配色: 字号:
巧数图形
2013-05-27 | 阅:  转:  |  分享 
  
小学三年级奥数

数出某种图形的个数是一类有趣的图形问题。由于图形千变万化,错综复杂,所以要想准确地数出其中包含的某种图形的个数,还真需要动点脑筋。要想有条理、不重复、不遗漏地数出所要图形的个数,最常用的方法就是分类数。

例1数出下图中共有多少条线段。



分析与解:我们可以按照线段的左端点的位置分为A,B,C三类。如下图所示,以A为左端点的线段有3条,以B为左端点的线段有2条,以C为左端点的线段有1条。所以共有3+2+1=6(条)。



我们也可以按照一条线段是由几条小线段构成的来分类。如下图所示,AB,BC,CD是最基本的小线段,由一条线段构成的线段有3条,由两条小线段构成的线段有2条,由三条小线段构成的线段有1条。



所以,共有3+2+1=6(条)。

由例1看出,数图形的分类方法可以不同,关键是分类要科学,所分的类型要包含所有的情况,并且相互不重叠,这样才能做到不重复、不遗漏。

例2下列各图形中,三角形的个数各是多少?





图(1)中有三角形1+2=3(个)。

图(2)中有三角形1+2+3=6(个)。

图(3)中有三角形1+2+3+4=10(个)。

图(4)中有三角形1+2+3+4+5=15(个)。

图(5)中有三角形

1+2+3+4+5+6=21(个)。

例3下列图形中各有多少个三角形?





以AB为底边的三角形ABC中,有三角形

1+2+3=6(个)。

以ED为底边的三角形CDE中,有三角形

1+2+3=6(个)。

所以共有三角形6+6=12(个)。

这是以底边为标准来分类计算的方法。它的好处是可以借助“求底边线段数”而得出三角形的个数。我们也可以以小块个数作为分类的标准来计算:图中共有6个小块。

由1个小块组成的三角形有3个;

由2个小块组成的三角形有5个;

由3个小块组成的三角形有1个;

由4个小块组成的三角形有2个;

由6个小块组成的三角形有1个。

所以,共有三角形

3+5+1+2+1=12(个)。

(2)如果以底边来分类计算,各种情况较复杂,因此我们采用以“小块个数”为分类标准来计算:

由1个小块组成的三角形有4个;

由2个小块组成的三角形有6个;

由3个小块组成的三角形有2个;

由4个小块组成的三角形有2个;

由6个小块组成的三角形有1个。

所以,共有三角形

4+6+2+2+1=15(个)。

例4右图中有多少个三角形?



解:假设每一个最小三角

形的边长为1。按边的长度来分类计算三角形的个数。

边长为1的三角形,从上到下一层一层地数,有

1+3+5+7=16(个);

边长为2的三角形(注意,有一个尖朝下的三角形)有1+2+3+1=7(个);

边长为3的三角形有1+2=3(个);

边长为4的三角形有1个。

所以,共有三角形

16+7+3+1=27(个)。

例5数出下页左上图中锐角的个数。

分析与解:在图中加一条虚线,如下页右上图。容



易发现,所要数的每个角都对应一个三角形(这个角与它所截的虚线段构成的三角形),这就回到例2,从而回到例1的问题,即所求锐角的个数,就等于从O点引出的6条射线将虚线截得的线段的条数。虚线上线段的条数有

1+2+3+4+5=15(条)。

所以图中共有15个锐角。

例6在下图中,包含“”号的长方形和正方形共有多少个?



解:按包含的小块分类计数。

包含1小块的有1个;包含2小块的有4个;

包含3小块的有4个;包含4小块的有7个;

包含5小块的有2个;包含6小块的有6个;

包含8小块的有4个;包含9小块的有3个;

包含10小块的有2个;包含12小块的有4个;

包含15小块的有2个。

所以共有

1+4+4+7+2+6+4+3+2+4+2=39(个)。



1.下列图形中各有多少条线段?



2.下列图形中各有多少个三角形?



3.下列图形中,各有多少个小于180°的角?



4.下列图形中各有多少个三角形?



5.下列图形中各有多少个长方形?



6.下列图形中,包含“”号的三角形或长方形各有多少?



7.下列图形中,不含“”号的三角形或长方形各有几个?



答案与提示

1.(1)28;(2)210。2.(1)36;(2)8。

3.(1)10;(2)15。

4.(1)9个;(2)16个;(3)21个。

5.(1)60个;(2)66个。

6.(1)12个;(2)32个。

7.(1)21个;(2)62个。

提示:4~7题均采用按所含小块的个数分类(见下表),表中空缺的为0。







知识要点:同学们,在数图形时,一定要按顺序仔细数,如果给图形编个号,这样数起来就更方便,不会重复,也不会遗漏。



?????????

这样想:数之前,先将每个图形编号,编好后,先数单个三角形1、4、3号,共3个。再数两个图形合成的三角形,1+2号,2+3号,3+4号,4+1号,按顺序两个两个合并,共4个三角形。最后数由1+2+3+4号组成的大三角形,有1个。所以3+4+1=8,共8个三角形。

{例2}数一数图中有西红柿的正方形有几个?

??????????????

这样想:先数单个正方形,有西红柿的正方形有1个。再数四个正方形合成的大正方形,有西红柿的大正方形有4个。最后数由9个小正方形组成的大正方形,有1个。所以1+4+1=6,有西红柿的正方形共6个。



{例3}数一数图中共有几个正方形????????

????????



这样想:先数单个正方形1、2、3、4、5、6号,共6个。再数四个正方形合成的大正方形,1+2+4+5号,2+3+5+6号,按顺序四个四个合并,共2个正方形。所以6+2=8,共8个正方形。

{例4}数一数图中共有几个正方形?

???????????????

这样想:先数小正方形,共4个。再数稍大的正方形,共5个。最后数大正方形,有1个。4+5+1=10,所以图中共有10个正方形。

{例5}数一数图中共有几个圆形?

????????????

这样想:先数小圆,共5个。再数大圆有1个。图中共有6个圆。

?



?知识要点:数图形时我们要按照一定的顺序、有条理、有计划、有方法的去解答题目,可由单个图形数起,再数两个图形合成的图形,依此规律一个一个往下数。

?1}

??????????????????????D

?????????AB

???????????C

这样想:数之前,先将每条线段写上字母,写好后,先数AB这条线段上有4条小线段,再数两条合并成的有3条,再数三条合并成的有2条,最后数四条合并成的有1条,4+3+2+1=10条。同样CD这条线段上也有10条,和起来一共有20条。

{例2}数一数图中共有几个小长方体?

???????????????

这样想:从上面先数,第一排有2个小长方体,再数第二排有4个小长方体,最后数第三排有6个小长方体,所以2+4+6=12,有12个小长方体。

{例3}数一数图中共有几个三角形?

???????????

这样想:数之前,先将每个图形编号,编好后,先数单个三角形共10个。再数两个图形合成的三角形,按顺序两个两个合并,共8个三角形。所以10+8=18,共18个三角形。

{例4}数一数图中共有几个三角形?

?????????????

这样想:先数单个三角形共4个。再数两个三角形合成的三角形,按顺序两个两个合并,共2个三角形。最后数由3个小三角形组成的大三角形,有1个。所以4+2+1=7,共7个三角形。

{例5}数一数图中共有几个三角形?

???????????

这样想:先数每个角上三角形共5个,再数由两个不靠着的角和中间五边形合成的三角形,按顺序数共3个三角形,所以5+3=8,共8个三角形。

?





????????











第一讲巧数图形

数出某种图形的个数是一类有趣的图形问题。由于图形千变万化,错综复杂,所以要想准确地数出其中包含的某种图形的个数,还真需要动点脑筋。要想有条理、不重复、不遗漏地数出所要图形的个数,最常用的方法就是分类数。

例1数出下图中共有多少条线段。







例2下列各图形中,三角形的个数各是多少?







例3下列图形中各有多少个三角形?









例5数出下页左上图中锐角的个数。









例6在下图中,包含“”号的长方形和正方形共有多少个?







1.下列图形中各有多少条线段?







2.下列图形中各有多少个三角形?





3.下列图形中,各有多少个小于180°的角?





4.下列图形中各有多少个三角形?





5.下列图形中各有多少个长方形?





6.下列图形中,包含“”号的三角形或长方形各有多少?





7.下列图形中,不含“”号的三角形或长方形各有几个?









































































献花(0)
+1
(本文系非桃李首藏)