饮食及使用如银杏、维生素D、B5、B6、B9和姜黄素等补充剂,可能有助于提升多巴胺水平。 以上列出的每种补充剂在正确使用时被认为是安全的。然而,建议与医疗提供者咨询,因为某些补充剂可能会与特定处方药或非处方药相互作用。 References:(上下滑动) 1. Baik, J.-H. (2021). Dopaminergic control of the feeding circuit. Endocrinology and Metabolism, 36(2), 229–239. https:///10.3803/enm.2021.979 2. Belujon, P., & Grace, A. A. (2017a). Dopamine system dysregulation in major depressive disorders. International Journal of Neuropsychopharmacology, 20(12), 1036–1046. https:///10.1093/ijnp/pyx056 3. Belujon, P., & Grace, A. A. (2017b). Dopamine system dysregulation in major depressive disorders. International Journal of Neuropsychopharmacology, 20(12), 1036–1046. https:///10.1093/ijnp/pyx056 4. Bertone-Johnson, E. R. (2009). Vitamin d and the occurrence of depression: Causal association or circumstantial evidence? Nutrition Reviews, 67(8), 481–492. https:///10.1111/j.1753-4887.2009.00220.x 5. Blecharz-Klin, K., Piechal, A., Joniec, I., Pyrzanowska, J., & Widy-Tyszkiewicz, E. (2009). Pharmacological and biochemical effects of ginkgo biloba extract on learning, memory consolidation and motor activity in old rats. Acta Neurobiologiae Experimentalis, 69(2), 217–231. https:///10.55782/ane-2009-1747 6. Bloomfield, M., McCutcheon, R. A., Kempton, M., Freeman, T. P., & Howes, O. (2019). The effects of psychosocial stress on dopaminergic function and the acute stress response. eLife, 8. https:///10.7554/elife.46797 7. Brisch, R., Saniotis, A., Wolf, R., Bielau, H., Bernstein, H.-G., Steiner, J., Bogerts, B., Braun, A., Jankowski, Z., Kumaritlake, J., Henneberg, M., & Gos, T. (2014). The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Frontiers in Psychiatry, 5. https:///10.3389/fpsyt.2014.00047 8. Cawley, E., Park, S., aan het Rot, M., Sancton, K., Benkelfat, C., Young, S., Boivin, D., & Leyton, M. (2013). Dopamine and light: Dissecting effects on mood and motivational states in women with subsyndromal seasonal affective disorder. Journal of Psychiatry & Neuroscience, 38(6), 388–397. https:///10.1503/jpn.120181 9. Cramb, K. L., Beccano-Kelly, D., Cragg, S. J., & Wade-Martins, R. (2023). Impaired dopamine release in parkinson’s disease. Brain, 146(8), 3117–3132. https:///10.1093/brain/awad064 10. Emamzadeh, F. N., & Surguchov, A. (2018). Parkinson’s disease: Biomarkers, treatment, and risk factors. Frontiers in Neuroscience, 12. https:///10.3389/fnins.2018.00612 11. Fusar-Poli, P., Rubia, K., Rossi, G., Sartori, G., & Balottin, U. (2012). Striatal dopamine transporter alterations in adhd: Pathophysiology or adaptation to psychostimulants? a meta-analysis. American Journal of Psychiatry, 169(3), 264–272. https:///10.1176/appi.ajp.2011.11060940 12. Juárez Olguín, H., Calderón Guzmán, D., Hernández García, E., & Barragán Mejía, G. (2016). The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxidative Medicine and Cellular Longevity, 2016, 1–13. https:///10.1155/2016/9730467 13. Kesner, A. J., & Lovinger, D. M. (2020). Wake up and smell the dopamine: New mechanisms mediating dopamine activity fluctuations related to sleep and psychostimulant sensitivity. Neuropsychopharmacology, 46(4), 683–684. https:///10.1038/s41386-020-00903-5 14. Kessler, R. C., & Bromet, E. J. (2013). The epidemiology of depression across cultures. Annual Review of Public Health, 34(1), 119–138. https:///10.1146/annurev-publhealth-031912-114409 15. Knytl, P., & Opitz, B. (2018). Meditation experience predicts negative reinforcement learning and is associated with attenuated frn amplitude. Cognitive, Affective, & Behavioral Neuroscience, 19(2), 268–282. https:///10.3758/s13415-018-00665-0 16. Kühn, S., Düzel, S., Colzato, L., Norman, K., Gallinat, J., Brandmaier, A. M., Lindenberger, U., & Widaman, K. F. (2017). Food for thought: Association between dietary tyrosine and cognitive performance in younger and older adults. Psychological Research, 83(6), 1097–1106. https:///10.1007/s00426-017-0957-4 17. Kulkarni, S., & Dhir, A. (2010). An overview of curcumin in neurological disorders. Indian Journal of Pharmaceutical Sciences, 72(2), 149. https:///10.4103/0250-474x.65012 18. Lenoir, M., Serre, F., Cantin, L., & Ahmed, S. H. (2007). Intense sweetness surpasses cocaine reward. PLoS ONE, 2(8), e698. https:///10.1371/journal.pone.0000698 19. Lerner, A., Neidhöfer, S., & Matthias, T. (2017). The gut microbiome feelings of the brain: A perspective for non-microbiologists. Microorganisms, 5(4), 66. https:///10.3390/microorganisms5040066 20. Lewis, R. G., Florio, E., Punzo, D., & Borrelli, E. (2021). The brain’s reward system in health and disease. In Circadian clock in brain health and disease (pp. 57–69). Springer International Publishing. https:///10.1007/978-3-030-81147-1_4 21. MacQueen, G., Surette, M., & Moayyedi, P. (2017). The gut microbiota and psychiatric illness. Journal of Psychiatry & Neuroscience, 42(2), 75–77. https:///10.1503/jpn.170028 22. Menon, V., Kar, S., Suthar, N., & Nebhinani, N. (2020). Vitamin d and depression: A critical appraisal of the evidence and future directions. Indian Journal of Psychological Medicine, 42(1), 11–21. https:///10.4103/ijpsym.ijpsym_160_19 23. Mitchell, U. H., Obray, J., Hunsaker, E., Garcia, B. T., Clarke, T. J., Hope, S., & Steffensen, S. C. (2018). Peripheral dopamine in restless legs syndrome. Frontiers in Neurology, 9. https:///10.3389/fneur.2018.00155 24. Mosini, A., Saad, M., Braghetta, C., Medeiros, R., Peres, M., & Leão, F. (2019). Neurophysiological, cognitive-behavioral and neurochemical effects in practitioners of transcendental meditation – a literature review. Revista da Associação Médica Brasileira, 65(5), 706–713. https:///10.1590/1806-9282.65.5.706 25. Pinto-Sanchez, M., Hall, G. B., Ghajar, K., Nardelli, A., Bolino, C., Lau, J. T., Martin, F.-P., Cominetti, O., Welsh, C., Rieder, A., Traynor, J., Gregory, C., De Palma, G., Pigrau, M., Ford, A. C., Macri, J., Berger, B., Bergonzelli, G., Surette, M. G.,…Bercik, P. (2017). Probiotic bifidobacterium longum ncc3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome. Gastroenterology, 153(2), 448–459.e8. https:///10.1053/j.gastro.2017.05.003 26. Pruessner, J. C., Champagne, F., Meaney, M. J., & Dagher, A. (2004). Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: A positron emission tomography study using [11c]raclopride. The Journal of Neuroscience, 24(11), 2825–2831. https:///10.1523/jneurosci.3422-03.2004 27. Ramassamy, C., Naudin, B., Christen, Y., Clostre, F., & Costentin, J. (1992). Prevention by ginkgo biloba extract (egb 761) and trolox c of the decrease in synaptosomal dopamine or serotonin uptake following incubation. Biochemical Pharmacology, 44(12), 2395–2401. https:///10.1016/0006-2952(92)90685-c 28. Rosenthal, N. E. (1984). Seasonal affective disorder. Archives of General Psychiatry, 41(1), 72. https:///10.1001/archpsyc.1984.01790120076010 29. Sanmukhani, J., Satodia, V., Trivedi, J., Patel, T., Tiwari, D., Panchal, B., Goel, A., & Tripathi, C. (2013). Efficacy and safety of curcumin in major depressive disorder: A randomized controlled trial. Phytotherapy Research, 28(4), 579–585. https:///10.1002/ptr.5025 30. Speranza, L., di Porzio, U., Viggiano, D., de Donato, A., & Volpicelli, F. (2021). Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control. Cells, 10(4), 735. https:///10.3390/cells10040735 31. Takeshima, M., Miyazaki, I., Murakami, S., Kita, T., & Asanuma, M. (2016). L-theanine protects against excess dopamine-induced neurotoxicity in the presence of astrocytes. Journal of Clinical Biochemistry and Nutrition, 59(2), 93–99. https:///10.3164/jcbn.16-15 32. Tomasi, D., Wang, G., & Volkow, N. D. (2016). Association between striatal dopamine d2/d3 receptors and brain activation during visual attention: Effects of sleep deprivation. Translational Psychiatry, 6(5), e828–e828. https:///10.1038/tp.2016.93 33. Volkow, N. D., Wang, G.-J., Kollins, S. H., Wigal, T. L., Newcorn, J. H., Telang, F., Fowler, J. S., Zhu, W., Logan, J., Ma, Y., Pradhan, K., Wong, C., & Swanson, J. M. (2009). Evaluating dopamine reward pathway in adhd. JAMA, 302(10), 1084. https:///10.1001/jama.2009.1308 34. Yoshitake, T., Yoshitake, S., & Kehr, J. (2010). The ginkgo biloba extract egb 761® and its main constituent flavonoids and ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. British Journal of Pharmacology, 159(3), 659–668. https:///10.1111/j.1476-5381.2009.00580.xZielińska, M., Łuszczki, E., & Dereń, K. (2023). Dietary nutrient deficiencies and risk of depression (review article 2018–2023). Nutrients, 15(11), 2433. https:///10.3390/nu15112433 编译| Jim |
|
来自: 长沙7喜 > 《精神健康与老年病》