配色: 字号:
2013年浙江中考数学复习专题——二次函数知识点归纳
2012-11-16 | 阅:  转:  |  分享 
  
浙江中考复习专题——二次函数知识点归纳

二次函数知识点总结:

1.二次函数的概念(是常数,)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.

2.二次函数的结构特征:

⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.

⑵是常数,是二次项系数,是一次项系数,是常数项.

二次函数的基本形式

1.二次函数基本形式:的性质:

的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 轴 时,随的增大而减小;时,随的增大而增大;时,有最大值.











2.的性质:



结论:上加下减。

总结:

的符号 开口方向 顶点坐标 对称轴 性质 向上 轴 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 轴 时,随的增大而减小;时,随的增大而增大;时,有最大值.













3.的性质:的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 X=h 时,随的增大而减小;时,随的增大而增大;时,有最大值.

4.的性质的符号 开口方向 顶点坐标 对称轴 性质 向上 X=h 时,随的增大而增大;时,随的增大而减小;时,有最小值. 向下 X=h 时,随的增大而减小;时,随的增大而增大;时,有最大值. 二次函数图象的平移

1.平移步骤:

⑴将抛物线解析式转化成顶点式,确定其顶点坐标;

⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:



2.平移规律

在原有函数的基础上“值正右移,负左移;值正上移,负下移”与的比较

请将利用配方的形式配成顶点式。请将配成。

















总结:

从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.



四、二次函数图象的画法

五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).

画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.







五、二次函数的性质

1.当,顶点坐标为.

当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.

2.当,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.



六、二次函数解析式的表示方法

1.一般式:(,,为常数,);

2.顶点式:(,,为常数,);

3.两根式:(,,是抛物线与轴两交点的横坐标).

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.



七、二次函数的图象与各项系数之间的关系

1.二次项系数中,作为二次项系数,显然.

⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;

⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.

总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.

2.一次项系数

在二次项系数确定的前提下,决定了抛物线的对称轴.

⑴在的前提下,

当时,,即抛物线的对称轴在轴左侧;

当时,,即抛物线的对称轴就是轴;

当时,,即抛物线对称轴在轴的右侧.

⑵在的前提下,结论刚好与上述相反,即

当时,,即抛物线的对称轴在轴右侧;

当时,,即抛物线的对称轴就是轴;

当时,,即抛物线对称轴在轴的左侧.

总结起来,在确定的前提下,决定了抛物线对称轴的位置.

总结:

3.常数项

⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;

⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;

⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.

总结起来,决定了抛物线与轴交点的位置.

总之,只要都确定,那么这条抛物线就是唯一确定的.

二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1.已知抛物线上三点的坐标,一般选用一般式;

2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3.已知抛物线与轴的两个交点的横坐标,一般选用两根式;

4.已知抛物线上纵坐标相同的两点,常选用顶点式.



二、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

1.关于轴对称关于轴对称后,得到的解析式是;

关于轴对称后,得到的解析式是;

2.关于轴对称

关于轴对称后,得到的解析式是;

关于轴对称后,得到的解析式是;

3.关于原点对称

关于原点对称后,得到的解析式是;

关于原点对称后,得到的解析式是;

4.关于顶点对称

关于顶点对称后,得到的解析式是;

关于顶点对称后,得到的解析式是.

5.关于点对称

关于点对称后,得到的解析式是

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.



二次函数与一元二次方程:

1.二次函数与一元二次方程的关系(二次函数与轴交点情况):

一元二次方程是二次函数当函数值时的特殊情况.

图象与轴的交点个数:

①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.

②当时,图象与轴只有一个交点;

③当时,图象与轴没有交点.

当时,图象落在轴的上方,无论为任何实数,都有;

当时,图象落在轴的下方,无论为任何实数,都有.

2抛物线的图象与轴一定相交,交点坐标为,;

3.方法总结:

⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;

⑵求二次函数的最大(小)值需要利用配方法将二次函数一般式转化为顶点式;

⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;

⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.

抛物线与轴有两个交点 二次三项式的值可正、可零、可负 一元二次方程有两个不相等实根 抛物线与轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 抛物线与轴无交点 二次三项式的值恒为正 一元二次方程无实数根. ⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

















温州中学









8









献花(0)
+1
(本文系songshu1999...首藏)