配色: 字号:
耐火材料工艺及检验相关知识
2012-09-28 | 阅:  转:  |  分享 
  
耐火材料检验的有关知识

重点掌握:气孔率、体积密度、吸水率、真密度的概念,计算公式及定义;热膨胀、热导率、热容等热学性能检测意义;耐火材料的概念;耐火材料的常温及高温力学性能的检测方法及检测意义。

一般掌握:耐火材料的主要原料;耐火材料的种类;化学组成的分类及各类成分的作用;矿物组成的分类及各类的作用;耐火材料性能检验的特点及作用;高温使用性能的分类、检测意义及检测方法。

了解:耐火材料的用途与发展。

耐火材料是耐火度不低于1580℃的无机非金属材料。尽管各国规定的定义不同,例如,国际标准化组织(ISO)

耐火材料内的气孔是由原料中气孔和成型后颗粒间的气孔所构成。大致可分为三类:1)闭口气孔,它封闭在制品中不与外界相通;2)开口气孔,一段封闭,另一段与外界相通,能为流体填充;3)贯通气孔,贯通制品的两面,能为流体通过;为简便起见,通常将上述三类气孔合并为两类,即开口气孔(包括贯通气孔)和闭口气孔。一般开口气孔体积占总气孔体积的绝对多数,闭口气孔的体积则很少,闭口气孔体积难于直接测定,因此,制品的气孔率指标,常用开口气孔率(亦称显气孔率)表示。

真气孔率(总气孔率)A=(V1+V2)Χ100%/V0,开口气孔率(显气孔率)B=V1Χ100%/V0式中:V0、V1、V2分别代表总气孔体积、开口气孔体积和闭口气孔体积(CM3).

1.2.1.2吸水率

它是制品中全部开口气孔吸满水的质量与其干燥质量之比,以百分率表示,它实质上是反映制品中开口气孔量的一个技术指标,由于其测定简便,在生产中多直接用来鉴定原料煅烧质量。烧结良好的原料,其吸水率数值应较低。

1.2.1.3体积密度

表示干燥制品的质量与其总体积之比,即制品单位体积(表观体积)的质量,用g/cm3表示。

体积密度也是表征制品致密程度的主要指标,密度较高时,可减少外部侵入介质(液相或气相)对耐火材料作用的总面积,从而提高其使用寿命,所以致密化是提高耐火材料质量的重要途径,通常在生产中应控制原料煅烧后的体积密度,砖坯的体积密度和制品的烧结程度。

1.2.1.3真密度

GB/T5071标准有两个定义:真密度(带有气孔的干燥材料的质量与其真体积之比值,用g/cm3或kg/m3表示)、真体积(带有气孔的材料中固体物质的体积)。

GB/T5071标准的测定原理:把试样破碎,磨碎,使之尽可能不存在有封闭气孔,测量其干燥的质量和真体积,从而测得真密度。细料的体积用比重瓶和已知密度的液体测定,所用液体温度必须控制或仔细地测量。

真密度是指不包括气孔在内的单位体积耐火材料的质量,可用下式表示。

d真=G/[V0-(V1+V2)],式中G-干燥试样质量,g;V0、V1、V2——分别为试样的总体积,开口气孔体积,闭口气孔体积,cm3。

耐火材料的热学性质和导电性

2.1、热膨胀

GB/T7320标准有两个定义:线膨胀率(室温至试验温度间试样长度的相对变化率,用%表示)、平均线膨胀率(室温至试验温度间温度每升高1℃试样长度的相对变化率,单位为10-6/℃)

YB/T4130把导热系数定义为:指单位时间内在单位温度梯度下沿热流方向通过材料单位面积传递的热量。如式(1)所示:

λ=q/(dT/dx)

式中:λ——导热系数,单位为瓦每米开尔文(W/(m.K))))))))))))

高温抗折强度是指材料在高温下单位截面所能承受的极限弯曲应力。它表征材料在高温下抵抗弯矩的能力。

高温抗折强度又称高温弯曲强度或高温断裂模量。测定在高温下一定尺寸的长方体试样在三点弯曲装置上受弯时所能承受的最大荷重,抗折强度可按下式计算:

R=3.W.l/2.b.d2

式中R——抗折强度,Pa;

W——断裂时所施加的最大载荷,N;

l——两支点间的距离,cm;

b——试样的宽度,cm;

d——试样的厚度,cm。

耐火材料的高温强度与其实际使用密切相关。特别是对于评价碱性直接结合砖的质量,高温抗折强度是很重要的性能。如碱性直接结合砖的高温抗折强度大,则抵抗因温度梯度产生的剪应力强,因而制品在使用时不易产生剥落现象。高温抗折强度大的制品亦会提高对其物料的撞击和磨损性,增强抗渣性,因此,高温抗折强度作为表征制品强度的指标。

耐火材料的高温抗折强度指标,主要取决于制品的化学矿物组成,组织结构和生产工艺。

3.2.3、高温蠕变性

当材料在高温下承受小于其极限的某一恒定荷重时,产生塑性变形,变形量会随时间的增长而逐渐增加,甚至会使材料破坏,这种现象叫蠕变。因此,对于处于高温下的材料,就不能孤立地考虑其强度,而应将温度和时间的因素与强度同时考虑。例如,长时间在高温下工作的热风炉格子砖的损坏,是由于砖体逐渐软化产生可塑变形,强度显著下降甚至破坏,格子砖的这种蠕变现象成为炉子损坏的主要原因。

一般认为影响高温蠕变的因素有:1)使用条件,如温度和荷重、时间、气氛性质等;2)材质,如化学组成和矿物;3)显微组织结构。材料高温蠕变曲线划分为三个阶段,第一阶段蠕变为减速蠕变(时间短暂);第二阶段为匀速蠕变(蠕变速率最小);第三阶段为加速蠕变(蠕变速率迅速增加)。

耐火材料的高温使用性质

4.1、耐火度

耐火度在无荷重时抵抗高温作用而不熔化的性质称为耐火度。对耐火材料而言,耐火度所表示的意义与熔点不同。熔点是纯物质的结晶相与其液相处于平衡状态下的温度。但一般耐火材料是由各种矿物组成的多相固体混合物,并非单相的纯物质,故无一定的熔点,其熔融是在一定的温度范围内进行的,即只有一个固定的开始熔融温度和一个固定的熔融终了温度。在这个温度范围内液相和固相同时存在。

耐火度是个技术指标,其测定方法是由试验物料作成的截头三角锥,上底每边长2mm,下底每边长8mm,高30mm,(有一侧面与垂直方向夹角为80)截面成等边三角形。在一定升温速率下加热时,由于其自重的影响而逐渐变形弯倒,当其弯倒直至顶点与底盘相接触的温度,即为试样的耐火度。

GB/T7322标准有三个定义:耐火度(耐火材料耐高温的特性)、标准测温锥(把具有规定的形状、尺寸的一定组成的截头三角锥体,当其按规定条件安装和加热时,能按已知方式在规定的温度弯倒称为标准测温锥)、参照温度(当安插在锥台上的标准测温锥,在规定的条件下按规定的加热速度加热时,其锥的尖端弯倒至锥台面时的温度)及耐火度测定原理。参照温度(弯倒温度)

GB/T7322标准有一个原理:将耐火原料或制品的试锥与已知耐火度的标准测温锥一起载在锥台上,在规定的条件下加热并比较试锥与标准测温锥的弯倒情况来表示试锥的耐火度。





4.2、高温荷重变形温度



YB/T370标准有四个定义:荷重软化温度(耐火制品在规定升温条件下,承受恒定压负荷产生变形的温度)、最大膨胀值温度T0(试样膨胀到最大值时的温度)、x%变形温度Tx(试样从膨胀最大值压缩了原始高度的某一百分数(x)时的温度)、溃裂或破裂温度Tb(试验在T0后,试样突然溃裂或破裂时的温度);一个原理(在恒定的荷重和升温速率下,圆柱体试样受荷重和高温的共同作用产生变形,测定其规定变形程度的相应温度)。

耐火材料在高温下的荷重变形指标表示它对高温和荷重同时作用的抵抗能力,也表示耐火材料呈现明显塑性变形的软化范围。耐火材料的高温荷重变形温度的测定方法是固定试样承受的压力,不断升高温度,测定试样在发生一定变形量和坍塌时的温度称为高温荷重变形温度。

耐火材料荷重变形曲线不同的原因主要取决于制品中化学矿物组成,即取决于:

(1)存在的结晶相、晶体构造和性状,即晶体是否形成网络骨架或以孤岛状分散于液相中,前者变形温度高,后者的变形温度主要由液相的含量及粘度所决定,可见显微组织结构对制品的荷重变形温度有显著的影响。

(2)晶相和液相的数量及液相在一定温度下的粘度。

(3)晶相与液相的相互作用,两者的相互作用会改变液相的数量和性质。此外,制品的致密程度对高温荷重变形温亦有一定的影响。

4.3、高温体积稳定性



耐火材料在高温下长期使用时,其外形体积保持稳定不发生变化(收缩或膨胀)的性能称为高温体积温度性。它是评定制品质量的一项重要指标。

耐火材料在烧成过程中,其间的物理化学变化一般都未达到烧成温度下的平衡状态,当制品在长期使用中,受高温作用时,一些物理化学变化仍然会继续进行。另一方面,制品在实际烧成过程中,由于种种原因,会有烧成不充分的制品,此种制品在窑炉上使用再受高温作用时,由于一些烧成变化继续进行,结果使制品的体积发生变化——收缩或膨胀,这种不可逆的体积变化称为残余收缩或膨胀,也称重烧收缩或膨胀。重烧体积变化的大小,表明制品的高温体积稳定性。

重烧时的体积变化可用体积百分率或线变化百分率表示:

LC=(L1-L0)Χ100/L0

Vc=(V1-V0)Χ100/V0



式中LC——试样重烧线变化率,%;

Vc——试样重烧体积变化率,%;

L0、L1——依次表示重烧前后试样的长度,mm;

V0、V1——依次表示重烧前后试样的体积,cm3;

按上两式计算的结果为正值表明膨胀,为负值表明收缩。当重烧体积变化很小时,可以认为Vc=3LC。

4.4、热震稳定性



耐火材料抵抗温度的急剧变化而不破坏的性能称为热震稳定性。众所周知,材料随温度的升降,产生膨胀或收缩,如果此膨胀或收缩受到约束不能自由发展时,材料内部会产生应力。此种因材料的热膨胀或收缩而引起的内应力称为热应力。热应力不仅在具有机械约束的条件下产生,而且均质材料中出现温度梯度,非均质固体中各相之间的热膨胀系数的差别,甚至单相多晶体中的热膨胀系数的各向异性,都是产生热应力的根源。

耐火材料的热震损伤可分为两大类:一类是瞬时断裂,称为热冲击断裂;另一类是在热冲击循环作用下,先出现开裂,剥落,然后碎裂和变质,终至整体损伤,称为热震损伤。

结语:展望随着科学技术的进步和高温工业的发展,人们对耐火材料力学性能的认识将越来越深,要求越来越高,不断有新的力学性能项目来表达耐火材料的质量和耐用性。因此,要求测定耐火材料的力学性能项目会越来越多。例如,耐火纤维材料将要求测定纤维强度和制定测试方法;面临着愈加严酷的使用条件,耐火材料的抗冲刷性、耐磨性等会成为某些耐火材料的重要性能,因而将要求逐渐创立科学的表达方法和测试标准。























10









献花(0)
+1
(本文系给中华安上...首藏)