教学设计
题目 平面直角坐标系
综合复习 总课时 学校 红星一中 教者 郭晓敏 年级 七年级 学科 数学 设计来源 自我设计 教学时间 2012年月日—月日 教
材
分
析
学情分析
教
学
目
标 重
点 难
点 课前准备
教学流程 分课时 环节
与时间 教师活动 学生活动 △设计意图
◇资源准备
□评价○反思
基础知识
整体回顾
问题一
20分钟 第六章平面直角坐标系
(综合复习教案)
一、平面直角坐标系
1、平面内有公共原点且互相垂直的两条数轴,构成平面直角坐标系.平面直角坐标系,水平的数轴叫做x轴或横轴(正方向向右),铅直的数轴叫做y轴或纵轴(正方向向上),两轴交点O是原点.这个平面叫做坐标平面.
x轴和y把坐标平面分成四个象限(每个象限都不包括坐标轴上的点),要注意象限的编号顺序及各象限内点的坐标的符号:由坐标平面内一点向x轴作垂线,垂足在x轴上的坐标叫做这个点的横坐标,由这个点向y轴作垂线,垂足在y轴上的坐标叫做这个点的纵坐标,这个点的横坐标、纵坐标合在一起叫做这个点的坐标(横坐标在前,纵坐标在后).一个点的坐标是一对有序实数,对于坐标平面内任意一点,都有唯一一对有序实数和它对应,对于任意一对有序实数,在坐标平面都有一点和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.
2、不同位置点的坐标的特征:
(1)、各象限内点的坐标有如下特征:
点P(x,y)在第一象限x>0,y>0;
点P(x,y)在第二象限x<0,y>0;
点P(x,y)在第三象限x<0,y<0;
点P(x,y)在第四象限x>0,y<0.
(2)、坐标轴上的点有如下特征:
点P(x,y)在x轴上y为0,x为任意实数.
点P(x,y)在y轴上x为0,y为任意实数.
小组派代表回答问题
动手动脑、积极参与 教学流程 分课时 环节
与时间 教师活动 学生活动 △设计意图
◇资源准备
□评价○反思
问题二
25分钟 3、点P(x,y)坐标的几何意义:
(1)点P(x,y)到x轴的距离是|y|;
(2)点P(x,y)到y袖的距离是|x|;
4、关于坐标轴、原点对称的点的坐标的特征:
(1)点P(a,b)关于x轴的对称点是;
(2)点P(a,b)关于x轴的对称点是;
(3)点P(a,b)关于原点的对称点是
二、坐标方法的简单应用
(一)、表示地理位置:(注意点)
1、建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向.(说清楚以什么为原点,什么所在的方向为x轴的正方向,什么所在的方向为y轴的正方向).
2、根据具体问题确定适当的比例尺,在坐标轴上标出单位长度.(比例尺不能漏,单位长度不要忘记).
3、在坐标平面内画出这些点,写出各点的坐标和各个点的名称.
(二)、用坐标表示平移
1、图形的平移:在平面内,将一个图形沿某个方向移动一定距离,这种图形的运动称为平移.
2、图形的移动引起坐标变化的规律:
(1)、将点(x,y)向右平移a个单位长度,得到的对应点的坐标是:(x+a,y)
(2)、将点(x,y)向左平移a个单位长度,得到的对应点的坐标是:(x-a,y)
(3)、将点(x,y)向上平移b个单位长度,得到的对应点的坐标是:(x,y+b)
(4)、将点(x,y)向下平移b个单位长度,得到的对应点的坐标是:(x,y-b)
学生画平面直角坐标系,通过具体数的坐标,探索对称点的坐标的特点。
学生回忆
△让学生探究关于坐标轴对称和关于原点对称的点的坐标之间的关系,渗透数形结合的思想
△使学生认识到在直角坐标系中如何确定点的位置
。
教学流程 分课时 环节
与时间 教师活动 学生活动 △设计意图
◇资源准备
□评价○反思 3、点的变化引起图形移动的规律:
(1)、将点(x,y)的横坐标加上一个正数a,纵坐标不变,即(x+a,y),则其新图形就是把原图形向右平移a个单位.
(2)、将点(x,y)的横坐标减去一个正数a,纵坐标不变,即(x-a,y),则其新图形就是把原图形向左平移a个单位.
(1)、将点(x,y)的纵坐标加上一个正数b,横坐标不变,即(x,y+b),则其新图形就是把原图形向上平移a个单位.
(1)、将点(x,y)的纵坐标加上一个正数b,横坐标不变,即(x,y+b),则其新图形就是把原图形向下平移b个单位.
4、平移的性质:
(1)、平移后,对应点所连的线段平行且相等;
(2)、平移后,对应线段平行且相等;
(3)、平移后,对应角相等;
(4)、平移后,只改变图形的位置,不改变图形的形状与大小.
5、决定平移的因素:平移的方向和距离.
6、画平移图形,必须找出平移的方向和距离、画平移图形的依据是平移的性质.
7、在实际生活中,同一个图案往往可以由不同的基本图案经过平移形成的,选取了不同的基本图案之后,分析这个图案的形成过程就有所不同.
学生根据教师出示的问题进行回忆
△在学生已有知识基础上进行复习,有利于掌握知识结构,加深知识的形成过程。
△结合图形平移的性质,探讨平面直角坐标系中的图形的平移,让学生养成知识间的对比与联系。 ”。
|
|