配色: 字号:
Polyglutamylation is a post-translational modification with a broad range of substrates
2012-10-17 | 阅:  转:  |  分享 
  
PolyglutamylationIsaPost-translationalModificationwitha

BroadRangeofSubstrates



□S

Receivedforpublication,July16,2007,andinrevisedform,November27,2007Published,JBCPapersinPress,November28,2007,DOI10.1074/jbc.M705813200

JuliettevanDijk

?

,JulieMiro

?

,Jean-MarcStrub

§

,BenjaminLacroix

?

,AlainvanDorsselaer

§

,BernardEdde

??

,

andCarstenJanke

?1

Fromthe

?

CentredeRecherchedeBiochimieMacromole′culaire,Universite′sMontpellier2and1,CNRS,34293Montpellier,France,

the

§

LaboratoiredeSpectrome′triedeMasseBioOrganique,CNRS,67087Strasbourg,France,andthe

?

Universite′Paris6,75252

Paris,France

Polyglutamylationisapost-translationalmodificationthat

generateslateralacidicsidechainsonproteinsbysequential

additionofglutamateaminoacids.Thismodificationwasfirst

discoveredontubulins,anditisimportantforseveralmicrotu-

bulefunctions.Besidestubulins,onlythenucleosomeassembly

proteinsNAP1andNAP2havebeenshowntobepolyglutamy-

lated.Here,usingaproteomicapproach,weidentifyalarge

numberofputativesubstratesforpolyglutamylationinHeLa

cells.Byanalyzingaselectionoftheseputativesubstrates,we

showthatseveralofthemcanserveasinvitrosubstratesfortwo

oftherecentlydiscoveredpolyglutamylases,TTLL4andTTLL5.

WefurthershowthatTTLL4isthemainpolyglutamylase

enzymepresentinHeLacellsandthatnewsubstratesofpoly-

glutamylationareindeedmodifiedbyTTLL4inacellularcon-

text.Noclearconsensuspolyglutamylationsitecouldbedefined

fromtheprimarysequenceofthehere-identifiednewsubstrates

ofpolyglutamylation.However,wedemonstratethatglutamate-

richstretchesareimportantforaproteintobecomepolyglu-

tamylated.Mostofthenewlyidentifiedsubstratesofpolyglu-

tamylationarenucleocytoplasmicshuttlingproteins,including

manychromatin-bindingproteins.Ourworkrevealsthatpoly-

glutamylationisamuchmorewidespreadpost-translational

modificationthaninitiallythoughtandthusthatitmightbea

regulatorofmanycellularprocesses.

Onefundamentalaspectofproteomiccomplexitycomes

fromthevariousprocessingeventsthatmanyproteinsundergo

followingtheirsynthesis.Post-translationalmodifications,

suchasphosphorylation,acetylation,andmethylation,are

reversiblemonomodificationsandareknowntofunctionas

switchesfortheactivityofmanyproteins.Polyglutamylationis

areversiblepolymodificationgeneratedbysequentialcovalent

attachmentofglutamicacids(upto20insomecases)toan

internalglutamateresidueofthetargetprotein(1).Thelength

oftheresultingsidechainisregulatedbythebalancebetween

theenzymesthatcatalyzeglutamylation,recentlyidentifiedas

membersofthetubulin-tyrosineligase-like(TTLL)

2

protein

family(2–4),andyetunidentifieddeglutamylaseenzymes(5).

Thus,thismodificationdoesnotonlygenerate“on”and“off”

states,butarangeofsignalsthatmightallowforgradualregu-

lationofproteinfunctions.

TheonlyknowntargetsofpolyglutamylationareH9251-and

H9252-tubulins,thestructuralunitsofmicrotubules(MTs(1,6)),

andthenucleosomeassemblyproteins,NAP1andNAP2(7).

Tubulinsaremodifiedintheiracidic,glutamate-richCtermi-

nus(1),whichisthebindingsiteformostMT-associatedpro-

teins(MAPs;reviewedinRef.8).Tubulinpolyglutamylation

wasthereforeproposedtogeneratefunctionallydivergentMTs

byregulatingtheaffinitybetweenMAPsandMTs(4,9–11).It

wasalsoshowntobeimportantforcentriolestability(12),

axonemalmotility(2,13,14),andneuriteoutgrowth(15).The

roleofNAPpolyglutamylationhasnotyetbeenaddressed,but

asfortubulins,itmayregulatetheaffinityofNAPsfortheir

bindingpartners.

Additionalpolyglutamylatedproteinsprobablyexistasthe

polyglutamylation-specificantibodyGT335(16)recognizes

proteinbandsbesidesthoseoftubulinsandNAPsonWestern

blotsofHeLacellextracts(4,7).Here,usingaproteomic

approach,weidentifynewsubstratesforpolyglutamylationand

showthattheyaremodifiedbytwopolyglutamylasesfromthe

TTLLproteinfamily.Noclear“glutamylationmotif”couldbe

definedintheirprimarysequences,butallthehere-identified

newsubstratescontainglutamate-richstretchesthataremost

likelytheacceptorsitesforthemodification.Ourstudyopens

thedoortofurtherinvestigationsoftheroleofpolyglutamyla-

tionasageneralregulatoryeventofabroadrangeofcellular

functions.

EXPERIMENTALPROCEDURES

PurificationofGT335-reactiveProteinsfromHeLaCellsby

ImmunoaffinityChromatography—10mgofGT335antibody

wascoupledtoanN-hydroxysuccinimide-activatedHi-Trap

column(1ml,GEHealthcare)accordingtothemanufacturer’s

ThisworkwassupportedinpartbytheCNRS,theUniversitiesMontpellier1

and2,AssociationdelaRecherchecontreleCancerAwardsCR504/7817

and3140(toC.J.),FrenchNationalResearchAgencyAwardJC05_42022

(toC.J.),andtheLaLiguecontreleCancer(toC.J.andB.L.).Thecostsof

publicationofthisarticleweredefrayedinpartbythepaymentofpage

charges.Thisarticlemustthereforebeherebymarked“advertisement”in

accordancewith18U.S.C.Section1734solelytoindicatethisfact.

□S

Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains

supplementalTableS1andFigs.S1andS2.

1

Towhomcorrespondenceshouldbeaddressed:CRBM,CNRS,1919Route

deMende,34293Montpellier,France.Tel.:33-4-67613335;Fax:33-4-

67521559;E-mail:carsten.janke@crbm.cnrs.fr.

2

Theabbreviationsusedare:TTLL,tubulin-tyrosineligase-like;MAP,micro-

tubule-associatedprotein;MT,microtubule;NAP,nucleosomeassembly

protein;PBS,phosphate-bufferedsaline;GST,glutathioneS-transferase;

GFP,greenfluorescentprotein.

THEJOURNALOFBIOLOGICALCHEMISTRYVOL.283,NO.7,pp.3915–3922,February15,2008

?2008byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc.PrintedintheU.S.A.

FEBRUARY15,2008?VOLUME283?NUMBER7JOURNALOFBIOLOGICALCHEMISTRY3915

atInstBiophys,CAS,onOctober17,2012

www.jbc.org

Downloadedfrom

http://www.jbc.org/content/suppl/2007/11/29/M705813200.DC1.html

SupplementalMaterialcanbefoundat:

instructions.HeLacellswereextractedinPBScontaining0.1%

TritonX-100andproteaseinhibitors(aprotinin,leupeptin,and

4-(2-aminoethyl)-benzenesulfonylfluoride,eachat10H9262g/ml).

Thehighspeedsupernatant(15mgofprotein)wasloadedonto

thecolumnandafterextensivewashingwithPBS,bound

proteinswereelutedwithPBScontaining0.7MNaClandcon-

centratedto1mg/mlonanAmiconultrafiltrationdevice(4ml,

cut-off10kDa,Millipore).

WesternBlotting—ProteinsfusedtoEYFPwereimmunode-

tectedwithrabbitanti-GFPantibody(1:5,000,TorreyPines

Biolabs)andhorseradishperoxidase-conjugatedanti-rabbit

IgG(GEHealthcare)followedbydetectionwithenhancedche-

moluminescence(GEHealthcare).GT335antibodywasbiotin-

ylatedwithNHS-LC-Biotin(Pierce)accordingtothemanufac-

turer’sinstructionsandincubatedsimultaneouslywith

horseradishperoxidase-labeledstreptavidin(GEHealthcare).

Forproducingpolyclonalanti-TTLL4andanti-TTLL5anti-

bodies,bacteriallyexpressedandpurifiedfull-lengthmouse

TTLL4orfragment692–1152ofmouseTTLL5wereinjected

intorabbits.Anti-TTLLantibodieswerethenpurifiedfrom

antiseraagainsttheirrespectivetargets.

MassSpectrometricAnalysis—Toidentifytheproteincon-

tentoftheGT335affinity-purifiedfraction,theCoomassie-

stainedproteinbandswereexcisedfromthegelandsubmitted

toin-geltrypsindigestion(17).Peptideswerethenconcen-

tratedonaC18pre-column,separatedonareversed-phase

capillarycolumn(PepmapC18,75-H9262minnerdiameter,15-cm

length,LCPackings)andanalyzedbyMS/MSonaQ-TofII

massspectrometer(MicromassLtd.,Manchester,UK).Data

analysiswasperformedwithMascot(MatrixScienceLtd.,Lon-

don,UK)againsttheNCBI(TheNationalCenterforBiotech-

nologyInformation)Database.Double-andtriple-charged

peptideswereusedfortheresearchindatabase,andthepep-

tidetolerancewassetto0.2DaforMSandto0.3DaforMS/MS.

Onemissedcleavagebytrypsinwasacceptedandcarbamidom-

ethylatedcysteineandoxidizedmethionineweresetasvariable

modifications.Allentrieswereselectedforthetaxonomy.The

Mascotscorecut-offvalueforapositiveproteinhitwassetto

50,andpeptideswithascorebelow40weremanuallyinter-

pretedtovalidateordiscardtheidentification.Identifiedpro-

teinsweresubmittedtoasecondresearchincludingpolyglu-

tamylationasvariablemodification.Additionsof1–8glutamic

acidswereconsideredandanewresearchhasbeendoneeach

time.

InVitroPolyglutamylationoftheGT335Affinity-purified

Fraction—TheGT335affinity-purifiedfraction(finalprotein

concentrationof0.3mg/ml)wasincubatedfor2hat30°Cin

thepresenceof50mMTris-HCl,pH9.0,0.5mMATP,2.4mM

MgCl

2

,0.5mMdithiothreitol,and60H9262ML-[

3

H]glutamate

(45–55Ci/mmol,GEHealthcare).FollowingSDS-PAGE,gels

wereexposedtoMPfilms(GEHealthcare)for40daysat

H1100280°CafterenhancementwithAmplify(GEHealthcare).

ImmunoprecipitationExperiments—Forthedepletionof

TTLLs,theGT335affinity-purifiedfraction(10H9262goftotalpro-

tein)wasincubatedfor2hat4°Conarotaryagitatorwith

proteinGmagneticbeads(Dynabeads)thatwerecoupledto

anti-TTLL4oranti-TTLL5antibodies(2H9262g).Afterwashing

withPBS,theTTLL-depletedfractionwaspolyglutamylatedin

vitroasdescribedabove.ForimmunoprecipitationoftheEYFP

fusionsofNAPsandtheirchimeras,thehigh-speedsuperna-

tantofHeLacellextractswasincubatedundersimilarcondi-

tionswithbeadslinkedtoanti-GFPantibody.Followingexten-

sivewashing,thebeadsweredirectlyresuspendedinLaemmli

buffer.

InVitroPolyglutamylationAssaywithRecombinantProteins—

Putativesubstratesofpolyglutamylationwereclonedfrom

mousetestisorbraincDNAlibraries,expressedaspolyhisti-

dinetagfusionproteinsinbacteriaandpurifiedbynickelaffin-

itychromatography(exceptforEB1,whichwasagenerousgift

ofS.HonnappaandM.O.Steinmetz).TTLLproteinswere

expressedasGSTfusionsinbacteriaandpurifiedonglutathi-

one-Sepharoseaspreviouslydescribed(4).Becauseonly

TTLL5(CAM84325)wassolubleandactivewhenproducedin

bacteriaasitsfull-lengthversion,weproducedtruncatedver-

sionofTTLL4(TTLL4_C639,last639residuesofCAM84324)

andTTLL6(TTLL6_N705,first705residuesofCAM84326)

andashorter,naturallyoccurringversionofTTLL7(TTLL7S,

CAM84327)(3,4).Theseshorterenzymeshavebeenpreviously

demonstratedtopossesssimilaractivitiesascomparedwiththe

full-lengthTTLLs(4).Thepolyglutamylationassaywasper-

formedbyincubating1H9262gofeachpurifiedTTLLenzymewith

4H9262gofeachputativesubstratein20H9262lof50mMTris-HCl,pH

9.0,0.5mMATP,2.4mMMgCl

2

,0.5mMdithiothreitol,and7.4

H9262ML-[

3

H]glutamate(45–55Ci/mmol,GEHealthcare)for2hat

30°C.Alternatively,4H9262goftaxotere-stabilizedMTs,prepared

fromadultmousebrains(18),wereusedasasubstrate.Quan-

tificationoftheradioactivityincorporatedintothedifferent

putativesubstrateproteinswasdonebyscintillationcounting

oftheproteinbandsafterSDS-PAGEandelectrotransferonto

nitrocellulose.Eachpolyglutamylationtestwasperformedat

leastthreetimesinindependentexperiments.Theoverall

count(dpm)variedbetweeneachsetofexperiments;however,

therelativevaluesofglutamateincorporatedintodifferentsub-

stratestestedwiththesameenzymedilutionweresimilarinall

experiments.Eachfigureisonesetofagivenexperimentper-

formedatthesametimewithallsubstratespresented.Back-

groundlevels(noincorporation)arebelow100dpm.

InVivoPolyglutamylationoftheNewSubstrates—Putative

substratesofpolyglutamylationwereclonedasEYFPfusion

proteinsinmammalianexpressionvectorsandtransfectedinto

HeLacellstogetherwithanactiveoranenzymaticallyinactive

(mutationE901GintheATP-bindingsite)versionof

TTLL4_C639-EYFP.After24hoftransfection,cellswerelysed

inLaemmlibufferandsubsequentlyanalyzedbygelelectro-

phoresisfollowedbyWesternblot.InFig.5C,NAPsandtheir

chimeraswereexpressedaloneandimmunoprecipitatedwith

anti-GFPantibodypriortoanalysis.

Mutagenesis—ToexchangetheC-terminaltailsbetweenthe

differentNAPs,weintroducedtherestrictionsiteBstBIintoa

highlyconservedregionoftheNAPs.Thiswasdoneby

mutagenesisofNAPs(NAP1:T972C,NAP2:T951C,NAP4:

T1170CT1171GT1172A,introducingaL391Eaminoacid

change)usingtheQuikChangePCRmethod.Theresulting

mutantswereexpressedandwereshowntobehavelikethe

wild-typeproteinsinthepolyglutamylaseassay(datanot

shown).WethenusedBstBIincombinationwithother

NewSubstratesofPolyglutamylation

3916JOURNALOFBIOLOGICALCHEMISTRYVOLUME283?NUMBER7?FEBRUARY15,2008

atInstBiophys,CAS,onOctober17,2012

www.jbc.org

Downloadedfrom

enzymestoexchangetheNAPdomains.Theresultingchime-

raswereclonedintobacterialandmammalianexpression

vectors.

RESULTS

PurificationandIdentificationofPutativeSubstratesfor

Polyglutamylation—BecausetheGT335antibodydetectspro-

teinbandsbesidesthosecorrespondingtotheglutamylated

formsoftubulinsandNAPsonWesternblotsofHeLacell

extracts,itislikelythatthisantibodyspecificallyrecognizes

someotherpolyglutamylatedproteins.Wethereforeper-

formedalargescalepurificationofGT335-reactiveproteins

fromHeLacellextractsbychromatographyonaGT335col-

umn.Theaffinity-purifiedfractionwassubmittedtoSDS-

PAGEandstainedwithCoomassieBlue(Fig.1,lane1)ortrans-

ferredontonitrocelluloseandprobedwithGT335antibody

(Fig.1,lane2).Wevisualized40proteinbandsonthegelafter

Coomassiestaining,andabouthalfofthemweredetectedwith

GT335antibodyonWesternblot.Theremainingproteins

mighthavebeennon-specificallyretainedonthecolumn,for

examplebyinteractingwithGT335-reactiveproteins.How-

ever,itisalsopossiblethatsomeproteinsarerecognizedby

GT335antibodyonlyintheirnativeform.Wethereforeexcised

all40proteinbandsfromthegelanddeterminedtheirprotein

contentbynano-LC-MS/MSaftertrypsindigestion.Thisanal-

ysisgaverisetotheidentificationofabout170proteins(sup-

plementalTableS1).

Toidentifytruesubstratesofpolyglutamylation,themasses

obtainedbynano-LC-MS/MSwerere-analyzedtosearchfor

massesthatcouldbeattributedtopolyglutamylatedtryptic

peptides.However,wefoundnomassescorrespondingtomod-

ifiedpeptides(massincrementsofntimes129Da,themassofa

glutamylunit,withnrangingfrom1to8).Ithasbeenpreviously

reportedthatthepolyglutamylatedtrypticpeptidesoftubulins

andNAPsareundetectablewiththeclassicalmassspectrome-

trymethodusedhere(1,7).Thesameseemstobetrueforthe

othersubstratesofpolyglutamylation.Actually,becauseof

theirhighacidityand/orbranchedstructure,themodifiedpep-

tidesarelostduringthereversephasechromatographyusedto

fractionatethepeptides(7).Analternativeprocedurewouldbe

tofractionatethetrypticpeptidesbyion-exchangechromatog-

raphyfollowedbyadesaltingstep.Thismethodhasbeenused

inthecaseofNAPs(7),buttofollowthemodifiedpeptides

duringthepurificationsteps,radioactiveglutamatehadtobe

incorporatedintotheproteins.Anotherproblem,becauseof

theacidiccharacterofthemodifiedpeptides,isthattheirion-

izationinelectrosprayorMALDIisveryhardevenintheneg-

ativemode.Severalprocedureshavebeenproposedtosolve

thisproblem(19–21),butthemethodremainsfarfrom

straightforward.Takentogether,wejudgedamassspectrome-

tryapproachasnotappropriatetoidentifynewsubstratesof

polyglutamylation.

Topreselectproteinswithahighprobabilityofbeingpoly-

glutamylated,wetookadvantageofthefactthatapolyglutamy-

laseactivityco-purifieswiththeGT335-reactiveproteins(7).

IncubationoftheGT335affinity-purifiedfractionwith

[

3

H]glutamateandMgATPresultedintheradioactivelabeling

of13proteinbands(Fig.1,lane3).Becausethenewsubstrates

ofpolyglutamylationmight,astubulinsandNAPs,bemodified

withinaglutamate-richsequencewesearchedforproteinscon-

tainingsuchmotifsamongtheproteinsidentifiedwithinthe13

3

H-labeledbands.Wefoundatleastoneproteinwithagluta-

mate-richstretchineachofthesebands(Table1)andthus

FIGURE1.PurificationofGT335-reactiveproteinsfromHeLacellextracts.

ThehighspeedsupernatantofHeLacellextractswassubmittedtoGT335

affinitychromatography.Theboundfractionwasrunona10%SDS-polyac-

rylamidegelandstainedwithCoomassieBlue(lane1),ortransferredonto

nitrocellulosefordetectionwithGT335antibody(WB,lane2).Theincorpora-

tionof[

3

H]glutamatebytheco-purifiedpolyglutamylaseactivitywasvisual-

izedbyautoradiography(lane3).Theproteinbands(whosecontentislisted

inSupplementalTableS1)arenumbered,andtheirnumberisinaboxforthe

onesthatappearradioactivelylabeledfollowinginvitropolyglutamylation.

Molecularmassmarkersareindicated.

NewSubstratesofPolyglutamylation

FEBRUARY15,2008?VOLUME283?NUMBER7JOURNALOFBIOLOGICALCHEMISTRY3917

atInstBiophys,CAS,onOctober17,2012

www.jbc.org

Downloadedfrom

expectthattheseproteinsareverylikelytargetsof

polyglutamylation.

TTLL4andTTLL5ModifyNewSubstratesinVitro—Tocon-

firmwhethertheverylikelytargetsofpolyglutamylation,

preselectedinTable1,canindeedbepolyglutamylated,a

selectionofthemwasproducedinbacteriaandpurifiedfor

analysisinaninvitropolyglutamylationassay.Notallpro-

teinsweretestedbecausesomecouldnotbeproducedin

bacteriaduetotheirlargesize(nucleoporin,PELP1,Myb-

bindingprotein1A)andotherssharedahighhomologywith

someofthetestedproteins(PHAPIIisashorterversionof

SETthatdiffersonlyinfewaminoacidsattheNterminus

andANP32Eshares57%identitywithANP32A(22)).Totest

theabilityoftheselectedproteinstobepolyglutamylated

invitro,weneedasourceofpolyglutamylaseactivity.Pre-

sently,theonlyknownmammalianpolyglutamylaseen-

zymesaremembersoftheTTLLproteinfamily(4).Following

overexpressionofthedifferentTTLLsinHeLacells,only

TTLL4andTTLL5increasedtheGT335reactivityofnon-tu-

bulinsubstrates(4).Thus,thesetwoTTLLsarestrongcandi-

datesforbeingtheenzymesthatpolyglutamylatenon-tubulin

substrates.WethereforeusedrecombinantTTLL4_C639(a

truncatedversionofTTLL4,see“ExperimentalProcedures”)

andTTLL5forinvitropolyglutamylationassays.Toinvestigate

thespecificityofdifferentenzymesforthenewsubstrates,we

alsotestedtwootherpolyglutamylases,TTLL6_N705and

TTLL7S.Thetestedproteins,NAP1,NAP2,NF45,SET,B23,

ANP32A,andANP32B(Table1,proteinsinbold)areall

stronglymodifiedbyTTLL4_C639andtoalesserextentby

TTLL5(Fig.2A).Thetwootherenzymes,TTLL6_N705and

TTLL7S,whicharebothhighlyactiveonMTs,didnotmodify

thenewsubstrates(Fig.2A).Thus,invitro,non-tubulinsub-

stratesarespecificallypolyglutamylatedbyTTLL4andTTLL5.

Moreover,becauseallpreselectedproteinstestedaremodified,

itislikelythatthepresenceofglutamate-richsequencesis

indeed,asproposedearlier,asignatureofpolyglutamylated

proteins.

Amongtheproteinbandsthatwerenotlabeledwith[

3

H]glu-

tamatebythepolyglutamylaseactivityco-purifiedonthe

GT335column,weidentifiedseveralotherproteinscontaining

glutamate-richstretches(supplementalTableS1,proteinsin

bold).Theseproteinsmightbepolyglutamylatedeithertoa

lowerextentorbyadifferentenzyme,whichwasnotco-puri-

fiedontheGT335-column.Toinvestigatethispossibility,we

repeatedtheinvitropolyglutamylationassayswiththesameset

ofTTLLenzymeson6oftheseproteins(GRP78,NASP,RAN-

GAP,RNP-K,NCT,andEB1;Fig.2B).Asbefore,TTLL4_C639

wasthemostefficientenzyme.Itincorporated[

3

H]glutamateinto

RNP-KandEB1,toalesserextentintoRANGAPandNCT,but

poorlyintoGRP78andNASP.NotethatTTLL6_N705and

TTLL7S,whichwereinactiveonthepreviouslytestednon-tubulin

substrates,slightlymodifiedEB1.Thismightbeduetotheclose

structuralhomologybetweenEB1andtubulins(23).Overall,the

proteinsmodifiedinthistestincorporatedmuchlessglutamate

thanthepreviouslyidentifiedsubstrates,whichmightexplainwhy

theywerenotseenintheautoradiography(Fig.1,lane3).How-

ever,theyhavetobeconsideredaspotentialsubstratesofpolyglu-

tamylationandtheirmodificationmightbeimportantinvivo.

TTLL4IstheMajorPolyglutamylaseCo-purifiedwiththe

NewSubstrates—BecausetheGT335affinity-purifiedfraction

possessesapolyglutamylaseactivityabletomodifythenew

substrates(Fig.1,lane3),wewantedtodetermineifitcontains

eitherTTLL4orTTLL5,thetwoenzymesthatmodifythesub-

stratesinvitro.Wethereforeraisedpolyclonalantibodiesagainst

theseTTLLs.Theepitopesofboth,anti-TTLL4andanti-TTLL5

antibodiesarelocatedoutsidethedomainsthatareconserved

betweenthedifferentTTLLs(supplementalFig.S1).Accordingly,

whenweprobedextractsofHeLacellsoverexpressingthediffer-

entfull-lengthTTLLpolyglutamylases,anti-TTLL4,andanti-

TTLL5antibodiesspecificallyrecognizedtheirtargetsandexhib-

itednocross-reactivitywithanyotherTTLLpolyglutamylase(Fig.

3A).WethenusedtheseantibodiestoprobetheGT335-affinity

purifiedfraction,butnoneoftheantibodiesdetectedaproteinof

theexpectedsizeonWesternblot(notshown),mostprobably

becauseoftheabsenceorlowconcentrationoftheenzymes.

Becausebothantibodieshavebeendemonstratedtoprecipitate

theirtargetTTLLproteins(notshown),weusedthemtodeplete

theGT335affinity-purifiedfraction.Followingincubationofthe

depletedfractionswith[

3

H]glutamateandMgATP,weobserveda

strongdecreaseofglutamateincorporationwhenTTLL4,butnot

whenTTLL5wasdepleted(Fig.3B).ThusTTLL4isthemajor

enzymeinvolvedinthepolyglutamylationofthenewsubstrates

identifiedinHeLacells.

TTLL4PolyglutamylatestheNewSubstratesinHeLaCells—

Toshowthattheproteinsthatarepolyglutamylatedinvitrocan

alsobemodifiedbyTTLL4underinvivoconditions,we

expressedthemasEYFP-taggedversionsinHeLacells.In

untransfectedcells(notshown)orcellsoverexpressinganinac-

tive(ATPase-dead)TTLL4_C639(Fig.4,firstlane),onlypro-

teinsinthe50-kDaregion(tubulins,NAPs)anda180-kDapro-

teinaredetectedwithGT335antibody.Thisindicatesthatthe

endogenouspolyglutamylaseactivityofHeLacellsmightbetoo

lowtomodifymostsubstratesabovedetectionlevelsofGT335

TABLE1

Preselectionofverylikelytargetsofpolyglutamylation

Amongtheproteinsidentifiedwithinthe13proteinbandsthatwerelabeledwith

H20851

3

HH20852glutamate(Fig.1andSupplementalTableS1),weselectedthosethatpossess

longglutamate-richstretcheswithintheirprimarysequenceandthatthusarevery

likelytargetsofpolyglutamylation.Thebandnumberscorrespondtothoseindi-

catedinFig.1.Invitropolyglutamylationtestswereperformedontheproteinsin

boldandallofthemdidincorporateglutamate.

BandProteinAccessionMasspI

1Nucleoporingi8573683579935.86

5Proline-,glutamicacid-,

leucine-richprotein1(PELP1)

gi244153831195484.30

Myb-bindingprotein1Agi711538251487629.34

19H9251-Tubulingi32015497614.95

20Nucleosomeassembly

protein1-like4(NAP2)

gi5174613427974.60

21H9252-Tubulingi18088719496404.75

22Nucleosomeassembly

protein1-like1(NAP1)

gi4758756453464.36

26NF45proteingi532313446698.26

27ProteinSETgi46397790334694.23

28PHAPIIgi403009320844.12

29B23nucleophosmingi825671309194.71

32Acidicnuclearphosphoprotein

32family,memberE(ANP32E)

gi13569879306743.77

34Acidicnuclearphosphoprotein

32family,memberA(ANP32A)

gi5453880285683.99

35Acidicnuclearphosphoprotein

32family,memberB(ANP32B)

gi1498227222634.19

NewSubstratesofPolyglutamylation

3918JOURNALOFBIOLOGICALCHEMISTRYVOLUME283?NUMBER7?FEBRUARY15,2008

atInstBiophys,CAS,onOctober17,2012

www.jbc.org

Downloadedfrom

inWesternblot.Accordingly,intheabsenceofexogenouspoly-

glutamylaseactivity,onlysubstratesthatwerestronglymodi-

fiedinvitro(NAP1,NAP2,SET,andtheANP32proteins)could

bedetectedbyGT335antibodyfollowingtheiroverexpression

(Fig.4,lowerpanel,“D”).Wethenexpressedtheselectedpro-

teinstogetherwithanactiveversionofTTLL4_C639(Fig.4,

“A”).AsignificantincreaseinGT335reactivitywasobservedon

arangeofendogenousproteins(Fig.4,comparefirstandsecond

lane),demonstratingthatGT335specificallydetectspolyglu-

tamylationonalargerangeofproteins.Moreover,theGT335

reactivityofNAP1,NAP2,SET,andtheANP32proteins

increasedfurther,andotherputativesubstrates(RANGAPand

nucleolin)alsobecamelabeledwithGT335antibody(Fig.4,

lowerpanel,“A”).Theexpressionlevelsofthesubstrates,as

visualizedwithanti-GFPantibody,aresimilarincellsco-trans-

fectedwithATPase-deadoractiveTTLL4_C639(Fig.4,upper

panel,“D”and“A”).Thus,increaseofGT335detectionlevels

clearlycorrelateswithincreasedpolyglutamylationofthe

respectiveproteinsbytheactiveTTLL4_C639.Moreover,a

shiftinmigrationwasobservedformostofthemodifiedpro-

teins,suggestingthatthechargeand/orsizeoftheseproteins

havebeenchanged(Fig.4,upperpanel,compare“D”with“A”

forthemodifiedproteins).

RequirementsforPolyglutamylation—Weidentifiedanum-

berofproteinsthataresubjectedtopolyglutamylation.All

theseproteinspossessglutamate-richstretcheswithintheir

primarysequence,butnoobviouspolyglutamylationconsensus

sitecouldbedefined.Tobetterunderstandthedeterminantsof

polyglutamylation,weanalyzedtheprimarysequencesofsev-

eralmembersoftheNAPfamily(Fig.5AandsupplementalFig.

S2A)andtheirabilitytobemodifiedinvitrobyTTLL4_C639

(Fig.5B)orinHeLacellsbyendogenouspolyglutamylases(Fig.

5C).NAP1andNAP2are,incontrasttoNAP3andNAP4,

stronglypolyglutamylatedinvitroandinvivo(Fig.5).NAP1

waspreviouslyshowntopossessamajorpolyglutamylationsite

initsCterminusandaminorsiteinitsNterminus(7).Both

FIGURE2.InvitropolyglutamylationofselectedputativesubstrateswithdifferentTTLLenzymes.Proteinsselectedamongthebandslabeledbythe

co-purifiedpolyglutamylaseactivity(AandTable1)andproteinsselectedamongtheotherbandsaccordingtothepresenceofglutamate-richsequences(B;

proteinsinboldinsupplementalTableS1)wereexpressedandpurifiedfrombacteria.Theywerethensubjectedtoaninvitropolyglutamylationassaywith

recombinantTTLL4_C639,TTLL5,TTLL6_N705,andTTLL7S.TheactivityofeachTTLLwasverifiedbyusingMTsasasubstrate.Theamountof[

3

H]glutamate

incorporatedinthedifferentsubstrateswasdeterminedbyscintillationcounting.

NewSubstratesofPolyglutamylation

FEBRUARY15,2008?VOLUME283?NUMBER7JOURNALOFBIOLOGICALCHEMISTRY3919

atInstBiophys,CAS,onOctober17,2012

www.jbc.org

Downloadedfrom

sitesconsistofglutamate-richstretchesthatarenotwellcon-

servedamongthemembersoftheNAPfamily(supplemental

Fig.S2AandFig.5A).NAP2divergesfromNAP1intheN-ter-

minalsite.Becausethisisaminorpolyglutamylationsite,NAP2

isstillstronglymodified.Onthecontrary,thesequenceof

NAP4divergesinthemajorC-terminalsiteandthusNAP4is

onlylowlymodified.NAP3divergesinbothsitesandaccord-

ingly,itisnotmodified.Thus,wehaveshownacorrelation

betweenthepresenceofthetwopreviouslyidentifiedpolyglu-

tamylationsitesandtheextentofmodification.Inadditionto

thesetwosites,allNAPspossessacentraldomainwhichisrich

inglutamates(supplementalFig.S2A).Thisdomaindoesnot

seemtobetargetedbythepolyglutamylation,asNAP3isnot

modifiedalthoughithasthemostextendedglutamate-rich

centraldomain(Fig.5A).Thefactthatthisdomainisnotmod-

ified,althoughitislocatedattheoutersurfaceoftheprotein

accordingtothestructureofNAP1(24),suggeststhatthepres-

enceofaglutamate-richsequenceisnottheonlyprerequisite

foritspolyglutamylation.

WethenproducedsixchimerasoftheNAP1,2,and4pro-

teinsbyswappingtheirC-terminaltails(Fig.5A)andtested

theirabilitytobemodifiedbyTTLL4_C639invitro(Fig.5B)or

byendogenouspolyglutamylaseactivityinHeLacells(Fig.5C).

Chimerasthatpossessthenon-acidicC-terminaltailofNAP4

(NAP1_4andNAP2_4),werepoorlypolyglutamylatedbothin

vitroandinvivo,ingoodagreementwiththelackofthemajor

polyglutamylationsite.Ontheotherhand,chimerasthatbear

thehighlyacidictailofNAP2(NAP1_2andNAP4_2)are,as

NAP2,stronglymodified.Concerningthechimerasthathavethe

highlyacidictailofNAP1(NAP2_1andNAP4_1),NAP2_1is

modifiedtothesameextentasNAP1butNAP4_1islessmodified

FIGURE3.Identificationofthepolyglutamylaseactivityco-purifiedwiththe

GT335-reactiveproteins.Thespecificityofpolyclonalanti-TTLL4andanti-

TTLL5wasdemonstratedonextractsfromHeLacellsoverexpressingthediffer-

entTTLLpolyglutamylasesinfusionwithEYFP(A).Theseantibodieswerethen

usedtoimmunodepletetheGT335affinity-purifiedfraction(B).Asacontrol,

depletionwasalsoperformedwithrabbitIgG.Thedepletedfractionswereincu-

batedwith[

3

H]glutamatefor2h,runonanSDS-PAGEandstainedwithCoomas-

sieBlue.[

3

H]Glutamateincorporationwasvisualizedbyautoradiography.Only

thedepletionwithanti-TTLL4antibodyreducedthepolyglutamylaseactivityin

theGT335affinity-purifiedfraction.Molecularmassmarkersareindicated.

FIGURE4.Invivopolyglutamylationofselectedputativesubstrates.Thepreviouslytestedsubstratesofpolyglutamylation(Fig.2),aswellasnucleolin

whichwasnottestedinvitrobecauseitwashardtoproduceinbacteria,wereco-transfectedintoHeLacellswithanactiveorinactive(ATPase-dead)version

ofTTLL4_C639infusionwithEYFP.After24hoftransfection,thecellswerelysedinLaemmlibuffer,runonSDS-PAGE,transferredontonitrocelluloseand

probedwithanti-GFPantibodytochecktheexpressionleveloftheoverexpressedproteins(upperpanel)andwithGT335antibodytovisualizetheextentof

polyglutamylationofthesubstrates(lowerpanel).Orangearrowspointtothedifferentoverexpressedsubstratesvisualizedwithanti-GFPantibody.Inthelower

panel,greenarrowsindicatethesubstratesthathavebeenpolyglutamylatedinvivo,whileredarrowspointtoproteinsthatwerenotmodified.Ingeneral,we

consideredasubstrateasbeingmodified,when:(i)abandofthesizeoftheprotein(ascomparedwiththeanti-GFPsignal)isrecognizedbyGT335,and(ii)its

GT335reactivityincreasesuponco-expressionofactiveTTLL4_C639,and(iii)thisbanddoesnotcorrespondtoendogenousGT335-reactiveproteins(compare

withcellsnotexpressingthegivensubstrate).Notethatcellsco-overexpressingB23andactiveTTLL4_C639weredying,explainingthedecreasedoverall

GT335reactivityinthecorrespondinglane.Molecularmassmarkersareindicated.

NewSubstratesofPolyglutamylation

3920JOURNALOFBIOLOGICALCHEMISTRYVOLUME283?NUMBER7?FEBRUARY15,2008

atInstBiophys,CAS,onOctober17,2012

www.jbc.org

Downloadedfrom

thanonewouldexpectaccordingtothepresenceofthetailof

NAP1.Thisagainsuggeststhatother,yetunknowndeterminants

ofpolyglutamylationcontributetothemodification.

Tofurtherdemonstratethatthepresenceofaglutamate-rich

stretchisnottheonlyprerequisiteforaproteintobecome

polyglutamylated,weanalyzeddifferentmembersofthe

nucleophosmin/nucleoplasminfamily.NucleophosminB23

hastwoputativeacidicpolyglutamylationsites(supplemental

Fig.S2B).NPN2,anoocyte-specifichomologueofB23,ismore

acidicinthefirstsitebutlessinthesecond(supplementalFig.

S2B).Although,takentogether,thetotalnumberofglutamate

residuesinthetwopotentialpolyglutamylationsitesissimilar,

NPN2ismodifiedtoalowerextentthannucleophosminB23by

TTLL4_C639(Fig.6).Thissuggeststhatthesecondsitecon-

tributesmoretothedegreeofpolyglutamylationthanthefirst

one.Consistently,NPN3,whichcompletelylacksthesecond

site,ispoorlymodifiedbyTTLL4_C639(Fig.6).Again,these

resultsrevealthatnotallglutamate-richstretchespresentin

proteinsareequallysubjectedtopolyglutamylation.

WefurtheranalyzedthehighlyhomologousproteinsEB1and

EB3.Althoughbothproteinscarryaglutamate-richCterminus

(supplementalFig.S2C),onlyEB1

wasmodifiedbyTTLL4_C639in

vitro(Fig.6).OtherTTLLenzymes

thatareactiveonEB1(Fig.2B)were

inactiveonEB3aswell(notshown).

Finally,wetestedtheprotein

HMG-B1,whichhasnotbeeniden-

tifiedasapotentialsubstrate,but

hasanextendedglutamate-richC

terminus(supplementalFig.S2D).

HMG-B1wasalmostnotmodified

intheinvitroassaywithTTLL4_

C639(Fig.6).

Takentogether,theseobserva-

tionsshowthatthepresenceofglu-

tamate-richsequencescanbeapre-

requisite,butisnotsufficientby

itselfforaproteintobecomeatar-

getofpolyglutamylation,suggesting

thatotherfeaturesarerequired.

DISCUSSION

Polyglutamylationwasinitially

discoveredonbrainH9251-tubulinand

subsequentlyalsoobservedonH9252-tu-

bulin(1,5,6).Itwasconsideredasa

tubulin-specificmodificationuntil

itwasdemonstratedtotargetalso

NAP1andNAP2(7).Inthepresent

study,weshowthatpolyglutamyla-

tionisanevenmoregeneralpost-

translationalmodification.

NewSubstratesforPolyglutamyl-

ation—Usingtheaffinityofpolyglu-

tamylatedproteinsfortheGT335

antibody,wepurifiedmanypoten-

tialpolyglutamylatedproteins(sup-

plementalTableS1).Wedemonstratedthatseveralofthese

proteinsareindeedsubjectedtopolyglutamylationastheyare

modifiedbyTTLL4invitroand/orinacellularcontext.Aswe

couldnottestalltheputativesubstrates,anumberofother

targetsofpolyglutamylationmightbepresentamongthepro-

teinslistedinsupplementalTableS1.Moreover,thislistisby

nomeansexhaustiveasmanyofthesubstratescanbelowabun-

danceproteins.Itisalsopossiblethatnotallpolyglutamylated

proteinsinteractwiththeGT335antibody.Thisantibodyhas

beenraisedagainstasyntheticpeptide(EGEGEEEG)modified

bytheadditionoftwoglutamylunitsonthethirdglutamate

(16)anditmight,therefore,bebiasedtowardproteinsthatare

polyglutamylatedwithinglutamate-richsequences.

SpecificityofthePolyglutamylationReaction—Allthehere-

identifiedsubstratesofpolyglutamylationaremodifiedwithin

glutamate-richstretches,suggestingthatanacidicenviron-

mentattheacceptorsiteisgenerallynecessaryforpolyglu-

tamylationtooccur.Nevertheless,wedemonstratethatone

cannotsimplyconcludethataproteinpossessingglutamate-

richsequencesissubjectedtopolyglutamylation.Substraterec-

ognitionbypolyglutamylasesisprobablyacomplexmecha-

FIGURE5.InvitroandinvivomodificationofNAPsandchimeras.ThesequencesoftheNAPproteins(see

supplementalFig.S2A)andofdifferentchimerasinwhichtheC-terminaltailsofNAP1,NAP2andNAP4

wereexchangedareschematized(A).PreviouslyidentifiedN-terminalandC-terminalpolyglutamylationsites

areshowninredaccordingtotheirsize(domain1and3insupplementalFig.S2A).NAPsandtheirchimeras

wereexpressedinbacteria,purifiedandsubjectedtoinvitropolyglutamylationusingrecombinant

TTLL4_C639asasourceofenzyme(B).Theamountof[

3

H]glutamateincorporatedinthedifferentsubstrates

wasdeterminedbyscintillationcounting.NAPsandchimeraswerealsoclonedinfusionwithEYFPinmam-

malianexpressionvectorsandtransfectedintoHeLacells.Following24hoftransfection,theywerefirst

immunoprecipitatedandthenprobedwitheitheranti-GFPantibodytoseetheexpressionlevel,orwithGT335

antibodytodetecttheirpolyglutamylationbyendogenousenzymaticactivity(C).

NewSubstratesofPolyglutamylation

FEBRUARY15,2008?VOLUME283?NUMBER7JOURNALOFBIOLOGICALCHEMISTRY3921

atInstBiophys,CAS,onOctober17,2012

www.jbc.org

Downloadedfrom

nism.Solvingthecrystalstructureofthepolyglutamylase

enzymesandthusknowingthepropertiesofthesurfaceresi-

duesoftheenzymethatareincontactwiththesubstrate,will

certainlyfacilitateunderstandingoftheprerequisitesforthe

polyglutamylationreaction.Takentogether,wesuggestthat

proteinswithglutamate-richsequencescanbegenerallycon-

sideredaspotentialsubstratesforpolyglutamylation,although

thisneedstobetestedforeachsinglecase.

PossibleNewRolesofPolyglutamylation—Polyglutamylation

generatesacidicsidechainsofvariablelengthsonproteins.

Suchamodificationmightactasafine-regulatorofmanycel-

lularfunctions,forexamplebycontrollingtheaffinityofthe

here-identifiedtargetproteinsfortheirbindingpartners,as

earlierproposedfortubulins(reviewedinRef.25).Manyofthe

newsubstratesofpolyglutamylation(ANP32proteins,SET,

nucleophosminB23,nucleolin,andRNP-K),aswellastheNAP

proteins,shuttlebetweenthecytosolandthenucleus(22,26,

27).BecausenucleoporinandRANGAP,proteinsinvolvedin

nucleocytoplasmictransport,arealsomodified,polyglutamyla-

tioncouldplayanimportantregulatoryroleinnucleocytoplas-

micshuttling.Moreover,mostoftheseshuttlingproteinsare

histonechaperones(NAP1,NAP2,B23,SET/PHAPII,nucleo-

lin)and/orregulatorsoftranscription(ANP32proteins,SET/

PHAPII,NF45,PELP1,RNP-K),suggestingthatpolyglutamy-

lationmightalsoregulateaccesstochromatin.Finally,EB1and

RANGAPareregulatorsofMTdynamics,suggestingthatnot

onlythepolyglutamylationoftubulin,butalsoofitsassociated

proteinscouldbeimportantforthedynamicsandfunctionsof

MTs.Incyclingcells,themaximumyieldoftubulinpolyglu-

tamylationisachievedduringmitosis(18).Itisthustemptingto

speculatethat,bytargetingsimultaneouslyMTsandchroma-

tin-bindingproteins,polyglutamylationallowsforacross-talk

betweenspindledynamicsandchangesinchromatinstructure

accompanyingmitosis.

Acknowledgments—WethankS.HonnappaandM.O.Steinmetz

(PaulScherrerInstitut,Villigen,Switzerland)forprovidingessential

reagents,A.Bouaziz,J.-M.Donnay,J.C.Mazur,C.Rouveyrol,andT.

Zobel(CRBM,Montpellier,France)fortechnicalassistance,andK.

Rogowski,C.Bonne-Andrea,A.Burgess(CRBM,Montpellier,France),

andM.Magiera(IGMM,Montpellier,France)forcriticalreadingof

themanuscript.

REFERENCES

1.Edde,B.,Rossier,J.,LeCaer,J.P.,Desbruyeres,E.,Gros,F.,andDenoulet,

P.(1990)Science247,83–85

2.Janke,C.,Rogowski,K.,Wloga,D.,Regnard,C.,Kajava,A.V.,Strub,J.M.,

Temurak,N.,vanDijk,J.,Boucher,D.,vanDorsselaer,A.,Suryavanshi,S.,

Gaertig,J.,andEdde,B.(2005)Science308,1758–1762

3.Ikegami,K.,Mukai,M.,Tsuchida,J.,Heier,R.L.,Macgregor,G.R.,andSetou,

M.(2006)J.Biol.Chem.281,30707–30716

4.vanDijk,J.,Rogowski,K.,Miro,J.,Lacroix,B.,Edde,B.,andJanke,C.

(2007)Mol.Cell26,437–448

5.Audebert,S.,Desbruyeres,E.,Gruszczynski,C.,Koulakoff,A.,Gros,F.,

Denoulet,P.,andEdde,B.(1993)Mol.Biol.Cell4,615–626

6.Rudiger,M.,Plessman,U.,Kloppel,K.D.,Wehland,J.,andWeber,K.

(1992)FEBSLett.308,101–105

7.Regnard,C.,Desbruyeres,E.,Huet,J.C.,Beauvallet,C.,Pernollet,J.C.,and

Edde,B.(2000)J.Biol.Chem.275,15969–15976

8.Nogales,E.(2000)Annu.Rev.Biochem.69,277–302

9.Boucher,D.,Larcher,J.C.,Gros,F.,andDenoulet,P.(1994)Biochemistry

33,12471–12477

10.Larcher,J.C.,Boucher,D.,Lazereg,S.,Gros,F.,andDenoulet,P.(1996)

J.Biol.Chem.271,22117–22124

11.Bonnet,C.,Boucher,D.,Lazereg,S.,Pedrotti,B.,Islam,K.,Denoulet,P.,

andLarcher,J.C.(2001)J.Biol.Chem.276,12839–12848

12.Bobinnec,Y.,Khodjakov,A.,Mir,L.M.,Rieder,C.L.,Edde,B.,and

Bornens,M.(1998)J.CellBiol.143,1575–1589

13.Gagnon,C.,White,D.,Cosson,J.,Huitorel,P.,Edde,B.,Desbruyeres,E.,

Paturle-Lafanechere,L.,Multigner,L.,Job,D.,andCibert,C.(1996)J.Cell

Sci.109,1545–1553

14.Million,K.,Larcher,J.,Laoukili,J.,Bourguignon,D.,Marano,F.,andTour-

nier,F.(1999)J.CellSci.112,4357–4366

15.Ikegami,K.,Heier,R.L.,Taruishi,M.,Takagi,H.,Mukai,M.,Shimma,S.,

Taira,S.,Hatanaka,K.,Morone,N.,Yao,I.,Campbell,P.K.,Yuasa,S.,

Janke,C.,Macgregor,G.R.,andSetou,M.(2007)Proc.Natl.Acad.Sci.

U.S.A.104,3213–3218

16.Wolff,A.,deNechaud,B.,Chillet,D.,Mazarguil,H.,Desbruyeres,E.,

Audebert,S.,Edde,B.,Gros,F.,andDenoulet,P.(1992)Eur.J.CellBiol.59,

425–432

17.Fraering,P.C.,Ye,W.,Strub,J.M.,Dolios,G.,LaVoie,M.J.,Ostaszewski,

B.L.,vanDorsselaer,A.,Wang,R.,Selkoe,D.J.,andWolfe,M.S.(2004)

Biochemistry43,9774–9789

18.Regnard,C.,Desbruyeres,E.,Denoulet,P.,andEdde,B.(1999)J.CellSci.

112,4281–4289

19.Juhasz,P.,andBiemann,K.(1994)Proc.Natl.Acad.Sci.U.S.A.91,

4333–4337

20.Kjellstrom,S.,andJensen,O.N.(2004)Anal.Chem.76,5109–5117

21.Wilson,C.L.,Monteith,W.B.,Danell,A.S.,andBurns,C.S.(2006)J.Pept.

Sci.12,721–725

22.Santa-Coloma,T.A.(2003)Cerebellum2,310–320

23.Honnappa,S.,John,C.M.,Kostrewa,D.,Winkler,F.K.,andSteinmetz,

M.O.(2005)EMBOJ.24,261–269

24.Park,Y.J.,andLuger,K.(2006)Proc.Natl.Acad.Sci.U.S.A.103,1248–1253

25.Verhey,K.J.,andGaertig,J.(2007)CellCycle6,2152–2160

26.Borer,R.A.,Lehner,C.F.,Eppenberger,H.M.,andNigg,E.A.(1989)Cell

56,379–390

27.Michael,W.M.,Eder,P.S.,andDreyfuss,G.(1997)EMBOJ.16,

3587–3598

FIGURE6.Invitropolyglutamylationofproteinsrelatedtothenewsub-

strates.Invitropolyglutamylationassayswereperformedusingrecombinant

TTLL4_C639onproteinsfromthenucleophosmin/nucleoplasminandEB

familiesaswellasonHMG-B1(seesequencesinsupplementalFig.S2A).The

amountof[

3

H]glutamateincorporatedinthedifferentsubstrateswasdeter-

minedbyscintillationcounting.

NewSubstratesofPolyglutamylation

3922JOURNALOFBIOLOGICALCHEMISTRYVOLUME283?NUMBER7?FEBRUARY15,2008

atInstBiophys,CAS,onOctober17,2012

www.jbc.org

Downloadedfrom

献花(0)
+1
(本文系钓鱼岛的天...首藏)