配色: 字号:
Image segmentation by spatially adaptive color and texture features
2014-01-08 | 阅:  转:  |  分享 
  
IMAGESEGMENTATIONBYSPATIALLYADAPTIVECOLORANDTEXTUREFEATURES

JunqingChen,ThrasyvoulosN.Pappas

ElectricalandComputerEngineeringDept.

NorthwesternUniversity,Evanston,IL60208

AleksandraMojsilovic,BerniceE.Rogowitz

IBMT.J.WatsonResearchCenter

Hawthorn,NY10532

ABSTRACT

Wepresentanimagesegmentationalgorithmthatisbasedon

spatiallyadaptivecolorandtexturefeatures.Theproposedal-

gorithmisbasedonapreviouslyproposedalgorithmbutintro-

ducesanumberofnewelements.Weuseanewsetoftexture

featuresbasedonasteerablefilterdecomposition.Thesteerable

filterscombinedwithanewspatialtexturesegmentationscheme

provideafinerandmorerobustsegmentationintotextureclasses.

Theproposedalgorithmincludesanelaborateborderestimation

procedure,whichextendstheideaofPappas’adaptiveclustering

segmentationalgorithmtocolortexture.Theperformanceofthe

proposedalgorithmisdemonstratedinthedomainofphotographic

images,includinglowresolutioncompressedimages.

1.INTRODUCTION

ThefieldofContent-BasedImageRetrieval(CBIR)hasmadesig-

nificantadvancesduringthepastdecade[1,2].ManyCBIRsys-

temsrelyonscenesegmentation.However,imagesegmentation

remainsoneofthemostchallengingproblems.Whilesignificant

progresshasbeenmadeintexturesegmentation(e.g.,[3–6])and

colorsegmentation(e.g.,[7–9])separately,thecombinedspatial

textureandcolorsegmentationproblemremainsquitechalleng-

ing[10,11].

In[12],wepresentedanimagesegmentationalgorithmthatis

basedonspatiallyadaptivecolorandspatialtexturefeatures.The

perceptualaspectsofthisalgorithmwerefurtherdevelopedin[13],

includingtheuseofasteerablefilterdecompositioninsteadofthe

discretewavelettransform.Aswesawin[12],theresolutionof

thespatialtexturesegmentationislimitedbecauseitisdefinedon

afiniteneighborhood,whilecolorsegmentationcanprovideaccu-

rateandpreciseedgelocalization.Inthispaper,weimproveand

refinethealgorithmpresentedin[12,13].Themainstructureof

thealgorithmremainsthesame,i.e.,thecolorandspatialtexture

featuresarefirstdevelopedindependently,andthencombinedto

obtainanoverallsegmentation.Whilethecolorfeaturesalsore-

mainthesame,weuseanewsetofspatialtexturefeaturesbased

onthesteerablefilterdecomposition.Thesteerablefilterscom-

binedwithanewtexturesegmentationschemeprovideafinerand

morerobustsegmentationintodifferenttextureclasses(smooth,

horizontal,vertical,a0a2a1a4a3a4a5,a6a1a4a3a7a5,andcomplex).Akeytothe

proposedmethodistheuseofthe“max”operatortoaccountfor

thefactthatthereissignificantoverlapbetweenthefiltersthatcor-

respondtothedifferentorientations.Thisavoidsmisclassification

problemsassociatedwiththepreviouslyproposedtextureextrac-

tiontechnique[13].The“max”operationisfollowedbyame-

ThismaterialisbaseduponworksupportedbytheNationalScience

Foundation(NSF)underGrantNo.CCR-0209006.Anyopinions,findings

andconclusionsorrecomendationsexpressedinthismaterialarethoseof

theauthorsanddonotnecessarilyreflecttheviewsoftheNSF.

diantypeofoperationwhich,aswepointedoutin[12],responds

totexturewithinuniformregionsandsuppressestexturesassoci-

atedwithtransitionsbetweenregions.Finally,weuseanelaborate

borderrefinementprocedure[13],whichextendstheideaofthe

adaptiveclusteringalgorithm[7]tocolortexture,andresultsin

accurateborderlocations.

Thefocusofthisworkisinthedomainofphotographicim-

ages.Therangeoftopicsisessentiallyunlimited(people,nature,

buildings,textures,indoorscenes,etc.).Animportantassumption

isthattheimagesareofrelativelylowresolution(e.g.,a8a10a9a11a9a13a12a14a8a15a9a11a9)

andoccasionallydegradedorcompressed.Theimagesegmenta-

tionresultscanbeusedtoderiveregion-widecolorandtexture

features.Thesecanbecombinedwithothersegmentinforma-

tion,suchaslocation,boundaryshape,andsize,inordertoex-

tractsemanticinformation.Akeytothesuccessoftheproposed

approachistherecognitionofthefactthatitisnotnecessarytoob-

tainacompleteunderstandingofagivenimage:Inmanycases,the

identificationofafewkeysegments(suchas“sky,”“mountains,”

“people,”etc.)maybeenoughtoclassifytheimageinagiven

category[14].Inaddition,regionsthatareclassifiedascomplex

or“noneoftheabove,”canalsoplayasignificantroleinscene

analysis.

InSection2,wereviewthecolorfeatureextraction.Ournew

approachforspatialtexturefeatureextractionispresentedinSec-

tion3.Section4discussestheproposedalgorithmforcombining

thetextureandcolorfeaturestoobtainanoverallsegmentation.

2.COLORFEATUREEXTRACTION

Inthissection,wereviewthecolorfeatureextractionalgorithm

thatwasusedin[12].Themainideaistousespatiallyadap-

tivedominantcolorsasfeaturesthatincorporateknowledgeofhu-

manperception[12].Thecolorfeaturerepresentationconsistsof

alimitednumberoflocallyadapteddominantcolorsandthecor-

respondingpercentageofoccurrenceofeachcolorwithinacertain

neighborhood:a16

a17a15a18a20a19a22a21a24a23a25a21a24a26a28a27a11a29a30a11a31a33a32a35a34a36a18a20a37a39a38a24a21a20a40a25a38a41a31a42a21a24a43a44a32a46a45a10a21a39a47a39a47a39a47a48a21a50a49a51a21a52a40a4a38a54a53a56a55

a9

a21a57a45a59a58a61a60(1)

whereeachofthedominantcolors,a37a38,isathreedimensionalvec-

torinLabspace,anda40a4a38arethecorrespondingpercentages.a26a28a27a11a29a30

representstheneighborhoodaroundthepixelatlocation(x,y).a49

isthetotalnumberofcolorsintheneighborhooda26a27a11a29a30.

Thespatiallyadaptivedominantcolorsareobtainedbythe

adaptiveclusteringalgorithm(ACA)proposedin[7]andextended

tocolorin[8].TheACAisaniterativealgorithmthatusesspatial

constraintsintheformofMarkovrandomfields(MRF).Theal-

gorithmstartswithglobalestimates(obtainedusingthea62-means

algorithm)andslowlyadaptstothelocalcharacteristicsofeach

region.Wefoundthatagoodchoiceforthenumberof(locally

adapted)dominantcolorsisa49a63a32a65a64.

Fig.1.One-LevelSteerableFilterDecomposition

NotethattheACAwasdevelopedforimagesofobjectswith

smoothsurfacesandnotexture.Intexturedregions,theACAover-

segmentstheimage,butthesegmentsdocorrespondtoactualtex-

turedetails.Thus,someothermechanismisneededtoconsolidate

thesesmallsegmentsintoregions.Suchamechanismisprovided

bythe“localhistograms”wedescribenextandthetextureclasses

wepresentinthenextsection.

ColorFeatures:TheACAprovidesasegmentationoftheimage

intoclasses.IntheexampleofFig.5(b),eachpixelispaintedwith

theaveragecolorofthepixelsinitsneighborhoodthatbelongto

thesameclass[7].Assumingthatthedominantcolorsareslowly

varying,wecanassumethattheyareapproximatelyconstantin

theimmediatevicinityofapixel.Wecanthencountthenumber

ofpixelsineachclasswithinagivenwindow,andaveragetheir

colorvaluestoobtainafeaturevectorthatconsistsofafew(up

tofour)dominantcolorsandtheassociatedpercentages.Thus,

thecolorfeaturevectorateachpixelisessentiallyacrude“local

histogram”oftheimage.

ColorMetric:Tomeasuretheperceptualsimilarityoftwocolor

featurevectors,weusethe“OptimalColorCompositionDistance

(OCCD)”proposedbyMojsilovicetal.[15].TheOCCDwas

designedtoprovidetheoptimalmappingbetweenthedominant

colorsoftwoimages,andthusobtainabettermeasureoftheir

similarity.SinceweareusingOCCDtocomparelocalhistograms

thatcontainonlyfourbins,itsimplementationcanbesimplified

considerably[13].

3.SPATIALTEXTUREFEATUREEXTRACTION

Asin[12],thespatialtexturefeatureextractionisindependent

fromthatofcolor.Thus,weusethegray-scalecomponentofthe

imagetoobtainthespatialtexturefeatures,basedonwhichwe

obtainanintermediatesegmentation,whichisthenusedtogether

withthecolorfeaturesdescribedintheprevioussectiontoproduce

thefinalimagesegmentation.

Asindicatedin[13],thesteerablefilterdecomposition[16]

providesafinerfrequencydecompositionthatmorecloselycor-

respondstohumanvisualprocessing.Weuseaone-levelsteer-

ablefilterdecompositionwithfourorientationswhichprovidefour

textureclasses:horizontal,verticalandtwodiagonaldirections

(a0a64a67a66a5anda6a64a36a66a5),asshowninFig.1.

Asnotedinourearlierwork[12],manytexturesarenotdi-

rectional;thus,itisnecessarytoincludeacomplexor“noneof

above”category.Eventhoughsuchacategorydoesnotprovide

muchinformationaboutagivenregion,itneverthelessplaysan

importantroleintheoverallimageclassification.Notethateven

withtheadditionofthediagonaltexturecategories,thetexturede-

scriptionisstillquitecrude.However,unlikethetexturesynthesis

problemthatrequiresaveryprecisemodelinordertoaccurately

synthesizeawiderangeoftextures,acrudemodelcanbequitead-

equateforsegmentation.Suchasimplemodelisactuallythekey

toobtaininggoodsegmentationsfromlow-resolutioncompressed

images(e.g.,a8a15a9a11a9a68a12a69a8a15a9a11a9pixels).

Fig.2showsacircularcross-sectionfromthesteerablefilter

responses.Thex-coordinatedenotesspatialorientationindegrees.

Thus,thefilterwithpeakata9a5representsthehorizontalsubband

a70a57a71,thefilterwithpeakat

a72a11a9

a5representstheverticalsubband

a70a74a73,

andsoon.Notethatthereisalargeoverlapbetweenneighbor-

ingfilters.In[13],weaccountsuchoverlapbycomparingthe1st

and2ndmaximumamongthefoursubbandcoefficients.However,

thismethodcouldmisclassify,ascomplex,textureswithorienta-

tionsthatfallbetweenthemainorientationsofthesteerablefilters.

That’sbecauseforsuchtexturestheresponsesofthetwofilters

areclose.Thecomplexcategoryshouldinsteadbereservedfor

textureswithmanydifferentorientations.Notethatusingsharper

orientationfilterswillnarrowtherangeofmisclassifiedorienta-

tions,butwillnotentirelyeliminatetheproblem.Aswewillsee

below,wesolvethisproblembyintroducinga“max”operator,and

usingthelocalhistogramoforientationstodeterminethetexture

orientation.

Thefirststepinthetextureclassificationistoidentifyandlo-

catethesmoothregionsintheimage.Weusea70a71a18a20a19a22a21a75a23a7a31,a70a11a76a18a20a19a22a21a24a23a7a31,

a70a74a73

a18a20a19a22a21a75a23a7a31,

a70a57a77

a18a20a19a22a21a75a23a78a31torepresentthesteerablesubbandcoefficients

atlocationa18a20a19a22a21a24a23a7a31thatcorrespondtothehorizontal(a9a5),diagonal

withpositiveslope(a0a64a36a66a5),vertical(a72a11a9a5),anddiagonalwithnega-

tiveslope(a6a64a36a66a5)directions,respectively.Foreachimagelocation

a18a20a19a22a21a24a23a7a31,wefindthemaximumofthefourcoefficients,denotedby

a70a57a79a44a80a75a81

a18a20a19a82a21a75a23a7a31.Thesubbandindex

a70

a38a18a20a19a22a21a75a23a78a31thatcorrespondstothat

maximumisalsostoredforuseinthenextstep.Then,amedian

operationisperformedona70a79a44a80a75a81a18a20a19a22a21a83a23a7a31.Recallthatthevaluesin

a70a57a79a44a80a75a81

a18a20a19a82a21a75a23a7a31comefromfourdifferentsubbands;thus,thecross-

subbandmediancanonlyhelpindeterminingwhetherapixelbe-

longstoasmoothregion,notwhichtextureclassitbelongsto.

Finally,atwo-levelK-meansalgorithm,segmentstheimageinto

smoothandnon-smoothregions.

Aclustervalidationstepisnecessaryatthispoint.Iftheclus-

tersaretooclose,thentheimagemaycontainonlysmoothornon-

smoothregions,dependingontheactualvalueoftheclustercenter.

Wehavealsoexperimentedwithalternativewaystoobtain

smoothvs.non-smoothclassification.Forexample,wetriedan

approachsimilartotheonedescribedin[12],wherebyamedianis

appliedtoeachsubbandfollowedbya2-levelK-means.Apixelis

thenclassifiedassmoothifallsubbandsareclassifiedinthelower

class.Thisleadstosimilarresultsyetinvolvesmuchmorecom-

putation.Anotherapproachistoapplyamediantoeachsubband,

followedbyK-meansappliedtothevectorofthefoursubband

coefficients.Wefoundthattheproposedalgorithmhasthebest

performanceintermsofaccuracyandrobustness.

Thenextstageistofurtherclassifythepixelsinthenon-

smoothregions.Aswediscussedabove,thereissignificantover-

lapbetweenneighboringdirectionalfilters.Thus,eveninatexture

ofasingleorientation(e.g.,horizontal),theresponsesofthetwo

neighboringfilterswillstillbesignificant.Thus,themaximum

ofthefourcoefficientsistheonethatcarriessignificantinforma-

tionaboutthetextureorientation.Basedonthisobservation,we

usetheindexa70a38a18a20a19a22a21a75a23a7a31ofthesubbandwiththemaximumvaluein

ordertodeterminethetextureorientationforeachpixellocation.

Wethenconsiderawindow,andfindthepercentageofindices

foreachorientation.Onlynon-smoothpixelswithinthewindow

areconsidered.Ifthemaximumofthepercentagesishigherthana

giventhreshold(e.g.,36%)andthedifferencebetween1stand2nd

maximumissignificant(e.g.,greaterthan15%),weconcludethat

(a)Originalimage(b)Maxindex(c)TextureClasses

Fig.3.TextureMapExtraction

Fig.2.SteerableFilterFrequencyResponse

thereisadominantorientationinthewindowandthepixelisclas-

sifiedaccordingly.Otherwise,thereisnodominantorientation,

andthepixelisclassifiedascomplex.Thus,ourtextureclassifica-

tionisbasedonthelocalhistogramoftheindicescorrespondingto

maximumsubbandvalues.Thisisessentiallya“median”typeof

operation,whichisnecessary,aswesawin[12],forboostingthe

responsetotexturewithinuniformregionsandtosuppressthere-

sponseduetotexturesassociatedwithtransitionsbetweenregions.

AnexampleisgiveninFig.3.Fig.3(a)showsthegrey-levelcom-

ponentoftheoriginalcolorimage.Fig.3(b)showsthematrixa70a38of

indicesindicatingthemaxima.Thesmoothregionsareshownin

black,whiletheother4orientationsareshowninshadesofgray.

Fig.3(c)showstheresultingtextureclasses,whereblackdenotes

smooth,whitedenotescomplex,andlightgreydenoteshorizontal

textures.Thewindowusedinthisexamplewasa8a15a84a85a12a69a8a15a84.

Thewindowsizeformedianoperationshouldbereasonably

bigtoobtainanaccurateestimateofthehistogramandtosuppress

textureedges.Ontheotherhand,averybigwindowwillresult

intextureclassestoocrudetobeuseful.Ourexperimentsindi-

catethatawindowsizeintherangeofa45a57a86a12a45a74a86toa8a10a72a87a12a69a8a15a72works

well.Sincethetextureclassesareobtainedthroughwindowoper-

ations,weknowthetextureboundariesarenotaccurate.Thus,we

havetorelyonthecolortexturefeaturestoobtainamoreaccurate

segmentation.

4.FINALSEGMENTATION

Wenowdiscussthecombinationoftextureandcolorfeaturesto

obtainthefinalsegmentation.First,weconsiderthesmoothtex-

tureregions.Asin[12],werelyonthecolorsegmentationwhich

providesregionsofdifferentuniformcolors.RecallthattheACA

providesslowlyvaryingcolor.Toavoidoversegmentation,wefind

alltheconnectedsegmentsthatbelongtodifferentcolorclasses,

andthenmergeneighboringsegmentsiftheaveragecolordiffer-

enceacrossthecommonborderisbelowagiventhreshold.Finally,

Fig.4.Illustrationofborderrefinement.

anyremainingsmallregionsneighboringnon-smoothtexturere-

gionsarerelabeledascomplexsothattheycanbeconsideredin

thenextstep.

Next,weconsiderthenon-smoothtextureregions.First,we

usearegiongrowingapproachtoobtainaninitial“crude”seg-

mentationthatisbasedonthegrayscaletextureclassificationand

thecolorfeaturespresentedinSection2.Sincebothofthesefea-

turesareslowlyvarying,weuseamulti-gridapproach.Westart

frompixelslocatedonacoarsegrid.Wesetthewindowsizefor

thecolorfeatureequaltotwicethegridspacing,i.e.,thereisa

50%windowoverlap.Apairofpixelsbelongtothesameregionif

thecolorfeaturesaresimilarintheOCCDsense.Thethresholdis

higherforpixelsthatbelongtothesametextureclass(i.e.,easier

tomerge),andlowerforpixelsindifferenttextureclasses.Inad-

dition,weuseMRF-typespatialconstraints(asin[13]).Thatis,a

pixelismorelikelytobelongtoaregionifmanyofitsneighbors

belongtothesameregion.ThesymmetricMRFconstraintmakes

itnecessarytoiterateafewtimesforagivengridspacing.The

gridspacingisthenreduced,andtheprocedurerepeateduntilthe

gridspacingisequaltoonepixel.

Finally,thecrudesegmentationisrefinedusinganadaptive

algorithmsimilarinnaturetotheACA[7].Fig.4illustratesthe

idea.ThedottedlineinFig.4representstherealboundaryandthe

solidlinedenotestheboundarygivenbyouralgorithmincurrent

iterationoraninitialsegmentationobtainedinthepreviousstep.

Givenasegmentation,weusetwowindowstoupdatetheclas-

sificationofeachpixel.Thelargerwindowprovidesalocalized

estimateoftexturecharacteristicsofeachregionthatoverlapsthe

window.Foreachtexture,withinthesegmentationboundaries,we

findtheaveragecolorandthecorrespondingpercentageforeach

ofthedominantcolors.Thesmallerwindowprovidesanestimate

ofthepixeltexture.Thisconsistsofthedominantcolorscorre-

spondingpercentageswithinthesmallerwindowignoringthecur-

rentboundary.Thenthetextureofthepixeliscomparedwiththe

texturesofthedifferentregionsusingtheOCCDcriterion.The

procedureisrepeatedforeachpixelinarasterscan.Asin[7],

(a)OriginalColorImage(b)ColorSegmentation(ACA)(c)TextureSegmentation

(d)CrudeSegmentation(e)FinalSegmentation(f)FinalSegmentation(onoriginalimage)

Fig.5.ColorandTextureImageSegmentation(a,b,d,e,fshownincolor)

anMRF-typeconstraintisnecessarytoinsureregionsmoothness.

Afewiterationsarenecessaryforconvergence.Aniterationhas

convergedwhenthenumberofpixelsthatchangeclassisbelowa

giventhreshold.Theoverallproceduremustthenbeiteratedfora

seriesofwindowpairsstartingfrom35/5andendingwith11/3.

Oneoftheimportantdetailsintheaboveprocedureisthateach

ofthecandidateregionsinthelargerwindowmustbelargeenough

inordertoobtainareliableestimateofitstextureattributes.Oth-

erwise,theregionisnotavalidcandidate.Areasonablechoice

forthethresholdfordecidingwhetheraregionshouldbeavalid

candidateistousetheproductofthetwowindowsizesdividedby

2.ThecrudeandfinalsegmentationresultsareshowninFigs.5(e)

and(f).

Theuseofbothcolorandtextureinformationtoestimatere-

gionboundariesfindsfurtherjustificationinpsychophysicalex-

periments[17],whichshowedthattheperceivededgelocationisa

combinationofthepositionsignaledbytextureandbyothercues

(motion,luminance,coloretc).

5.REFERENCES

[1]Y.Rui,T.S.Huang,andS.-F.Chang,“Imageretrieval:

Currenttechniques,promisingdirectionsandopenissues,”

J.Vis.Comm.Im.Repr.,vol.10,pp.39–62,Mar.1999.

[2]W.M.Smeulders,etal.,“Content-basedimageretrievalat

theendoftheearlyyears,”IEEETr.PAMI,vol.22,pp.1349–

1379,Dec.2000.

[3]A.KunduandJ.-L.Chen,“TextureclassificationusingQMF

bank-basedsubbanddecomposition,”CVGIP,GMIP,vol.54,

pp.369–384,Sept.1992.

[4]T.ChangandC.-C.J.Kuo,“Textureanalysisandclas-

sificationwithtree-structuredwavelettransform,”IEEE

Tr.Im.Pr.,vol.2,pp.429–441,Oct.1993.

[5]M.Unser,“Textureclassificationandsegmentationusing

waveletframes,”IEEETr.Im.Pr.,vol.4,pp.1549–1560,

Nov.1995.

[6]T.RandenandJ.H.Husoy,“Texturesegmentationusing

filterswithoptimizedenergyseparation,”IEEETronIm.Pr.,

vol.8,pp.571–582,Apr.1999.

[7]T.N.Pappas,“Anadaptiveclusteringalgorithmforimage

segmentation,”IEEETr.SP,vol.40,pp.901–914,Apr.1992.

[8]M.M.Chang,M.I.Sezan,andA.M.Tekalp,“Adaptive

Bayesiansegmentationofcolorimages,”JEI,vol.3,pp.

404–414,Oct.1994.

[9]D.ComaniciuandP.Meer,“Robustanalysisoffeature

spaces:Colorimagesegmentation,”CVPR,June1997,pp.

750–755.

[10]S.Belongie,etal.,“Color-andtexture-basedimagesegmen-

tationusingEManditsapplicationtocontentbasedimage

retrieval,”ICCV,1998,pp.675–682.

[11]Y.DengandB.S.Manjunath,“Unsupervisedsegmenta-

tionofcolor-textureregionsinimagesandvideo,”IEEE

Tr.PAMI,vol.23,pp.800–810,Aug.2001.

[12]J.Chen,T.N.Pappas,A.Mojsilovic,andB.Rogowitz,

“Adaptiveimagesegmentationbasedoncolorandtexture,”

Proc.ICIP2002,Rochester,NewYork,Sept.2002.

[13]J.Chen,T.N.Pappas,A.Mojsilovic,andB.Rogowitz,“Per-

ceptualcolorandtexturefeaturesforsegmentation,”Human

VisionandElectronicImagingVIII,Jan.2003,Proc.SPIE

Vol.5007.

[14]A.MojsilovicandB.Rogowitz,“Capturingimagesemantics

withlow-leveldescriptors,”Proc.ICIP,Oct.2001,pp.18–

21.

[15]A.Mojsilovi′c,J.Hu,andE.Soljanin,“Extractionofpercep-

tuallyimportantcolorsandsimilaritymeasurementforimage

matching,retrieval,andanalysis,”IEEETr.Im.Pr.,vol.11,

no.11,pp.1238–1248,Nov.2002.

[16]E.P.SimoncelliandW.T.Freeman,“Thesteerablepyramid:

Aflexiblearchitectureformulti-scalederivativecomputa-

tion,”Proc.ICIP,vol.III,Oct.1995,pp.444–447.

[17]J.RivestandP.Cavanagh,“Localizingcontoursdefinedby

morethanoneattibute,”VisionResearch,vol.36,pp.53–66,

1996.

献花(0)
+1
(本文系学海无涯GL首藏)