配色: 字号:
GPS 接收器测试
2012-08-06 | 阅:  转:  |  分享 
  
GPS接收器测试

概观

从波音747客机的导航操作、汽车驾驶每天都会使用的GPS导航系统,到寻宝者要找到深藏于森林某处的宝藏,GPS技术已经迅速融入于多种应用中。正当创新技术不断提升GPS接收器效能的同时,相关的技术特性亦越来越完整。时至今日,软件甚至可建立GPS波形,以精确仿真实际的讯号。除此之外,仪器总线技术亦不断提升,目前即可透过PXI仪控功能,以记录并播放实时的GPS讯号。

介绍

由于GPS技术已于一般商用市场逐渐普及,因此多项设计均着眼于提升相关特性,如:

1)?????降低耗电量

2)?????可寻找微弱的卫星讯号

3)?????较快的撷取次数

4)?????更精确的定位功能

透过此应用说明,将可了解进行多项GPS接收器量测的方法:敏感度、噪声系数、定位精确度、首次定位时间,与位置误差。此篇技术文件是要能让工程师彻底了解GPS的量测技术。对刚开始接触GPS接收器量测作业的工程师来说,可对常见的量测作业略知一二。若工程师已具有GPS量测的相关经验,亦可透过此篇技术文件初步了解新的仪控技术。此篇应用说明将分为下列数个段落:

GPS技术的基础

GPS量测系统

常见量测概述

a.?敏感度

b.?首次定位时间(TTFF)

c.?定位精确度与重复性

d.?追踪精确度与重复性

每个段落均将提供数项实作秘诀与技巧。更重要的是,读者可将自己的结果与GPS接收器获得的结果进行比较。透过自己的结果、接收器的结果,再搭配理论量测的结果,即可进一步检视自己的量测数据。

GPS导航系统介绍

全球定位系统(GPS)为空间架构的无线电导航系统,本由美国空军所研发。虽然GPS原是开发做为军事定位系统之用,却也对民间产生重要影响。事实上,您目前就可能在车辆、船舶,甚至移动电话中使用GPS接收器。GPS导航系统包含由24组卫星,均以L1与L2频带(Band)进行多重讯号的传输。透过1.57542GHz的L1频带,各组卫星均产生1.023MchipsBPSK(二进制相位键移)的展频讯号。展频序列则使用称为C/A(coarseacquisition)码的虚拟随机数(PN)序列。虽然展频序列为1.023Mchips,但实际的讯号数据传输率为50Hz[1]。在系统的原始布署作业中,一般GPS接收器可达20~30公尺以上的精确度误差。此种误差肇因于美国军方依安全理由所附加的随机频率误差所致。然而,此称为选择性可靠度(Selectiveavailability)误差讯号源,已于2000年5月2日取消。在今天,接收器的最大误差不超过5公尺,而一般误差已降至1~2公尺。

不论是L1或L2(1.2276GHz)频带,GPS卫星均会产生所谓的「P码」附属讯号。此讯号为10.23MbpsBPSK的调变讯号,亦使用PN序列做为展频码。军方即透过P码的传输,进行更精确的定位作业。在L1频带中,P码是透过C/A码进行反相位(Outofphase)的90度传输,以确保可于相同载波上测得此2种讯号码[2]。P码于L1频带中可达-163dBW的讯号功率;于L2频带中可达-166dBW。相对来说,若在地球表面的C/A码,则可于L1频带中达到最小-160dBW的广播功率。

GPS导航讯号

针对C/A码来说,导航讯号是由数据的25个框架(Frame)所构成,而每个框架则包含1500个位[2]。此外,每组框架均可分为5组300个位的子框架。当接收器撷取C/A码时,将耗费6秒钟撷取1个子框架,亦即1个框架必须耗费30秒钟。请注意,其实某些较为深入的量测作业,才有可能真正花费30秒钟以撷取完整框架;我们将于稍后讨论之。事实上,30秒钟仅为撷取完整框架的平均最短时间;系统的首次定位时间(TTFF)往往超过30秒钟。

为了进行定位作业,大多数的接收器均必须更新卫星星历(Almanac)与星历表(Ephemeris)的信息。该笔信息均包含于人造卫星所传输的讯号数据中,,而每个子框架亦包含专属的信息集。一般来说,我们可透过子框架的类别,进而辨识出其中所包含的信息[2][7]:

Sub-frame1:包含时序修正(Clockcorrection)、精确度,与人造卫星的运作情形

Sub-frame2-3:包含精确的轨道参数,可计算卫星的确实位置

Sub-frames4-5:包含粗略的卫星轨道数据、时序修正,与运作信息。

而接收器必须透过卫星星历与星历表的信息,才能够进行定位作业。一旦得到各组卫星的确实距离,则高阶GPS接收器将透过简单的三角表达式(Triangulationalgorithm)回传位置信息。事实上,若能整合虚拟距离(Pseudorange)与卫星位置的信息,将可让接收器精确识别其位置。

不论是使用C/A码或P码,接收器均可追踪最多4组人造卫星,进行3D定位。追踪人造卫星的过程极为复杂,不过简单来说,即是接收器将透过每组卫星的距离,估算出自己的位置。由于讯号是以光速(c),或为299,792,458m/s行进,因此接收器可透过下列等式计算出与人造卫星之间的距离,即称为「虚拟距离(Pseudorange)」:



等式1.「虚拟距离(Psedorange)」为时间间隔(Timeinterval)的函式[1][4]

接收器必须将卫星所传送的讯号数据进行译码,才能够获得定位信息。每个卫星均针对其位置进行广播(Broadcasting),接收器跟着透过每组卫星之间的虚拟距离差异,以决定自己的确实位置[8]。接收器所使用的三角量测法(Triangulation),可由3组卫星进行2D定位;4组卫星则可进行3D定位。

设定GPS量测系统

测试GPS接收器的主要产品,为1组可仿真GPS讯号的RF向量讯号产生器。在此应用说明中,读者将可了解应如何使用NIPXI-5671与NIPXIe-5672RF向量讯号产生器,以达到量测目的。此产品并可搭配NIGPS工具组,以模拟1~12组GPS人造卫星。

完整的GPS量测系统亦应包含多种不同配件,以达最佳效能。举例来说,外接的固定式衰减器(Attenuator),可提升功率精确度与噪声层(Noisefloor)的效能。此外,根据接收器是否支持其直接输入埠的DC偏压(Bias),某些接收器亦可能需要DC阻绝器(Blocker)。下图即为GPS讯号产生的完整系统:

图1.GPS产生系统的程序图

如图1所示,当测试GPS接收器时,往往采用最高60dB的外接RF衰减(留白,Padding)。固定式衰减器至少可提供量测系统2项优点。首先,固定式衰减器可确保测试激发的噪声层低于-174dBm/Hz的热噪声层(Thermalnoisefloor)。其次,由于可透过高精确度RF功率计(Powermeter)校准讯号准位,因此固定式衰减器亦可提升功率精确度。虽然仅需20dB的衰减即可符合噪声层的要求,但若使用60~70dB的衰减,则可达到更高的功率精确度与噪声层效能。稍后将接着讨论RF功率校准,而图2抢先说明衰减对噪声层效能所造成的影响。



图2.不同衰减所需的仪器功率比较

如图2所示,衰减可用于减弱噪声,而不仅限于-174dBm/Hz的热噪声层。

RF向量讯号产生器

当选择RF向量讯号产生器时,NILabVIEWGPS工具组可同时支持NIPXI-5671与NIPXIe-5672RF向量讯号产生器。虽然此2款适配卡可产生GPS讯号,但由于PCIExpress总线速度较快,并可立刻进行IF等化(Equalization),因此NIPXIe-5672向量讯号产生器较受到青睐。此2款适配卡均具有6MB/s总数据传输率与1.5MS/s(IQ)取样率,可从磁盘串流GPS波形。

虽然PXI控制器硬盘可轻松维持此数据传输率,NI仍建议使用外接磁盘进行额外的储存容量。下图为包含NIPXIe-5672的常见PXI系统:



图3.包含NIPXIe5672VSG与NIPXI-5661VSA的PXI系统

GPS工具组可于完整导航讯号期间,建立最长12.5分钟(25个框架)的波形。依6MB/s的取样率,则最大档案约为7.5GB。由于上述的波形档案尺寸,所有的波形均可储存于多款硬盘选项之一。这些波形储存资源选项包含:

o???PXI控制器的硬盘(推荐使用120GB硬盘升级)

o???如HDD8263与HDD8264的外接RAID装置

o???外接USB2.0硬盘(已透过WesternDigitalPassport硬盘进行测试)

上述各种硬盘设定,均可支持超过20MB/s的连续数据串流作业。因此,任何储存选项均可仿真GPS讯号,并进行记录与播放。在稍后的段落中,将说明仿真与记录GPS波形的整合作业,并进行GPS接收器效能的特性参数描述(Characterization)作业。

建立仿真的GPS讯号

由于GPS接收器是透过天线传输数据,并取得卫星星历与星历信息;当然,仿真的GPS讯号亦需要该项信息。卫星星历与星历信息,均透过文本文件表示,可提供卫星位置、卫星高度、机器状态,与绕行轨道的相关信息。此外,在建立波形的过程中M,亦必须选择客制参数,如星期时间(TOW)、位置(经度、纬度、高度),与仿真的接收器速率。以此信息为基础,工具组将自动选择最多12组人造卫星、计算所有的都卜勒位移(Dopplershift)与虚拟距离(Pseudorange)信息,并接着产生所需的基频波形。为了可尽快入门,工具组安装程序亦包含范例的卫星星历与星历档案。此外,更可由下列网站直接下载:

·????????Almanacinformation(TheNavigationCenterofExcellence)http://navcen.uscg.gov/gps/almanacs.htm

·????????Ephemerisinformation(NASAGoddardSpaceFlightCenter)http://cddis.gsfc.nasa.gov/gnss_datasum.html#brdc

透过客制的卫星星历与星历档案,即可建立特定日期与时间的GPS讯号,甚至可回溯数年以前。请注意,当选择这些档案时,必须选择与日期相对应的档案。一般来说,卫星星历与星历信息为每日更新,因此当选择特定时间与日期时,亦应选择同1天的档案。下载的星历档案往往为压缩的「.Z」格式。因此,在搭配使用GPS工具组之前,档案必须先行解压缩。

只要使用工具组中的「自动模式(Automaticmode)」,即可囊括大多数的GPS模块作业,并可透过程序设计的方式,计算都卜勒与随机距离信息;当然,此功能亦提供手动模式。在手动模式(Manualmode)中,使用者可个别指定每组人造卫星的信息。图4即显示此2种作业模式所提供的输入参数。



1LLA(longitude,latitude,altitude)

图4.GPS工具组自动与手动模式的默认值

请注意,工具组将根据所指定的星历档案,于可能的数值范围中强制设定GPS的TOW。因此,若选择的数值超出该星历档案的范围,工具组将自动设定为最接近的数值并提醒使用者。「niGPSWriteWaveformToFile」范例程序即可建立GPS基频波形(自动模式),而其人机接口即如下图所示。



图5.简单的范例程序即可建立GPS测试波形。

请注意,某些特定量测作业,将决定用户所建立GPS测试的文件类型。举例来说,当量测接收器敏感度时,将仿真单一人造卫星。另一方面来说,需要定位作业的量测(如TTFF与位置精确度),所使用的GPS讯号将仿真多组人造卫星。基于上述需求,NIGPS工具组所搭配的范例程序,将同时包含单位星与多重卫星仿真功能。

记录空气中的GPS讯号

建立GPS波形时,其独特又日趋普遍的方式,即是直接从空气中撷取之。在此测试中,我们使用向量讯号分析器(如NIPXI5661)记录讯号,再透过向量讯号产生器(如NIPXIe-5672)产生已记录的讯号。由于在记录GPS讯号时,亦可撷取实际的讯号减损(Impairments),因此在播放讯号时,可进一步了解接收器于布署环境中的作业情形。

?只要透过极为直接的方式,即可撷取空气中的GPS讯号。在RF记录系统中,我们将适合的天线与放大器,搭配使用PXI向量讯号分析器与硬盘,以撷取最多可达数个小时的连续数据。举例来说,1组2TB的RAID磁盘阵列,即可记录最多25个小时的GPS波形。由于此篇技术文件将不会讨论串流的特殊技术,因此若需要相关范例程序代码,请至:http://www.ni.com/streaming/rf。透过下列段落,即可了解应如何针对RF记录与播放系统,设定合适的RF前端。

不同类型的无线通信讯号,均需要不同的带宽、中央频率,与增益。以GPS讯号来说,基本系统需求是以1.57542GHz的中央频率,记录2.046MHz的RF带宽。依此带宽需求,至少必须达到2.5MS/s(1.25x2MHz)取样率。注意:此处的1.25乘数,是根据PXI-5661数字降转换器(DDC)于降频(Decimation)阶段的下降(Roll-off)滤波器所得出。

在下方说明的测试作业中,我们使用5MS/s(20MB/s)取样率以撷取完整的带宽。由于标准PXI控制器硬盘即可达到20MB/s或更高的数据流量,因此不需使用外接的RAID亦可将GPS讯号串流至磁盘。然而,基于2个理由,我们仍建议使用外接硬盘。首先,外接硬盘可提升整体的数据储存量,并记录多组波形。其次,外接硬盘不会对PXI控制器的硬盘造成额外负担。在下方说明的测试作业中,我们采用1组USB2.0的外接硬盘。此硬盘为320GB的WesternDigitalPassport,具有5400RPM的硬盘转速。在我们的测试作业中,一般读取速度约落在25~28MB/s。因此该款硬盘可同时用于GPS波形数据串流的仿真(6MB/s)与记录(20MB/s)作业。

GPS讯号记录作业最为特殊之处,即是选择并设定合适的天线与低噪声放大器(LNA)。透过一般被动式平面天线(Passivepatchantenna),即可于L1GPS频带中发现介于-120~-110dBm的常见峰值功率(此处为-116dBm)。由于GPS讯号的功率强度极小,因此必须进行放大作业,以使向量讯号分析器可撷取卫星讯号的完整动态范围。虽然有多个方法可将合适的增益强度套用至讯号,不过我们发现:若使用主动式GPS天线搭配NIPXI-5690前置放大器(Pre-amplifier)时,即可达到最佳效果。若串联2组各可达30dB增益的LNA,则总增益则可达到60dB(30+30)。因此,向量讯号分析器可测得的峰值功率,将从-116dBm提升至-56dBm。下图即为该项设定的范例系统:



图6.GPS接收器与串联的LNA。

请注意,记录操作系统的必备组件之一,即为主动式GPS天线。主动式(Active)GPS天线,包含1组平面天线与1组LNA。此款天线一般均需要2.5V~5V的DC偏压电压,并仅需约$20美金即可购买现成产品。为了简单起见,我们使用1组天线搭配1组SMA接头。我们将于下列段落中看到,在RF前端的第一组LNA噪声图形极为重要;该图形将可确认进行记录作业的仪控,是否对无线讯号构成最低噪声。亦请注意,图6中的向量讯号分析器为简化图标。实际的PXI-5661为3阶段式超外差(Super-heterodyne)向量讯号分析器,较复杂于图中所示。

若将60dB套用至无线讯号中,则可于L1中得到约-60~-50dBm的峰值功率。若以扫频(Sweptspectrum)模式设定VSA并分析整体频谱,则亦将发现L1频带(FM与移动电话)之外的带中功率(Powerinband),其强度将高于GPS讯号。然而,带外(Out-of-band)讯号的峰值功率一般均不会超过-20dBm,且将透过VSA的多组带通(Bandpass)滤波器之一进行滤波作业。若要检视记录装置的RF前端是否达到应有效率,最简单的方法之一即为开启RFSA示范面板的范例程序。透过此程序,即可于L1GPS频带中呈现RF频谱。图7即为常见的频谱。请注意,此频谱截图是透过GPS中心频率于室外所得。主动式GPS天线与PXI-5690前置放大器,可达到60dB的总增益。

中心频率:1.57542GHz

展频(Span):4MHz

RBW:10Hz

平均:RMS、20Averages



图7.仅透过极小的分辨率带宽(RBW),才可于频谱中呈现GPS

此处使用前面所提到的RF记录与播放LabVIEW范例程序;设定-50dBm的参考准位、1.57542GHz中央频率,与5MS/s的IQ取样率。下图即显示设置范例的人机接口:



图8.RF记录与播放范例的人机接口。

GPS讯号的最长记录时间,将根据取样率与最大储存容量而定。若使用2TB容量的Raid磁盘阵列(WindowsXP所支持的最大磁盘),将可透过5MS/s取样率记录最多25个小时的讯号。

设定RF前端

由于串联的LNA可提供60dB的增益,因此使用者可大幅提升向量讯号分析器前端的功率。在我们的量测作业中,60dB的增益即足以将峰值功率从-116dBm提升至-56dBm。而透过60dB的增益(与1.5dB的噪声系数),讯号的噪声功率将为–112dBm/Hz(-174+增益+F)。因此,所能撷取到的讯噪比(SNR)最高可达56.5dB(-56dBm+112.5dBm),亦低于实际的仪器动态范围。由此可知,若有80dB的动态范围,则VSA将可记录最大的SNR,且不会有无线讯号的噪声影响。

当要记录任何无线讯号时,可将参考准位设定高出一般峰值功率至少5dB,以因应任何讯号强度的异常现象。在某些情况下,虽然上述此步骤将降低VSA的有效动态范围,但GPS讯号却不会受到影响。由于GPS讯号于天线输入的最大理想SNR即为58dB(-116+174),因此若于VSA记录超过58dB的动态范围将无任何意义。因此,我们甚至可以「抛弃」仪器的动态范围达10dB以上,亦不会影响记录讯号的质量(在此带宽中,PXI-5661将提供优于75dB的动态范围)。

由于必须设定合适的参考准位,适当设定记录装置的RF前端亦显得同样重要。如先前所提,若要获得最佳的RF记录数据,则建议使用主动式GPS天线。由于主动式天线内建LNA,以低噪声系数提供最高30dB的增益,因此亦可供应DC偏压。下方将接着说明多种偏压方式。

方法1:以GPS接收器进行供电的主动式天线

第一个方法,是以DC偏压「T」供电至主动式天线。在此范例中,我们将DC讯号(此为3.3V)套用至偏压「T」的DC埠,且「T」又将合适的DC偏移套用至主动式天线。请注意,此处将根据主动式天线的DC功率需求,进而决定是否套用精确的DC电压。下图即说明相关连结情形。



图9.使用DC偏压「T」供电至主动式GPS天线

在图9中可发现,PXI-4110可程序化DC电源供应器,即可供应DC偏压讯号。虽然多款现成的电源供应器(其中亦包含价位较低的电源供应器)均可用于此应用中,我们还是使用PXI-4110以简化作业。同样的,现有常见的偏压器(Biastee)可进行最高1.58GHz的作业,而此处所使用的偏压器购自于www.minicircuits.com。

方法2:以接收器供电至主动式天线

供电至主动式GPS天线的第二个方法,即是透过天线本身的接收器。大多数的现成GPS接收器,均使用单一端口供电至主动式GPS天线,且此端口亦透过合适的DC讯号达到偏压。若将主动式GPS接收器整合分裂器(Splitter)与DC阻绝器(Blocker),即可供电至主动式LNA,并仅记录GPS接收器所获得的讯号。下图即为正确的连结方式:



图10.透过DC阻绝器(Blocker),将可记录并分析GPS讯号

?

如图10所示,GPS接收器的DC偏压即用以供电至LNA。请注意,由于当进行记录时,即可观察接收器的相关特性,如速度与精确度衰减(Dilution)情形,因此方法2特别适用于驱动程序测试。

串联式(Noisefigure)噪声系数计算

若要计算已记录GPS讯号的总噪声量,只要找出整体RF前端的噪声系数即可。就一般情况来说,整组系统的噪声系数,往往受到系统的第一组放大器所影响。在所有RF组件或系统中,噪声系数均可视为SNRin与SNRout(参阅:量测技术的噪声系数)的比例。当记录GPS讯号时,必须先找出整体RF前端的噪声系数。

当执行串联式噪声系数计算时,必须先行针对每笔噪声系数与增益,将之转换为线性等式;即所谓的「噪声因子(Noisefactor)」。当以串联的RF组件计算系统的噪声系数时,即可先找出系统的噪声因子,并接着转换为噪声系数。因此系统的噪声系数必须使用下列等式计算之:



等式2.串联式RF放大器的噪声系数计算作业[3]

请注意,由于噪声因子(nf)与增益(g)属于线性关系而非对数(Logarithmic)关系,因此以小写表示之。下列即为增益与噪声系数,从线性转换为对数(反之亦然)的等式:

?





等式3到等式6.增益与噪声系数的线性/对数转换[3]

内建低噪声放大器(LNA)的主动式GPS天线,一般均提供30dB的增益,且其噪声系数约为1.5dB。在仪控记录作业的第二阶段,则由NIPXI-5690提供30dB的附加增益。由于其噪声系数较高(5dB),因此第二组放大器仅将产生极小的噪声至系统中。在教学实作中,可针对记录仪控作业的完整RF前端,使用等式2计算其噪声因子。增益与噪声系数值即如下图所示:



图11.RF前端的首2组组件噪声系数与因子。

根据上列计算,即可找出接收器的整体噪声因子:



等式7.RF记录系统的串联噪声系数

若要将噪声因子转换为噪声系数(单位为dB),则可套用等式3以获得下列结果:



等式8.第一组LNA的噪声系数将影响接收器的噪声系数

如等式8所示,第一组LNA(1.5dB)的噪声系数,将影响整组量测系统的噪声系数。透过VSA的相关设定,可让仪器的噪声水平(Noisefloor)低于输入激发的噪声水平,因此用户所进行的记录作业,将仅对无线讯号造成1.507dB的噪声。

对GPS接收器发出讯号

由于多款接收器可使用合适的软件,让用户呈现如经度与纬度的信息,因此需要更标准化的方式进行自动量测作业。还好,目前有多款接收器均可透过众所周知的NMEA-183协议,以设定对PXI控制器发出讯号。如此一来,接收器将可透过序列或USB连接线,连续传送相关指令。在NILabVIEW中,所有的指令均可转换语法,以回传卫星与定位信息。NMEA-183协议可支持6种基本指令,并各自代表专属的信息。这些指令即如下表所示:



图12.基本NMEA-183指令概述

以实际测试需要而言,GGA、GSA,与GSV指令应最为实用。更值得一提的是,GSA指令的信息可用于了解接收器是否可达到定位作业需要,或可用于首次定位时间(TimeToFirstFix,TTFF)量测。当执行高敏感性的量测时,实际可针对所追踪的卫星,使用GSV指令回传C/N(Carrier-to-noise)比。

虽然无法于此详细说明MNEA-183协议,但可至其他网站寻找所有的指令信息,如:http://www.gpsinformation.org/dale/nmea.htm#RMC.在LabVIEW中,这些指令可透过NI-VISA驱动程序转换其语法。

?

图13.使用NMEA-183协议的LabVIEW范例

GPS量测技术

目前有多种量测作业可为GPS接收器的效能进行特性描述(Characterization),其中亦有数种常见量测可套用至所有的GPS接收器中。此章节将说明执行量测的理论与实作,如:敏感度、首次定位时间(TTFF)、定位精确度/可重复性,与定位追踪不定性(Uncertainty)。应注意的是,还有许多不同的方式可检验定位精确度,并执行接收器追踪功能的测试。虽然接着将说明多种基本方式,但仍无法概括所有。

敏感度(Sensitivity)量测作业介绍

敏感度为GPS接收器功能的最重要量测作业之一。事实上,对多款已量产的GPS接收器来说,仅限为最后生产测试所执行的RF量测而已。若深入来说,敏感度量测即为「接收器可追踪并接收上方卫星定位信息的最低卫星功率强度」。一般人均认为,GPS接收器必须串联多组LNA以达极高的增益,才能将讯号放大到合适的功率强度。事实上,虽然LNA可提升讯号功率,亦可能降低SNR。因此,当GPS讯号的RF功率强度降低时,SNR也将跟着降低,最后让接收器无法追踪卫星。

多款GPS接收器可指定2组敏感值:撷取敏感度(Acquisitionsensitivity)与讯号追踪敏感度(Signaltrackingsensitivity)[9]。如字面上的意思,撷取敏感度为「接收器可进行定位的最低功率强度」。相反而言,讯号追踪敏感度为「接收器可追踪各个卫星的最低功率强度」。

以基本概念而言,我们可将敏感度定义为「无线接收器产生所需最低位错误率(BER)的最低功率强度」。由于BER与载波噪声(Carrier-to-noise,C/N)比息息相关,因此敏感度一般均是透过已知的接收器输入功率强度,得出所需的C/N值而定。

请注意,各组卫星的C/N值,均可直接透过GPS接收器的芯片组而得。目前有多种方式可计算出此项数值,而某几款接收器却是计算发讯日期(Messagedate)而得出约略值。当透过高功率测试激发进行模拟时,新款GPS接收器一般均可得到54~56dB-Hz的C/N峰值。由于即便是万里无云的晴空,GPS接收器亦可能得出30~50dB-Hz的C/N值;因此该C/N限值尚属于正常范围之内。一般GPS接收器均必须达到最小C/N比值,才能符合28~32dB-Hz的定位(撷取敏感度)范围。因此,某些特殊接收器的敏感度可定义为「接收器产生最低定位C/N比值所需的最低功率强度」。

理论上来说,单一卫星或多组卫星测试激发均可量测敏感度。而实务上来看,由于已可轻松且稳定发出所需的RF功率,因此往往是以单一卫星模式进行量测作业。依定义而言,敏感度为接收器回传最小C/N比值的最低功率强度。在接下来的讨论中,则可发现接收器的敏感度甚为依赖RF前端的噪声指数(Noisefigure。就数学表达式来看,我们可根据下列等式发现敏感度与接收器噪声指数之间的关联性:



等式9.敏感度为C/N与噪声指数所构成的函式。

在等式9中,敏感度可表达为C/N比值与噪声指数的函式。举例来说,定位追踪所需的最低C/N为32dB-Hz,则噪声指数为2dB的接收器将具有-140dBm(-174+32+2)的敏感度。然而,当单独测试基频(Baseband)收发器时,往往忽略了第一组LNA。一般接收器为下图所示:



图14.GPS接收器往往串联多组LNA[6]

如图14所示,一般GPS接收器均是串联了多组LNA,为GPS讯号提供高效率的增益。如先前所说,第一组LNA将决定整组系统的噪声指数。图14中,我们先假设LNA1具有30dB的增益与1.5dB的NF。此外,我们假设整个RF前端具有40dB的增益与5dB的NF。接着请注意,由于LNA2之后的噪声功率将超过-174dBm/Hz的热噪声(Thermalnoise),因此带通(Bandpass)滤波器将同时减弱讯号与噪声。如此将几乎不会对SNR造成任何影响。最后,我们假设GPS芯片组可产生40dB的增益与5dB的噪声指数。即可计算出整组系统的噪声指数为:



图15.线性与对数模式的增益与NF

根据上列计算,即可找出接收器的整体噪声因子:





等式10与11.第一组LNA的噪声系数将影响接收器的噪声系数

透过等式10与11来看,若GPS接收器连接已启动的天线,则其噪声指数约可达1.5dB。请注意,我们已经先忽略了相关噪声指数等式中的第三项条件。由于此数值极小,基本上可将之忽略。

在某些案例中,GPS接收器的作业天线会搭配使用内建LNA。因此测试点将忽略接收器的第一组LNA。如此一来将透过第二组LNA得出噪声指数,且其往往又大于第一组LNA的噪声指数。若将LNA1移除,则可透过下列等式得出LNA2的噪声指数。





等式12与13.移除第一组LNA所得到的接收器噪声指数

如等式12与13所示,若将具备最佳噪声指数的LNA移除,则将大幅影响整组接收器的噪声指数。请注意,虽然此「常见」GPS接收器噪声指数的计算范例纯为理论叙述,但仍具有其重要性。由于接收器所呈现的C/N比值,实在与系统的噪声系数密不可分,因此系统的噪声系数可协助我们设定合适的C/N测试限制。

单一卫星敏感度量测

在了解敏感度量测的基本理论之后,接着将进行实际量测的各个程序。一般测试系统均是透过直接联机,将模拟的L1单一卫星载波送入至DUT的RF通讯端口中。为了获得C/N比值,我们将接收器设定透过NMEA-183协议进行通讯。在LabVIEW中,则仅需串联3笔GSV指令,即可读取最大的卫星C/N值。

根据GPS规格说明,单一L1卫星若位于地球表面,则其功率应不低于-130dBm[7]。然而,消费者对室内与户外的GPS接收器使用需求,已进一步压低了测试限制。事实上,多款GPS接收器可达最低-142dBm定位追踪敏感度,与最低-160dBm讯号追踪。在一般作业点(Operatingpoint)时,大多数的GPS接收器均可迅速持续锁定低于6dB的讯号,因此我们的测试激发则使用-136dBm的平均RF功率强度。

若要达到最佳的功率精确度与噪声水平(Noisefloor)效能,则建议针对RF向量讯号产生器的输出,使用外接衰减。在大多数的案例中,40dB~60dB的外接衰减,可让我们更接近线性范围(功率≥-80dBm),妥善操作产生器。由于各组接收器的定位衰减(Fixattenuation)均不甚固定,因此必须先行校准系统,以决定测试激发的正确功率。

在校准程序中,我们可考虑:1)讯号的峰值平均比(Peak-to-averageratio)、衰减器各个部分的差异,还有任何接线作业可能的插入损耗(Insertionloss)。为了校准系统,应先从DUT切断联机,再将该联机接至RF向量讯号分析器(如PXI-5661)。

PartA:单一卫星校准

当执行敏感度量测时,RF功率强度的精确性,实为讯号产生器最重要的特性之一。由于接收器可获得0数字精确度的C/N值(如34dB-Hz),因此生产测试中的敏感度量测可达±0.5dB的功率精确度。因此,必须确保我们的仪控功能至少要达到相等或以上的效能。由于一般RF仪控作业是专为大范围功率强度、频率范围,与温度条件所设计,因此在执行基本系统校准时,量测的可重复性(Repeatability)应远高于特定仪器效能。下列章节将进一步说明可确保RF功率精确度的2种方法。

方法1:单一被动式RF衰减器:

虽然使用外接衰减,是为了确保GPS讯号产生作业可达最佳噪声密度,但实际仅需20dB的衰减,即可确保噪声密度低于-174dBm/Hz。当使用20dB的固定板(Pad)时,仅需将仪器设定为超过20dB的RF功率强度即可。为了达到-136dBm的目标,仪器应程序设计为-115dBm(假设1dB的连接线插入损耗),且将20dB衰减器直接连至产生器的输出。则所达到的RF功率将为-136dBm,但仍具有额外的不确定性。假设20dB的固定板具有±0.25dB的不确定性,且RF产生器亦于-116dBm具有±1.0dB的不确定性,则整体的不确定性将为±1.25dB。因此,虽然方法1最为简单且不需进行校准,但由于系统中的多项组件均未经过校准,因此可能接着发生不确定性。请注意,造成仪器不确定性最主要的原因之一,即为电压驻波比(Voltagestandingwaveratio,VSWR)。因为被动式衰减器是直接连至仪器的输出,所以反射回仪器的驻波即为实际衰减。由于降低了功率的不确定性,因此可提升整体功率的精确性。

请注意,此处亦使用高效能VNA确实量测被动衰减器。透过此量测装置,即可于±0.1dB的不确定性之内,决定所要套用的衰减。

?

方法2:经过校准的多组被动衰减器

校准RF功率的第二种方法,即是使用高精确度的RF功率计(高于±0.2dB的精确度,并最低可达-70dBm)搭配多款固定式衰减器。因为我们是以固定频率,与相对较小的功率范围操作RF产生器,所以可有效修正由产生器造成的任何错误。此外,由于被动衰减器是以固定频率进行线性动作,因此亦可校准其不确定性。在方法2中,主要即必须确保产生系统可达到最佳效能,且将不确定性降至最低。此高精确度功率计可达优于80dB的动态范围(往往为双头式仪器),进而确保最低的量测不确定性。

透过高精确度的功率计,即可使用3种量测作业进行系统校准:1种用于向量讯号产生器的RF功率,另外2种量测作业可校准衰减器。为了达到最佳的不确定性,则应设定系统所需的最少量测次数。若要达到-136dBm的RF功率强度,则可将RF仪器程序设计为-65dBm的功率强度,并使用70dB固定衰减(假设1dB插入损耗)。为了确实进行RF功率强度的程序设计作业,则可透过固定的Padding校准实际衰减。校准程序如下:

1)????将VSG程序设计为+15dBm功率强度

可开启MeasurementandAutomationExplorer(MAX)并使用测试面板。透过测试面板以+15dBm产生1.58GHz连续波(CW)讯号。

2)????以高精确度的功率计量测RF功率

使用RF功率计,让功率达到仪器功率精确度规格的+14.78dBm(或近似值)之内。

3)????附加70dB固定式衰减器(30dB+20dB+20dB)与任何必要的连接线

4)????以高精确度的功率计量测RF功率

将功率计设定为最大平均值(512),以量测RF功率强度。此处的读数为-56.63dBm。

5)????计算RF总耗损

若以+14.78dBm减去-56.63dBm,即可在整合了衰减器与连接线之后,确保产生71.41dB的功率耗损。请注意,多款衰减器往往具备最高±1.0dB的不确定性。因此量测所得的衰减可能最高达±3.0dB的变化。所以校准衰减器更显重要,确保已知衰减可达较低的不确定性。

根据衰减器与连接线的校准例程,即可确定所需的RF功率强度必须达到-136dBM。基于前述的71.41dB衰减,必须将RF向量讯号产生器设定为-58.59dBm的功率强度。若要确认程序设计过后的功率无误,则可依下列步骤进行:

6)????直接将功率计附加至RF向量讯号产生器

并移除所有的衰减器与连接线。

7)????将RF产生器设定必要数值,使其最后功率达到-136dBm。

而程序设计的数值应为-58.59dBm,即由-136dBm+71.41dB而得。

8)????以功率计量测最后功率。

请注意,所测得的RF功率,将因仪器的功率精确度而有所不同。即使测得-58.59,则实际结果亦将因仪器的不确定性而产生些许变化。

9)????调整产生器功率直到功率计读出-58.59dBm

虽然RF产生器可于一定的容错范围内进行作业,但此数值不仅具有可重复性,亦可调整RF功率计进行校准,直到得出合适的数值为止。

透过上述方法,仅需3项RF功率量测作业,即可决定所需的RF功率。因此,假设量测装置具有±0.2dB的不确定性,则可得出–136dBm的功率不确定性将为±0.6dBm(3x0.2)。

PartB:敏感度量测

现在校准RF量测系统的功率之后,接着仅需进行RF产生器的程序设计,将功率强度设定足以让接收器回传最小的C/N。虽然用于量测敏感度的RF功率将因接收器而有所不同,但是接收器C/N与RF功率的比值,将呈现完美的线性关系。在我们的测试中,可假设所需的C/N为28dB-Hz以进行定位。透过等式12,即可得出接收器C/N比值与噪声指数之间的关系。



等式14.C/N做为噪声指数与卫星功率的函式

假设卫星功率稳定,则可发现由接收器回报的C/N比,几乎就等于接收器的噪声指数函式。下表显示可达到的多样C/N比值。



图16.C/N为噪声指数的函式

一般来说,接收器上的GPS译码芯片组,将得出定位作业所需的最小C/N比值。然而,又必须透过整组接收器的噪声指数,才能决定目前功率强度所能达到的C/N比值。因此,当量测敏感度时,必须先了解定位作业所需的最小C/N比值。

其实有多种方法可量测敏感度。如上表所示,RF功率与敏感度具有直接相关性。因此,可根据现有的敏感度功率强度,量测接收器的C/N比值;亦可根据不同的RF功率强度,得出系统敏感度。

为了说明这点,则可注意RF讯号功率与GPS接收器C/N比值,在不同功率强度之下的关系。下方量测作业所套用的激发,即忽略了第一组LNA而进行,且接收器的整体噪声指数约为8dB。而图17显示相关结果。

?

图17.接收器的C/N比值为RF功率的函式

如图17所示,此量测范例的RF功率与C/N比值,几乎是呈现完整的线性关系。而若使用高输入功率模拟C/N比值,将产生例外情况;接收器报表将出现可能的最大C/N值。然而,因为在任何条件下,进行实验的芯片组均不会产生超过54dB-Hz的C/N值,所以这些结果均属预期范围之中。

根据图7中所示RF功率与敏感度之间的线性关系,其实仅需针对接收器模拟不同的功率强度,即可进行GPS接收器的生产测试作业。若接收器在-142dBm得出28dB-Hz的C/N值,则亦可于-136dBm得到34dB-Hz的C/N值。若特别注重量测速度,则可使用较高的C/N值,再从结果中推断出敏感度的信息。

找出噪声指数

又根据等式13与14,搭配相关载噪比(Carrier-to-noiseratio),则可得出接收器或芯片组的噪声指数。亦如下方等式15所示。



等式15.接收器噪声指数为功率与C/N比值所构成的函式。

而由图17所示,接收器的噪声指数将直接与RF功率强度与载噪比互成比例。根据此关系,我们仅需针对RF功率强度与C/N进行关联性,即可量测芯片组的噪声指数。而此项量测中请注意,应以0.1dB为单位增加产生器的功率。由于NMEA-183协议所得到的卫星C/N值,是以最接近的小数字为准,因此在量测接收器C/N比值时,应估算噪声指数达1位数的精确度。范例结果如图18所示。



图18.DUT功率与接收器C/N的关联。

如图18所示,若RF功率强度处于-136.6dBm~-135.7dBm之间,则其C/N比值将维持于30dB-Hz。若以舍入法计算NMEA-183的数据时,则几乎可确定-136.1dBm功率强度将产生30.0dB-Hz的C/N比值无误。透过等式14,芯片组的噪声指数则为-174.0dBm+-136.1dBm+30.0dB-Hz=7.9dB。请注意,此计算是根据2组不确定性系数而进行:向量讯号产生器的功率不确定性,还有接收器所产生的C/N不确定性。

多组卫星的GPS接收器量测

敏感度量测需要单一卫星激发,而有多项接收器量测需要可仿真多组卫星的单一测试激发。更进一步来说,如首次定位时间(TTFF)、定位精确度,与精确度降低(Dilutionofprecision)的量测作业,均需要接收器进行定位。由于接收器需要至少4组卫星进行3D定位作业,因此这些量测将较敏感度量测来得耗时。也因此,多项定位量测作业均于检验与校准作业中进行,而非生产测试时才执行。

此章节将说明可为接收器提供多组卫星讯号的方法。在讨论GPS仿真作业时,亦将让使用者了解TTFF与定位精确度量测的执行方法。若是讨论RF记录与播放作业,将一并说明应如何在多项环境条件下,校准接收器的效能。?

量测首次定位时间(TTFF)与定位精确度

首次定位时间(TTFF)与定位精确度量测,为设计GPS接收器的首要检验作业。若您已将多种消费性的GPS应用了然于胸,即应知道接收器回传其实际位置所需的时间,将大幅影响接收器的用途。此外,接收器回报其位置的精确度亦甚为重要。

为了让接收器可进行定位,则应透过导航讯息(Navigationmessage)下载星历与年历信息。由于接收器下载完整GPS框架必须耗费30秒,因此「冷启动(Coldstart)」的TTFF状态则需要30~60秒。事实上,多款接收器可指定数种TTFF状态。最常见的为:

冷启动(ColdStart):接收器必须下载年历与星历信息,才能进行定位。由于必须从各组卫星下载至少1组GPS框架(Frame),因此大多数的接收器在冷启动状态下,将于30~60秒时进行定位。

热启动(WarmStart):接收器的年历信息尚未超过1个星期,且不需要其他星历信息。一般来说,此接收器可于20秒内得知目前时间,并可进行100公里内的定位[2]。大多数热启动状态的GPS接收器,可于60秒内进行定位,有时甚至仅需更短的时间。

热开机(HotStart):接收器具备最新的年历与星历信息时,即为热开机状态。接收器仅需取得各组卫星的时序信息,即可开始回传定位位置。大多数热开机状态的GPS接收器,仅需0.5~20秒即可开始定位作业。

在大部分的情况下,TTFF与定位精确度均与特定功率强度相关。值得注意的是,若能于多种情况下检验此2种规格的精确度,其实极具有其信息价值。因为GPS卫星每12个小时即绕行地球1圈,所以可用范围内的卫星讯号随时都在变化,也让接收器可在不同的状态下回传正确结果。

下列章节将说明应如何使用2笔数据源,以执行TTFF与定位精确度的量测,包含:

1)?????接收器在其布署环境中,透过天线所获得的实时数据

2)?????透过空中传递所记录的RF讯号,并将之用以测试接收器所记录的数据

3)?????当记录实时数据后,RF产生器用于模拟星期时间(Time-of-week,TOW)所得的仿真数据用此3笔不同的数据源测试接收器,可让各个数据源的量测作业均具备可重复特性,且均相互具备相关性。

量测设定

若要获得最佳结果,则所选择的记录位置,应让卫星不致受到周遭建筑物的阻碍。我们选择6层楼停车场的顶楼进行测试,以无建物覆盖的屋顶尽可能接触多组卫星讯号。透过GPS芯片组的多个开机模式,均可执行TTFF量测作业。以SIRFstarIII芯片组为例,即可重设接收器的出厂、冷启动、热启动,与热开机模式。下方所示即为接收器执行相关测试的结果。





献花(0)
+1
(本文系流星88666首藏)