配色: 字号:
24
2013-03-23 | 阅:  转:  |  分享 
  
24.1.3弧、弦、圆心角

【知识要点】

在同圆或等圆中,相等的圆心角所对的弧,所对的弦。

在同圆或等圆中,如果两条弧相等,那么它们所对的相等,所对的也相等.

在同圆或等圆中,如果两条弦相等,那么它们所对的相等,所对的也相等

【同步训练】

一、课前预习(5分钟训练)

1.下列说法中,正确的是()

A.等弦所对的弧相等B.等弧所对的弦相等

C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等

2.如图24-1-3-1,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为()A.3∶2B.∶2C.∶D.5∶4



图24-1-3-1

3.半径为R的⊙O中,弦AB=2R,弦CD=R,若两弦的弦心距分别为OE、OF,则OE∶OF等于()

A.2∶1B.3∶2C.2∶3D.0

二、课中强化(10分钟训练)

1.一条弦把圆分成1∶3两部分,则弦所对的圆心角为_____________.

2.弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是____________.

答案:∶290°

3.如图24-1-3-2,已知以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.

(1)求证:AC=DB;

(2)如果AB=6cm,CD=4cm,求圆环的面积.

图24-1-3-2

4.如图24-1-3-3所示,AB是⊙O的弦(非直径),C、D是AB上的两点,并且AC=BD.求证:OC=OD.



图24-1-3-35.如图24-1-3-4,⊙O的直径AB和弦CD相交于点E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD的长.



图24-1-3-46.如图24-1-3-5,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,我们知道EC和DF相等.若直线EF平移到与直径AB相交于P(P不与A、B重合),在其他条件不变的情况下,结论是否依然成立?为什么?当EF∥AB时,情况又怎样?

图24-1-3-5三、课后巩固(30分钟训练)

1.如图24-1-3-6所示,AB、CD是⊙O的两条直径,弦BE=BD,则弧AC与弧BE是否相等?为什么?



图24-1-3-62.如图24-1-3-7所示,AB是⊙O的弦,C、D为弦AB上两点,且OC=OD,延长OC、OD,分别交⊙O于点E、F.试证:弧AE=弧BF.



图24-1-3-7

3.如图24-1-3-8,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?



图24-1-3-8

4.为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,要求设计的方案由圆和三角形组成(圆和三角形个数不限),并且使整个图案成对称图形,请你画出你的设计方案图(至少两种).

5.如图24-1-3-9,已知在⊙O中,AD是⊙O的直径,BC是弦,AD⊥BC,E为垂足,由这些条件你能推出哪些结论?(要求:不添加辅助线,不添加字母,不写推理过程,只写出6条以上的结论)



图24-1-3-9

6.如图24-1-3-10,AB为⊙O的弦,P是AB上一点,AB=10cm,OP=5cm,PA=4cm,求⊙O的半径.



图24-1-3-10

7.⊙O的直径为50cm,弦AB∥CD,且AB=40cm,CD=48cm,求弦AB和CD之间的距离.























3

--







献花(0)
+1
(本文系长江一中首藏)