配色: 字号:
4
2013-11-29 | 阅:  转:  |  分享 
  
Tutorial:4of9

---SelectaTutorialPage---

GoReset

CapacitanceandCharge

WesawintheprevioustutorialsthataCapacitorconsistsoftwoparallelconductiveplates(usuallyametal)whichare

preventedfromtouchingeachother(separated)byaninsulatingmaterialcalledthe"dielectric".Wealsosawthatwhena

voltageisappliedtotheseplatesanelectricalcurrentflowscharginguponeplatewithapositivechargewithrespectto

thesupplyvoltageandtheotherplatewithanequalandoppositenegativecharge.

Then,acapacitorhastheabilityofbeingabletostoreanelectricalchargeQ(unitsinCoulombs)ofelectrons.Whena

capacitorisfullychargedthereisapotentialdifference,p.d.betweenitsplates,andthelargertheareaoftheplates

and/orthesmallerthedistancebetweenthem(knownasseparation)thegreaterwillbethechargethatthecapacitorcan

holdandthegreaterwillbeitsCapacitance.

TheCapacitorsabilitytostorethiselectricalcharge(Q)betweenitsplatesisproportionaltotheappliedvoltage,Vfora

capacitorofknowncapacitanceinFarads.CapacitanceCisalwayspositiveandnevernegative.Thegreatertheapplied

voltagethegreaterwillbethechargestoredontheplatesofthecapacitor.Likewise,thesmallertheappliedvoltagethe

smallerthecharge.Therefore,theactualchargeQontheplatesofthecapacitorandcanbecalculatedas:

ChargeonaCapacitor

Where:Q(Charge,inCoulombs)=C(Capacitance,inFarads)xV(Voltage,inVolts)

Itissometimeseasiertorememberthisrelationshipbyusingpictures.HerethethreequantitiesofQ,CandVhave

beensuperimposedintoatrianglegivingchargeatthetopwithcapacitanceandvoltageatthebottom.Thisarrangement

representstheactualpositionofeachquantityintheCapacitorChargeformulas.

andtransposingtheaboveequationgivesusthefollowingcombinationsofthesameequation:

Unitsof:QmeasuredinCoulombs,VinvoltsandCinFarads.

ThenfromabovewecandefinetheunitofCapacitanceasbeingaconstantofproportionalitybeingequaltothe

coulomb/voltwhichisalsocalledaFarad,unitF.Ascapacitancerepresentsthecapacitorsability(capacity)tostorean

electricalchargeonitsplateswecandefineoneFaradasthe"capacitanceofacapacitorwhichrequiresachargeofone

coulombtoestablishapotentialdifferenceofonevoltbetweenitsplates"asfirstlydescribedbyMichaelFaraday.Sothe

largerthecapacitance,thehigheristheamountofchargestoredonacapacitorforthesameamountofvoltage.

TheabilityofacapacitortostoreachargeonitsconductiveplatesgivesititsCapacitancevalue.Capacitancecanalso

bedeterminedfromthedimensionsorarea,Aoftheplatesandthepropertiesofthedielectricmaterialbetweenthe

plates.Ameasureofthedielectricmaterialisgivenbythepermittivity,(ε),orthedielectricconstant.Soanotherwayof

expressingthecapacitanceofacapacitoris;

withAirasitsdielectric

withaSolidasitsdielectric

whereAistheareaoftheplatesinsquaremetres,mwiththelargerthearea,themorechargethecapacitorcan

store.disthedistanceorseparationbetweenthetwoplates.Thesmalleristhisdistance,thehigheristheabilityofthe

platestostorecharge,sincethe-vechargeonthe-Qchargedplatehasagreatereffectonthe+Qchargedplate,

resultinginmoreelectronsbeingrepelledoffofthe+Qchargedplate,andthusincreasingtheoverall

charge.ε(epsilon)isthevalueofthepermittivityforairwhichis8.84x10F/m,andεisthepermittivityofthe

dielectricmediumusedbetweenthetwoplates.

ParallelPlateCapacitor

WehavesaidpreviouslythatthecapacitanceofaparallelplatecapacitorisproportionaltothesurfaceareaAand

inverselyproportionaltothedistance,dbetweenthetwoplatesandthisistruefordielectricmediumofair.However,the

capacitancevalueofacapacitorcanbeincreasedbyinsertingasolidmediuminbetweentheconductiveplateswhich

hasadielectricconstantgreaterthanthatofair.

2

0-12r

Typicalvaluesofepsilonεforvariouscommonlyuseddielectricmaterialsare:Air=1.0,Paper=2.5-3.5,Glass=3

-10,Mica=5-7etc.

Thefactorbywhichthedielectricmaterial,orinsulator,increasesthecapacitanceofthecapacitorcomparedtoairis

knownastheDielectricConstant,(k)."k"istheratioofthepermittivityofthedielectricmediumbeingusedtothe

permittivityoffreespaceotherwiseknownasavacuum.Therefore,allthecapacitancevaluesarerelatedtothe

permittivityofvacuum.Adielectricmaterialwithahighdielectricconstantisabetterinsulatorthanadielectricmaterial

withalowerdielectricconstant.Dielectricconstantisadimensionlessquantitysinceitisrelativetofreespace.

ExampleNo1

Aparallelplatecapacitorconsistsoftwoplateswithatotalsurfaceareaof100cm.Whatwillbethecapacitanceinpico-

Farads,(pF)ofthecapacitoriftheplateseparationis0.2cm,andthedielectricmediumusedisair.

thenthevalueofthecapacitoris44pF.

Charging&DischargingofaCapacitor

Considerthefollowingcircuit.

Assumethatthecapacitorisfullydischargedandtheswitchconnectedtothecapacitorhasjustbeenmovedto

positionA.Thevoltageacrossthe100ufcapacitoriszeroatthispointandachargingcurrent(i)beginstoflowcharging

upthecapacitoruntilthevoltageacrosstheplatesisequaltothe12vsupplyvoltage.Thechargingcurrentstopsflowing

andthecapacitorissaidtobe"fully-charged".

Then,Vc=Vs=12v.

Oncethecapacitoris"fully-charged"intheoryitwillmaintainitsstateofvoltagechargeevenwhenthesupplyvoltagehas

beendisconnectedastheyactasasortoftemporarystoragedevice.However,whilethismaybetrueofan"ideal"

capacitor,arealcapacitorwillslowlydischargeitselfoveralongperiodoftimeduetotheinternalleakagecurrents

flowingthroughthedielectric.Thisisanimportantpointtorememberaslargevaluecapacitorsconnectedacrosshigh

voltagesuppliescanstillmaintainasignificantamountofchargeevenwhenthesupplyvoltageisswitched"OFF".

Iftheswitchwasdisconnectedatthispoint,thecapacitorwouldmaintainitschargeindefinitely,butduetointernal

leakagecurrentsflowingacrossitsdielectricthecapacitorwouldveryslowlybegintodischargeitselfastheelectrons

2

passedthroughthedielectric.Thetimetakenforthecapacitortodischargedownto37%ofitssupplyvoltageisknown

asitsTimeConstant.

IftheswitchisnowmovedfrompositionAtopositionB,thefullychargedcapacitorwouldstarttodischargethroughthe

lampnowconnectedacrossit,illuminatingthelampuntilthecapacitorwasfullydischargedastheelementofthelamp

hasaresistivevalue.Thebrightnessofthelampandthedurationofilluminationwouldultimatelydependuponthe

capacitancevalueofthecapacitorandtheresistanceofthelamp(t=CxR).Thelargerthevalueofthecapacitorthe

brighterandlongerwillbetheilluminationofthelampasitcouldstoremorecharge.

ExampleNo2

Calculatethechargeintheabovecapacitorcircuit.

thenthechargeonthecapacitoris1.2millicoulombs.

CurrentthroughaCapacitor

Thecurrentthatflowsthroughacapacitorisdirectlyrelatedtothechargeontheplatesascurrentistherateofflowof

chargewithrespecttotime.Asthecapacitorsabilitytostorecharge(Q)betweenitsplatesisproportionaltotheapplied

voltage(V),therelationshipbetweenthecurrentandthevoltagethatisappliedtotheplatesofacapacitorbecomes:

Current-Voltage(I-V)Relationship

Asthevoltageacrosstheplatesincreases(ordecreases)overtime,thecurrentflowingthroughthecapacitance

deposits(orremoves)chargefromitsplateswiththeamountofchargebeingproportionaltotheappliedvoltage.Then

boththecurrentandvoltageappliedtoacapacitancearefunctionsoftimeandaredenotedbythe

symbols,iandvHowever,fromtheaboveequationwecanalsoseethatifthevoltageremainsconstant,thecharge

willbecomeconstantandthereforethecurrentwillbezero!.Inotherwords,nochangeinvoltage,nomovementof

chargeandnoflowofcurrent.Thisiswhyacapacitorappearsto"block"currentflowwhenconnectedtoasteadystate

DCvoltage.

TheFarad

WenowknowthattheabilityofacapacitortostoreachargegivesititscapacitancevalueC,whichhastheunitof

theFarad,F.Butthefaradisanextremelylargeunitonitsownmakingitimpracticaltouse,sosubmultiple''sorfractions

ofthestandardFaradunitareusedinstead.TogetanideaofhowbigaFaradreallyis,thesurfaceareaoftheplates

requiredtoproduceacapacitorwithavalueofoneFaradwithareasonableplateseparationofjust1mmoperatingina

vacuumandrearrangingtheequationforcapacitanceabovewouldbe:

A=Cd÷8.85pF/m=(1x0.001)÷8.85x10=112,994,350m

or113millionmwhichwouldbeequivalenttoaplateofmorethan10kilometresx10kilometressquare.

CapacitorswhichhaveavalueofoneFaradormoretendtohaveasoliddielectricandas"OneFarad"issuchalarge

unittouse,prefixesareusedinsteadinelectronicformulaswithcapacitorvaluesgiveninmicro-Farads(μF),nano-

Farads(nF)andthepico-Farads(pF).Forexample:

Sub-unitsoftheFarad

(t)(t)

-122

2

Convertthefollowingcapacitancevaluesfroma)22nFtouF,b)0.2uFtonF,c)550pFtouF.

a)22nF=0.022uF

b)0.2uF=200nF

c)550pF=0.00055uF

WhileoneFaradisalargevalueonitsown,capacitorsarenowcommonlyavailablewithcapacitancevaluesofmany

hundredsofFaradsandhavenamestoreflectthisof"Supercapacitors"or"Ultracapacitors".Thesecapacitorsare

electrochemicalenergystoragedeviceswhichutiliseahighsurfaceareaoftheircarbondielectrictodelivermuchhigher

energydensitiesthanconventionalcapacitorsandascapacitanceisproportionaltothesurfaceareaofthecarbon,the

thickerthecarbonthemorecapacitanceithas.

Lowvoltage(fromabout3.5Vto5.5V)supercapacitorsarecapableofstoringlargeamountsofchargeduetotheirhigh

capacitancevaluesastheenergystoredinacapacitorisequalto1/2(CxV).Lowvoltagesupercapacitorsare

commonlyusedinportablehandhelddevicestoreplacelarge,expensiveandheavylithiumtypebatteriesastheygive

battery-likestorageanddischargecharacteristicsmakingthemidealforuseasanalternativepowersourceorfor

memorybackup.Supercapacitorsusedinhandhelddevicesareusuallychargedusingsolarcellsfittedtothedevice.

Ultracapacitorarebeingdevelopedforuseinhybridelectriccarsandalternativeenergyapplicationstoreplacelarge

conventionalbatteriesaswellasDCsmoothingapplicationsinvehicleaudioandvideosystems.Ultracapacitorscanbe

rechargedquicklyandhaveveryhighenergystoragedensitiesmakingthemidealforuseinelectricvehicleapplications.

EnergyinaCapacitor

Whenacapacitorchargesupfromthepowersupplyconnectedtoit,anelectrostaticfieldisestablishedwhichstores

energyinthecapacitor.TheamountofenergyinJoulesthatisstoredinthiselectrostaticfieldisequaltotheenergythe

voltagesupplyexertstomaintainthechargeontheplatesofthecapacitorandisgivenbytheformula:

sotheenergystoredinthe100uFcapacitorcircuitaboveiscalculatedas:

2

ThenexttutorialinoursectionaboutCapacitors,welookatCapacitorColourCodesandseethedifferentwaysthat

thecapacitanceandvoltagevaluesofthecapacitoraremarkedontoitsbody.



献花(0)
+1
(本文系Transistor2...首藏)