配色: 字号:
高中化学知识点规律大全
2014-12-17 | 阅:  转:  |  分享 
  
第PAGE1页共NUMPAGES99页


高中化学知识点规律大全
——化学反应及其能量变化
1.氧化还原反应
[氧化还原反应]有电子转移(包括电子的得失和共用电子对的偏移)或有元素化合价升降的反应.如2Na+C12=2NaCl(有电子得失)、H2+C12=2HCl(有电子对偏移)等反应均属氧化还原反应。
氧化还原反应的本质是电子转移(电子得失或电子对偏移)。
[氧化还原反应的特征]在反应前后有元素的化合价发生变化.根据氧化还原反应的反应特征可判断一个反应是否为氧化还原反应.某一化学反应中有元素的化合价发生变化,则该反应为氧化还原反应,否则为非氧化还原反应。
[氧化剂与还原剂]
概念含义概念含义氧化剂反应后所含元素化合价降低的反应物还原剂反应后所含元素化合价升高的反应物被氧化还原剂在反应时化合价升高的过程被还原氧化剂在反应时化合价降低的过程氧化性氧化剂具有的夺电子的能力还原性还原剂具有的失电子的能力氧化反应元素在反应过程中化合价升高的反应还原反应元素在反应过程中化合价降低的反应氧化产物还原剂在反应时化合价升高后得到的产物还原产物氧化剂在反应时化合价降低后得到的产物氧化剂与还原剂的相互关系

重要的氧化剂和还原剂:
(1)所含元素的化合价处在最高价的物质只能得到电子,只具有氧化性,只能作氧化剂(注:不一定是强氧化剂)。重要的氧化剂有:
①活泼非金属单质,如X2(卤素单质)、O2、O3等。②所含元素处于高价或较高价时的氧化物,如MnO2、NO2、PbO2等。③所含元素处于高价时的含氧酸,如浓H2SO4、HNO3等.④所含元素处于高价时的盐,如KMnO4、KClO3、K2Cr2O7等.⑤金属阳离子等,如Fe3+、Cu2+、Ag+、H+等.⑥过氧化物,如Na2O2、H2O2等.⑦特殊物质,如HClO也具有强氧化性.
(2)所含元素的化合价处在最低价的物质只能失去电子,只具有还原性,只能作还原剂(注:不一定是强还原剂).重要的还原剂有:
①活泼金属单质,如Na、K、Ca、Mg、Al、Fe等.②某些非金属单质,如C、H2、Si等.③所含元素处于低价或较低价时的氧化物,如CO、SO2等.④所含元素处于低价或较低价时的化合物,如含有、、、、的化合物H2S、Na2S、H2SO3、Na2SO3、HI、HBr、FeSO4、NH3等.
(3)当所含元素处于中间价态时的物质,既有氧化性又有还原性,如H2O2、SO2、Fe2+等.
(4)当一种物质中既含有高价态元素又含有低价态元素时,该物质既有氧化性又有还原性.例如,盐酸(HCl)与Zn反应时作氧化剂,而浓盐酸与MnO2共热反应时,则作还原剂.
[氧化还原反应的分类]
(1)不同反应物间的氧化还原反应.
①不同元素间的氧化还原反应.
例如:MnO2+4HCl(浓)MnCl2+C12↑+2H2O绝大多数氧化还原反应属于这一类.
②同种元素间的氧化还原反应.
例如:2H2S+SO2=3S+2H2OKClO3+6HCl(浓)=KCl+3C12↑+3H2O
在这类反应中,所得氧化产物和还原产物是同一物质,这类氧化还原反应又叫归中反应.
(2)同一反应物的氧化还原反应.
①同一反应物中,不同元素间的氧化还原反应.例如:2KClO32KCl+3O2↑
②同一反应物中,同种元素不同价态间的氧化还原反应.例如:NH4NO3N2O↑+2H2O
③同一反应物中,同种元素同一价态间的氧化还原反应.例如:
C12+2NaOH=NaCl+NaClO+H2O3NO2+H2O=2HNO3+NO
在这类反应中,某一元素的化合价有一部分升高了,另一部分则降低了.这类氧化还原反应又叫歧化反应.
[氧化还原反应与四种基本反应类型的关系]如右图所示.由图可知:置换反应都是氧化还原反应;复分解反应都不是氧化还原反应,化合反应、分解反应不一定是氧化还原反应.
[氧化还原反应中电子转移的方向、数目的表示方法]
(1)单线桥法.表示在反应过程中反应物里元素原子间电子转移的数目和方向.用带箭头的连线从化合价升高的元素开始,指向化合价降低的元素,再在连线上方标出电子转移的数目.

在单线桥法中,箭头的指向已经表明了电子转移的方向,因此不能再在线桥上写“得”、“失”字样.
(2)双线桥法.表示在反应物与生成物里,同一元素原子在反应前后电子转移的数目和方向.在氧化剂与还原产物、还原剂与氧化产物之间分别用带箭头的连线从反应前的有关元素指向反应后的该种元素,并在两条线的上、下方分别写出“得”、“失”电子及数目.例如:

[氧化还原反应的有关规律]
(1)氧化性、还原性强弱判断的一般规律.
氧化性、还原性的强弱取决于得失电子的难易;而与得失电子数的多少无关.
①金属活动性顺序表.金属的活动性越强,金属单质(原子)的还原性也越强,而其离子的氧化性越弱.如还原性:Mg>Fe>Cu>Ag;氧化性:Ag+>Cu2+>Fe2+>Mg2+
②同种元素的不同价态.

特殊情况;氯的含氧酸的氧化性顺序为:HClO>HClO3>HClO4.
⑧氧化还原反应进行的方向.一般而言,氧化还原反应总是朝着强氧化性物质与强还原性物质反应生成弱氧化性物质与弱还原性物质的方向进行.在一个给出的氧化还原反应方程式中,氧化剂和氧化产物都有氧化性,还原剂和还原产物都有还原性,其氧化性、还原性的强弱关系为:
氧化性:氧化剂>氧化产物;还原性:还原剂>还原产物
反之,根据给出的物质的氧化性、还原性的强弱,可以判断某氧化还原反应能否自动进行.
④反应条件的难易.不同的氧化剂(还原剂)与同一还原剂(氧化剂)反应时,反应越易进行,则对应的氧化剂(还原剂)的氧化性(还原性)越强,反之越弱.
⑤浓度.同一种氧化剂(或还原剂),其浓度越大,氧化性(或还原性)就越强.
⑥H+浓度.对于在溶液中进行的氧化还原反应,若氧化剂为含氧酸或含氧酸盐,则溶液中H+浓度越大,其氧化性就越强.
(2)氧化还原反应中元素化合价的规律.
①一种元素具有多种价态时,处于最高价态时只具有氧化性,处于最低价态时只具有还原性,而处于中间价态时则既有氧化性又具有还原性.但须注意,若一种化合物中同时含最高价态元素和最低价态元素时,则该化合物兼有氧化性和还原性,如HCl.
②价态不相交规律.同种元素不同价态间相互反应生成两种价态不同的产物时,化合价升高与化合价降低的值不相交,即高价态降低后的值一定不低于低价态升高后的值,也可归纳为“价态变化只靠拢、不相交”.所以,同种元素的相邻价态间不能发生氧化还原反应;同种元素间隔中间价态,发生归中反应.
(3)氧化还原反应中的优先规律:当一种氧化剂(还原剂)同时与多种还原剂(氧化剂)相遇时,该氧化剂(还原剂)首先与还原性(氧化性)最强的物质发生反应,而只有当还原性(氧化性)最强的物质反应完后,才依次是还原性(氧化性)较弱的物质发生反应.
(4)电子守恒规律.在任何氧化还原反应中,氧化剂得到的电子总数等于还原剂失去的电子总数(即氧化剂化合价升高的总数等于还原剂化合价降低的总数).这一点也是氧化还原反应配平的基础。
2.离子反应
[离子反应]有离子参加或有离子生成的反应,都称为离子反应.离子反应的本质、类型和发生的条件:
(1)离子反应的本质:反应物中某种离子的浓度减小.
(2)离子反应的主要类型及其发生的条件:
①离子互换(复分解)反应.具备下列条件之一就可以使反应朝着离子浓度减小的方向进行,即离子反应就会发生.
a.生成难溶于水的物质.如:Cu2++2OH-=Cu(OH)2↓
注意:当有关离子浓度足够大时,生成微溶物的离子反应也能发生.如:
2Ag++SO42—=Ag2SO4↓Ca2++2OH-=Ca(OH)2↓
或者由微溶物生成难溶物的反应也能生成.如当石灰乳与Na2CO3溶液混合时,发生反应:
Ca(OH)2+CO32—=CaCO3↓+2OH-
b.生成难电离的物质(即弱电解质).如:H++OH-=H2OH++CH3COO-=CH3COOH
c.生成挥发性物质(即气体).如:CO32-+2H+=CO2↑+H2ONH4++OH-NH3↑+H2O
②离子间的氧化还原反应.由强氧化剂与强还原剂反应,生成弱氧化剂和弱还原剂,即反应朝着氧化性、还原性减弱的方向进行.例如:
Fe+Cu2+=Fe2++CuCl2+2Br-=2C1-+Br2
2MnO4-+16H++10C1-=2Mn2++5C12↑+8H2O
书写离子方程式时应注意的问题:
(1)电解质在非电离条件下(不是在水溶液中或熔融状态),虽然也有离子参加反应,但不能写成离子方程式,因为此时这些离子并没有发生电离.如NH4Cl固体与Ca(OH)2固体混合加热制取氨气的反应、浓H2SO4与固体(如NaCl、Cu等)的反应等,都不能写成离子方程式.相反,在某些化学方程式中,虽然其反应物不是电解质或强电解质,没有大量离子参加反应,但反应后产生了大量离子,因此,仍可写成离子方程式.如Na、Na2O、Na2O2、SO3、Cl2等与H2O的反应.
(2)多元弱酸的酸式盐,若易溶于水,则成盐的阳离子和酸根离子可拆开写成离子的形式,而酸根中的H+与正盐阴离子不能拆开写.例如NaHS、Ca(HCO3)2等,只能分别写成Na+、HS-和Ca2+、HCO3-等酸式酸根的形式.
(3)对于微溶于水的物质,要分为两种情况来处理:
①当作反应物时?,微溶物要保留化学式的形式,不能拆开.
②当作反应物时,若为澄清的稀溶液,应改写为离子形式,如澄清石灰水等;若为浊液或固体,要保留化学式的形式而不能拆开,如石灰乳、熟石灰等.
(4)若反应物之间由于物质的量之比不同而发生不同的反应,即反应物之间可发生不止一个反应时,要考虑反应物之间物质的量之比不同,相应的离子方程式也不同.例如,向NaOH溶液中不断通入CO2气体至过量,有关反应的离子方程式依次为:CO2+2OH—=CO32—+H2O(CO2适量)
CO2+OH—=HCO3—(CO2足量)
在溶液中离子能否大量共存的判断方法:
几种离子在溶液中能否大量共存,实质上就是看它们之间是否发生反应.若离子间不发生反应,就能大量共存;否则就不能大量共存.离子间若发生下列反应之一,就不能大量共存.
(1)生成难溶物或微溶物.如Ca2+与CO32-、SO42-、OH-;Ag+与C1-、Br-、I-、SO32-,等等.
(2)生成气体.如NH4+与OH-;H+与HCO3-、CO32-、S2-、HS-、SO32-、HSO3-等.
(3)生成难电离物质(弱酸、弱碱、水).如H+与C1O-、F-、CH3COO-生成弱酸;OH-与NH4+、
A13+、Fe3+、Fe2+、Cu2+等生成弱碱;H+与OH-生成H2O.
(4)发生氧化还原反应.具有氧化性的离子(如MnO4-、ClO-、Fe3+等)与具有还原性的离子(如S2-、I-、SO32-、Fe2+等)不能共存.应注意的是,有些离子在碱性或中性溶液中可大量共存,但在酸性条件下则不能大量共存,如SO32-与S2-,NO3-与I-、S2-、SO32-、Fe2+等.
(5)形成配合物.如Fe3+与SCN-因反应生成Fe(SCN)3而不能大量共存.
(6)弱酸根阴离子与弱碱阳离子因易发生双水解反应而不能大量共存,例如Al3+与HCO3-、CO32-、A1O2-等.
说明:在涉及判断离子在溶液中能否大量共存的问题时,要注意题目中附加的限定性条件:
①无色透明的溶液中,不能存在有色离子,如Cu2+(蓝色)、Fe3+(黄色)、Fe2+(浅绿色)、MnO4-(紫色).
②在强酸性溶液中,与H+起反应的离子不能大量共存.
③在强碱性溶液中,与OH-起反应的离子不能大量共存.
[电解质与非电解质]
(1)电解质:在水溶液里或者熔融状态下能够导电的化合物叫电解质.电解质不一定能导电,而只有在溶于水或熔融状态时电离出自由移动的离子后才能导电(因此,电解质导电的原因是存在自由移动的离子).能导电的不一定是电解质,如金属、石墨等单质.
(2)非电解质:在水溶液里和熔融状态下都不能导电的化合物.因为非电解质归属于化合物,故如C12等不导电的单质不属于非电解质.
(3)电解质与非电解质的比较.

电解质非电解质区
别能否导电溶于水后或熔融状态时能导电不能导电能否电离溶于水或受热熔化时能电离产生自由移动的离子不能电离,因此没有自由移动的离子存在所属物质酸、碱、盐等蔗糖、酒精等大部分有机物,气体化合物如NH3、SO2等联系都属于化合物说明某些气体化合物的水溶液虽然能导电,但其原因并非该物质本身电离生成了自由移动的离子,因此这些气体化合物属于非电解质.例如;氨气能溶于水,但NH3是非电解质.氨水能导电是因为NH3与H2O反应生成了能电离出NH4+和OH-的NH3·H2O的缘故,所以NH3·H2O才是电解质.
[强电解质与弱电解质]
(1)强电解质:溶于水后全部电离成离子的电解质.
(2)弱电解质:溶于水后只有一部分分子能电离成离子的电解质.
(3)强电解质与弱电解质的比较.
强电解质弱电解质代表物质①强酸:如H2SO4、HNO3、HCl等②强碱:如KOH、NaOH、Ba(OH)2等③盐:绝大多数可溶、难溶性盐,如NaCl、CaCO3等①H2O②弱酸:如CH3COOH、HF、HClO、H2CO3等③弱碱:NH3·H2O、A1(OH)3、Fe(OH)3等电离情况完全电离,不存在电离平衡(电离不可逆).电离方程式用“=”表示.
如:HNO3=H++NO3-不完全电离(部分电离),存在电离平衡.电离方程式用“”表示.
如:CH3COOHCH3COO-+H十水溶液中存在的微粒水合离子(离子)和H2O分子大部分以电解质分子的形式存在,只有少量电离出来的离子离子方程式的书写情况拆开为离子(特殊:难溶性盐仍以化学式表示)全部用化学式表示注意:(1)在含有阴、阳离子的固态强电解质中,虽然有阴、阳离子存在,但这些离子不能自由移动,因此不导电.如氯化钠固体不导电.
(2)电解质溶液导电能力的强弱取决于溶液中自由移动离子浓度的大小(注意:不是取决于自由移动离子数目的多少).溶液中离子浓度大,溶液的导电性就强;反之,溶液的导电性就弱.因此,强电解质溶液的导电能力不一定比弱电解质溶液的导电能力强.但在相同条件(相同浓度、相同温度)下,强电解质溶液的导电能力比弱电解质的导电能力强.
[离子方程式]用实际参加反应的离子符号来表示离子反应的式子.所谓实际参加反应的离子,即是在反应前后数目发生变化的离子.离子方程式不仅表示一定物质间的某个反应,而且可以表示所有同一类型的离子反应.如:H++OH-=H2O可以表示强酸与强碱反应生成可溶性盐的中和反应.
[离子方程式的书写步骤]
(1)“写”:写出完整的化学方程式.
(2)“拆”:将化学方程式中易溶于水、易电离的物质(强酸、强碱、可溶性盐)拆开改写为离子形式;而难溶于水的物质(难溶性盐、难溶性碱)、难电离的物质(水、弱酸、弱碱)、氧化物、气体等仍用化学式表示.
(3)“删”:将方程式两边相同的离子(包括个数)删去,并使各微粒符号前保持最简单的整数比.
(4)“查”:检查方程式中各元素的原子个数和电荷总数是否左右相等.
[复分解反应类型离子反应发生的条件]
复分解反应总是朝着溶液中自由移动的离子数目减少的方向进行.具体表现为:
(1)生成难溶于水的物质.如:Ba2++SO42-=BaSO4↓
(2)生成难电离的物质(水、弱酸、弱碱).如H++OH-=H2O
(3)生成气体.如:CO32-+2H+=CO2↑+H2O
3.化学反应中的能量变化
[放热反应]放出热量的化学反应.在放热反应中,反应物的总能量大于生成物的总能量:
反应物的总能量=生成物的总能量+热量+其他形式的能量
放热反应可以看成是“贮存”在反应物内部的能量转化并释放为热能及其他形式的能量的反应过程.
[吸热反应]吸收热量的化学反应.在吸热反应中,反应物的总能量小于生成物的总能量:
生成物的总能量=反应物的总能量+热量+其他形式的能量
吸热反应也可以看成是热能及其他形式的能量转化并“贮存”为生成物内部能量的反应过程.
[反应热]
(1)反应热的概念:在化学反应过程中,放出或吸收的热量,统称为反应热.反应热用符号△H表示,单位一般采用kJ·mol-1.
(2)反应热与反应物、生成物的键能关系:△H=生成物键能的总和-反应物键能的总和
(3)放热反应与吸热反应的比较.
反应热放热反应吸热反应含义反应物所具有的总能量大于生成物所具有的总能量,反应物转化为生成物时放出热量反应物所具有的总能量小于生成物所具有的总能量,反应物转化为生成物时吸收热量反应本身的
能量变化反应放出热量后使反应本身的能量降低反应吸收热量后使反应本身的能量升高表示符号或ΔH值“-”ΔH<0“+”ΔH>0说明:放热反应和吸热反应过程中的能量变化示意图如图3—1—2所示.

[热化学方程式]
(1)热化学方程式的概念:表明反应所放出或吸收热量的化学方程式,叫做热化学方程式.
(2)书写热化学方程式时应注意的问题:
①需注明反应的温度和压强.因为反应的温度和压强不同时,其△H也不同.若不注明时,则是指在101kPa和25℃时的数据.
②反应物、生成物的聚集状态要注明.同一化学反应,若物质的聚集状态不同,则反应热就不同.例如:
H2(g)+1/2O2(g)=H2O(g)△H=-241.8kJ·mol—1
H2(g)+1/2O2(g)=H2O(l)△H=-285.8kJ·mol—1
比较上述两个反应可知,由H2与O2反应生成1molH2O(l)比生成1molH2O(g)多放出44kJ·mol—1的热量.
③反应热写在化学方程式的右边.放热时△H用“-”,吸热时△H用“+”.
例如:H2(g)+1/2O2(g)=H2O(g)-241.8kJ·mol—1
④热化学方程式中各物质前的化学计量数不表示分子个数,而只表示物质的量(mol),因此,它可用分数表示.对于相同物质的反应,当化学计量数不同时,其△H也不同.例如:
2H2(g)+O2(g)=2H2O(g)△Hl=-483.6kJ·mol—1
H2(g)+1/2O2(g)=H2O(g)△H2=-241.8kJ·mol—1
显然,△Hl=2△H2.
[盖斯定律]对于任何一个化学反应,不管是一步完成还是分几步完成,其反应热是相同的.也就是说,化学反应的反应热只与反应的始态(各反应物)和终态(各生成物)有关,而与具体反应进行的途径无关.如果一个反应可以分几步进行,则各步反应的反应热之和与该反应一步完成时的反应热是相同的.
4.燃烧热和中和热
燃烧热中和热定义在101kPa时,1mol物质完全燃烧生成稳定的氧化物所放出热量在稀溶液中,酸跟碱发生中和反应而生成1molH2O时所放出的热量热化学方程式中的表示形式以燃烧1mol物质为标准来配平其余物质的化学计量数物质的化学计量数平其余物质的化学计量数注意点“完全燃烧”包含两个方面的意思:①燃烧的物质全部燃烧完;②生成稳定氧化物,如C完全燃烧生成CO2,S完全燃烧生成SO2;等等当强酸与强碱在稀溶液中发生中和反应时,1molH+与1molOH-发生反应生成1molH2O,都放出57.3kJ的热量.即:
H+(aq)+OH-(aq)=H2O(1)
△H=-57.3kJ·mol-1说明利用燃烧热可以计算物质在燃烧过程中所放出的热量当强酸与弱碱或弱酸与强碱或弱酸与弱碱发生中和反应时,因生成的盐会发生水解而吸热,故此时中和热要小于57.3kJ·mol-1


高中化学知识点规律大全
——碱金属
1.钠
[钠的物理性质]很软,可用小刀切割;具有银白色金属光泽(但常见的钠的表面为淡黄色);密度比水小而比煤油大(故浮在水面上而沉于煤油中);熔点、沸点低;是热和电的良导体.
[钠的化学性质]
Na与O2反应:
常温下:4Na+O2=2Na2O,2Na2O+O2=2Na2O2(所以钠表面的氧化层既有Na2O也有Na2O2,且Na2O2比Na2O稳定).
加热时:2Na+O2Na2O2(钠在空气中燃烧,发出黄色火焰,生成淡黄色固体).
(2)Na与非金属反应:钠可与大多数的非金属反应,生成+1价的钠的化合物.例如:
2Na+C122NaCl2Na+SNa2S
(3)Na与H2O反应.化学方程式及氧化还原分析:
离子方程式:2Na+2H2O=2Na++2OH-+H2↑
Na与H2O反应的现象:①浮②熔⑧游④鸣⑤红.
(4)Na与酸溶液反应.例如:2Na+2HCl=2NaCl+H2↑2Na+H2SO4=Na2SO4+H2↑
由于酸中H+浓度比水中H+浓度大得多,因此Na与酸的反应要比水剧烈得多.
钠与酸的反应有两种情况:
①酸足量(过量)时:只有溶质酸与钠反应.
②酸不足量时:钠首先与酸反应,当溶质酸反应完后,剩余的钠再与水应.因此,在涉及有关生成的NaOH或H2的量的计算时应特别注意这一点.
(5)Na与盐溶液的反应.在以盐为溶质的水溶液中,应首先考虑钠与水反应生成NaOH和H2,再分析NaOH可能发生的反应.例如,把钠投入CuSO4溶液中:
2Na+2H2O=2NaOH+H2↑2NaOH+CuSO4=Cu(OH)2↓+Na2SO4
注意:钠与熔融的盐反应时,可置换出盐中较不活泼的金属.例如:
4Na+TiCl4(熔融)4NaCl+Ti
[实验室中钠的保存方法]由于钠的密度比煤油大且不与煤油反应,所以在实验室中通常将钠保存在煤油里,以隔绝与空气中的气体和水接触.
钠在自然界里的存在:由于钠的化学性质很活泼,故钠在自然界中只能以化合态的形式(主要为NaCl,此外还有Na2SO4、Na2CO3、NaNO3等)存在.
[钠的主要用途]
(1)制备过氧化钠.(原理:2Na+O2Na2O2)
(2)Na-K合金(常温下为液态)作原子反应堆的导热剂.(原因:Na-K合金熔点低、导热性好)
(3)冶炼如钛、锆、铌、钽等稀有金属.(原理:金属钠为强还原剂)
(4)制高压钠灯.(原因:发出的黄色光射程远,透雾能力强)
2.钠的化合物
[过氧化钠]
物理性质淡黄色固体粉末化学性质与H2O反应2Na2O2+2H2O=4NaOH+O2
现象:反应产生的气体能使余烬的木条复燃;反应放出的热能使棉花燃烧起来与CO2反应2Na2O2+2CO2=2Na2CO3+O2说明:该反应为放热反应强氧化剂能使织物、麦秆、羽毛等有色物质褪色用途呼吸面具和潜水艇里氧气的来源;作漂白剂说明(1)Na2O2与H2O、CO2发生反应的电子转移情况如下:

由此可见,在这两个反应中,Na2O2既是氧化剂又是还原剂,H2O或CO2只作反应物,不参与氧化还原反应.
(2)能够与Na2O2反应产生O2的,可能是CO2、水蒸气或CO2和水蒸气的混合气体.
(3)过氧化钠与水反应的原理是实验室制氧气方法之一,其发生装置为“固+液→气体”型装置.
[碳酸钠与碳酸氢钠]
Na2CO3NaHCO3俗名纯碱、苏打小苏打颜色、状态白色粉末.碳酸钠结晶水合物的化学式为Na2CO3·10H2O白色晶体.无结晶水合物水溶性易溶于水溶于水,但溶解度比Na2CO3小热稳定性加热不分解加热易分解.化学方程式为:
2NaHCO3Na2CO3+CO2↑+H2O与酸反应较缓慢.反应分两步进行:
CO32-+H+=HCO3-
HCO3-+H+=CO2↑+H2O较剧烈,放出CO2的速度快
HCO3-+H+=CO2↑+H2O与NaOH
反应不反应NaHCO3+NaOH=Na2CO3+H2O
酸式盐与碱反应可生成盐和水与CaCl2
溶液反应CO32-+Ca2+=CaCO3↓不反应。Ca(HCO3)2溶于水鉴别方法①固态时:分别加热,能产生使澄清石灰水变浑浊气体的是NaHCO3
②溶液中:分别加入CaCl2或BaCl2溶液,有白色沉淀产生的是Na2CO3主要用途①用于玻璃、制皂、造纸等
②制烧碱①用作制糕点的发酵粉②用于泡沫灭火器③治疗胃酸过多相互关系说明(1)由于NaHCO3在水中的溶解度小于Na2CO3,因此,向饱和的Na2CO3溶液中通入CO2气体,能析出NaHCO3晶体.
(2)利用Na2CO3溶液与盐酸反应时相互滴加顺序不同而实验现象不同的原理,可在不加任何外加试剂的情况下,鉴别Na2CO3溶液与盐酸.
[侯氏制碱法制NaHCO3和Na2CO3的原理]在饱和NaCl溶液中依次通入足量的NH3、CO2气体,有NaHCO3从溶液中析出.有关反应的化学方程式为:
NH3+H2O+CO2=NH4HCO3NH4HCO3+NaCl=NaHCO3↓+NH4Cl
2NaHCO3Na2CO3+H2O+CO2↑
3.碱金属元素
[碱金属元素的原子结构特征]
碱金属元素包括锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)和放射性元素钫(Fr).
(1)相似性:原子的最外层电子数均为1个,次外层为8个(Li原子次外层电子数为2个).因此,在化学反应中易失去1个电子而显+1价.
(2)递变规律:随着碱金属元素核电荷数增多,电子层数增多,原子半径增大,失电子能力增强,金属活动性增强.
[碱金属的物理性质]
(1)相似性:①都具有银白色金属光泽(其中铯略带金黄色);②柔软;③熔点低;④密度小,其中Li、Na、K的密度小于水的密度;⑤导电、导热性好.
(2)递变规律:从Li→Cs,随着核电荷数的递增,密度逐渐增大(特殊:K的密度小于Na的密度),但熔点、沸点逐渐降低.
[碱金属的化学性质]
碱金属的化学性质与钠相似.由于碱金属元素原子的最外层电子数均为1个,因此在化学反应中易失去1个电子,具有强还原性,是强还原剂;又由于从Li→Cs,随着核电荷数的递增,电子层数增多,原子半径增大,原子核对最外层电子吸引力减弱,故还原性增强.
(1)与O2等非金属反应.从Li→Cs,与O2反应的剧烈程度逐渐增加.
①Li与O2反应只生成Li2O:4Li+O22Li2O
②在室温下,Rb、Cs遇到空气立即燃烧;
③K、Rb、Cs与O2反应生成相应的超氧化物KO2、RbO2、CsO2.
(2)与H2O反应.发生反应的化学方程式可表示为:
2R+2H2O=2ROH+H2↑(R代表Li、Na、K、Rb、Cs).
从Li→Na,与H2O反应的剧烈程度逐渐增加.K与H2O反应时能够燃烧并发生轻微爆炸;Rb、Cs遇H2O立即燃烧并爆炸.生成的氢氧化物的碱性逐渐增强(其中LiOH难溶于水).
[焰色反应]是指某些金属或金属化合物在火焰中灼烧时,火焰呈现出的特殊的颜色.
一些金属元素的焰色反应的颜色:
钠——黄色;钾——紫色;锂——紫红色;铷——紫色;
钙—一砖红色;锶——洋红色;钡——黄绿色;铜——绿色.
(2)焰色反应的应用:检验钠、钾等元素的存在.



高中化学知识点规律大全
——卤素
1.氯气
[氯气的物理性质]
(1)常温下,氯气为黄绿色气体.加压或降温后液化为液氯,进一步加压或降温则变成固态氯.(2)常温下,氯气可溶于水(1体积水溶解2体积氯气).(3)氯气有毒并具有强烈的刺激性,吸入少量会引起胸部疼痛和咳嗽,吸入大量则会中毒死亡.因此,实验室闻氯气气味的正确方法为:用手在瓶口轻轻扇动,仅使少量的氯气飘进鼻孔.
[氯气的化学性质]
画出氯元素的原子结构示意图:
氯原子在化学反应中很容易获得1个电子.所以,氯气的化学性质非常活泼,是一种强氧化剂.
(1)与金属反应:Cu+C12CuCl2
实验现象:铜在氯气中剧烈燃烧,集气瓶中充满了棕黄色的烟.一段时间后,集气瓶内壁附着有棕黄色的固体粉末.向集气瓶内加入少量蒸馏水,棕黄色固体粉末溶解并形成绿色溶液,继续加水,溶液变成蓝色.
2Na+Cl22NaCl实验现象:有白烟产生.
说明①在点燃或灼热的条件下,金属都能与氯气反应生成相应的金属氯化物.其中,变价金属如(Cu、Fe)与氯气反应时呈现高价态(分别生成CuCl2、FeCl3).
②在常温、常压下,干燥的氯气不能与铁发生反应,故可用钢瓶储存、运输液氯.
③“烟”是固体小颗粒分散到空气中形成的物质.如铜在氯气中燃烧,产生的棕黄色的烟为CuCl2晶体小颗粒;钠在氯气中燃烧,产生的白烟为NaCl晶体小颗粒;等等.
(2)与氢气反应.H2+Cl22HCl
注意①在不同的条件下,H2与C12均可发生反应,但反应条件不同,反应的现象也不同.点燃时,纯净的H2能在C12中安静地燃烧,发出苍白色的火焰,反应产生的气体在空气中形成白雾并有小液滴出现;在强光照射下,H2与C12的混合气体发生爆炸.
②物质的燃烧不一定要有氧气参加.任何发光、发热的剧烈的化学反应,都属于燃烧.如金属铜、氢气在氯气中燃烧等.
③“雾”是小液滴悬浮在空气中形成的物质;“烟”是固体小颗粒分散到空气中形成的物质.要注意“雾”与“烟”的区别.
④H2与Cl2反应生成的HCl气体具有刺激性气味,极易溶于水.HCl的水溶液叫氢氯酸,俗称盐酸.
(3)与水反应.
化学方程式:C12+H2O=HCl+HClO离子方程式:Cl2+H2O=H++Cl-+HClO
说明①C12与H2O的反应是一个C12的自身氧化还原反应.其中,Cl2既是氧化剂又是还原剂,H2O只作反应物.
②在常温下,1体积水能溶解约2体积的氯气,故新制氯水显黄绿色.同时,溶解于水中的部分C12与H2O反应生成HCl和HClO,因此,新制氯水是一种含有三种分子(C12、HClO、H2O)和四种离子(H+、Cl-、ClO-和水电离产生的少量OH-)的混合物.所以,新制氯水具有下列性质:酸性(H+),漂白作用(含HClO),Cl-的性质,C12的性质.
③新制氯水中含有较多的C12、HClO,久置氯水由于C12不断跟H2O反应和HClO不断分解,使溶液中的C12、HClO逐渐减少、HCl逐渐增多,溶液的pH逐渐减小,最后溶液变成了稀盐酸,溶液的pH<7.
④C12本身没有漂白作用,真正起漂白作用的是C12与H2O反应生成的HClO.所以干燥的C12不能使干燥的有色布条褪色,而混有水蒸气的C12能使干燥布条褪色,或干燥的C12能使湿布条褪色.
⑤注意“氯水”与“液氯”的区别,氯水是混合物,液氯是纯净物.
(4)与碱反应.常温下,氯气与碱溶液反应的化学方程式的通式为:
氯气+可溶碱→金属氯化物+次氯酸盐+水.重要的反应有:
C12+2NaOH=NaCl+NaClO+H2O或Cl2+2OH-=Cl-+ClO-+H2O
该反应用于实验室制C12时,多余Cl2的吸收(尾气吸收).
2Cl2+2Ca(OH)2=Ca(C1O)2+CaCl2+2H2O
说明①Cl2与石灰乳[Ca(OH)2的悬浊液]或消石灰的反应是工业上生产漂粉精或漂白粉的原理.漂粉精和漂白粉是混合物,其主要成分为Ca(ClO)2和CaCl2,有效成分是Ca(C1O)2
②次氯酸盐比次氯酸稳定.
③漂粉精和漂白粉用于漂白时,通常先跟其他酸反应,如:
Ca(ClO)2+2HCl=CaCl2+2HClO
④漂粉精和漂白粉露置于潮湿的空气中易变质,所以必须密封保存.有关反应的化学方程式为:Ca(ClO)2+CO2+H2O=CaCO3↓+2HClO2HClO2HCl+O2↑
由此可见,漂粉精和漂白粉也具有漂白、消毒作用.
[氯气的用途]
①杀菌消毒;②制盐酸;⑧制漂粉精和漂白粉;④制造氯仿等有机溶剂和各种农药.
[次氯酸]
①次氯酸(HClO)是一元弱酸(酸性比H2CO3还弱),属于弱电解质,在新制氯水中主要以HClO分子的形式存在,因此在书写离子方程式时应保留化学式的形式.
②HClO不稳定,易分解,光照时分解速率加快.有关的化学方程式为:
2HClO=2H++2Cl-+O2↑,因此HClO是一种强氧化剂.
③HClO能杀菌.自来水常用氯气杀菌消毒(目前已逐步用C1O2代替).
④HClO能使某些染料和有机色素褪色.因此,将Cl2通入石蕊试液中,试液先变红后褪色.
[氯气的实验室制法]
(1)反应原理:实验室中,利用氧化性比C12强的氧化剂[如MnO2、KMnO4、KClO3、Ca(ClO)2等]将浓盐酸中的Cl-氧化来制取C12。例如:
MnO2+4HCl(浓)MnCl2+C12↑+2H2O
2KMnO4+16HCl(浓)=2KCl+2MnCl2+5Cl2↑+8H2O
(2)装置特点:根据反应物MnO2为固体、浓盐酸为液体及反应需要加热的特点,应选用“固+液加热型”的气体发生装置.所需的仪器主要有圆底烧瓶(或蒸馏烧瓶)、分液漏斗、酒精灯、双孔橡胶塞和铁架台(带铁夹、铁圈)等.
(3)收集方法:氯气溶于水并跟水反应,且密度比空气大,所以应选用向上排气法收集氯气.此外,氯气在饱和NaCl溶液中的溶解度很小,故氯气也常用排饱和食盐水的方法收集,以除去混有的HCl气体.因此在实验室中,要制取干燥、纯净的Cl2,常将反应生成的C12依次通过盛有饱和NaCl溶液和浓硫酸的洗气瓶.
(4)多余氯气的吸收方法:氯气有毒,多余氯气不能排放到空气中,可使用NaOH溶液等强碱溶液吸收,但不能使用石灰水,因为Ca(OH)2的溶解度较小,不能将多余的氯气完全吸收.
(5)应注意的问题:
①加热时,要小心地、不停地移动火焰,以控制反应温度.当氯气出来较快时,可暂停加热.要防止加强热,否则会使浓盐酸里的氯化氢气体大量挥发,使制得的氯气不纯而影响实验.
②收集氯气时,导气管应插入集气瓶底部附近,这样收集到的氯气中混有的空气较少.
③利用浓盐酸与足量的MnO2共热制取C12时,实际产生的C12的体积总是比理论值低.主要原因是:随着反应不断进行,浓盐酸会渐渐变稀,而稀盐酸即使是在加热的条件下也不能与MnO2反应.
[Cl-的检验]
方法向待检溶液中加入AgNO3溶液,再加入稀HNO3,若产生白色沉淀,则原待检液中含有C1-.
注意(1)不能加入盐酸酸化,以防止引入C1-(若酸化可用稀HNO3).
(2)若待检液中同时含有SO42—或SO32—时,则不能用HNO3酸化的AgNO3溶液来检验Cl-,因为生成的Ag2SO4也是不溶于稀HNO3的白色沉淀(SO32-能被HNO3氧化为SO42-).
2.卤族元素
[卤族元素]简称卤素.包括氟(F)、氯(C1)、溴(Br)、碘(I)和放射性元素砹(At).在自然界中卤素无游离态,都是以化合态的形式存在.
[卤素单质的物理性质]
颜色状态
(常态)熔点、沸点溶解度(水中)密度F2浅黄绿色浅


深气体低


高降


低小


大Cl2黄绿色气体部分溶于水,并与水发生不同程度反应Br2深红棕色液体易挥发I2紫黑色固体升华说明(1)实验室里,通常在盛溴的试剂瓶中加水(即“水封”),以减少溴的挥发.
(2)固态物质不经液态而直接变成气态的现象,叫做升华.升华是一种物理变化.利用碘易升华的性质,可用来分离、提纯单质碘.
(3)Br2、I2较难溶于水而易溶于如汽油、苯、四氯化碳、酒精等有机溶剂中.医疗上用的碘酒,就是碘(溶质)的酒精(溶剂)溶液.利用与水互不相溶的有机溶剂可将Br2、I2从溴水、碘水中提取出来(这个过程叫做萃取).
[卤素单质的化学性质]
(1)卤素的原子结构及元素性质的相似性、递变性.
氟F氯Cl溴Br碘I核电荷数9173553原子结构的相似性最外层上的电子数都是7个卤素化学性质的相似性①氟只有-1价,其余卤素有-l、+1、+3、+5、+7价②单质都具有强氧化性,是强氧化剂③单质均能与H2化合生成卤化氢气体,与金属单质化合生成金属卤化物④单质都能与水、强碱反应,Br2、I2的反应与C12类似原子结构的递变性核电荷数
电子层数
少多原子半径小大化学性质的递变性原子得电子能力
强弱单质的氧化性单质与氢气化合易难单质与水反应剧烈缓慢(微弱)对应阴离子的还原性弱强(2)卤素单质与氢气的反应.
F2Cl2Br2I2与H2化合的条件冷、暗点燃或光照500℃持续加热反应情况爆炸强光照射时爆炸缓慢化合缓慢化合,生成的HI同时分解产生卤化氢
的稳定性HF>HCl>HBr>HI(3)卤素单质与水的反应.
①2F2+2H2O=4HF+O2(置换反应)
注意:将F2通入某物质的水溶液中,F2先跟H2O反应.如将F2通入NaCl的水溶液中,同样发生上述反应,等等.
②X2+H2O=HX+HXO(X=C1、Br、I).
(4)卤素单质间的置换反应.
2NaBr+C12(新制、饱和)=2NaCl+Br22Br-+C12=2C1-+Br2
说明加入CCl4并振荡后,液体分层.上层为含有NaCl的水层,无色;下层为溶有Br2的CCl4层,显橙色.
2NaI+C12(新制、饱和)=2NaCl+I22I-+Cl2=2C1-+I2
说明①加入CCl4并振荡后,液体分层.上层为含有NaI的水层,无色;下层为溶有I2的CCl4层,显紫红色.
②将反应后的溶液加热蒸干灼烧,生成的I2升华,故残留的固体为NaCl(C12足量时)或NaCl和NaI的混合物(C12不足量时).
2NaI+Br2=2NaBr+I22I-+Br2=2Br-+I2
说明①加入CCl4并振荡后,液体分层.上层为含有NaBr的水层,无色,下层为溶有I2的CCl4层,显紫红色.
②将反应后的溶液加热蒸干灼烧,生成的I2升华,故残留的固体为NaBr(Br2足量时)或NaBr和NaI(Br2不足量时).
F2+NaX(熔融)=2NaF+X2(X=C1、Br、I)
注意将F2通入含Cl-、Br-或I-的水溶液中,不是发生卤素间的置换反应,而是F2与H2O反应.
(5)碘单质(I2)的化学特性.I2+淀粉溶液→蓝色溶液
说明①利用碘遇淀粉变蓝的特性,可用来检验I2的存在.
②只有单质碘(I2)遇淀粉才显蓝色,其他价态的碘无此性质.例如,向NaI溶液中滴加淀粉,溶液颜色无变化.若再滴加新制氯水,因有I2被置换出来,则此时溶液显蓝色.
[可逆反应]向生成物方向进行的反应叫正反应;向反应物方向进行的反应叫逆反应.在同一条件下,既能向正反应方向进行,同时又能向逆反应方向进行的反应,叫做可逆反应.
说明(1)判断一个反应是否是可逆反应,必须满足两个条件:①在同一条件下;②正、逆反应同时进行.如H2+I22HI,生成的HI在持续加热的条件下同时分解,故该反应为可逆反应.而如:2H2+O22H2O2H2O2H2↑+O2↑这两个反应就不是可逆反应.
(2)在化学方程式中,用可逆符号“”表示可逆反应.
[卤化银]
AgFAgClAgBrAgI颜色白色白色浅黄色黄色
逐渐加深溶解性易溶于水难溶于水,也难溶于稀HNO3感光性见光分解:2AgX2Ag+X2(X=Cl、Br、I)用途①检验X-:Ag++X-=AgX↓(试剂为AgNO3溶液和稀HNO3)
②制作感光材料(常用AgBr)③AgI用于人工降雨[碘的化合物]碘的化合物有KIO3(碘酸钾)、KI等.人体中的碘主要存在于甲状腺内,人体如果缺碘,就会患甲状腺肿症(大脖子病).为防止碘缺乏病,最为方便、有效的方法就是食用加碘盐,通常加入的是碘酸钾.
3.物质的量应用于化学方程式的计算
(1)原理:化学方程式中各物质的化学计量数之比,可以表示各物质的:
①微粒数之比;②物质的量之比;③同温、同压下气体的体积之比;④并可计算质量之比。例如:
2CO+O2=2CO2
化学计量数比2∶1∶2
物质的量比2mol∶1mol∶2mol
同温、同压下气体体积比2体积∶1体积∶2体积
标准状况下的体积比2×22.4L∶1×22.4L∶2×22.4L
质量比2×28g∶1×32g∶2×44g
(2)注意点:物质的量应用于化学方程式的计算时,同一物质的物理量的单位要保持一致,不同物质的物理量的单位要相互对应,即单位的使用要“上下一致、左右相当”.


高中化学知识点规律大全
——物质结构元素周期律

1.原子结构
[核电荷数、核内质子数及核外电子数的关系]核电荷数=核内质子数=原子核外电子数
注意:(1)阴离子:核外电子数=质子数+所带的电荷数
阳离子:核外电子数=质子数-所带的电荷数
(2)“核电荷数”与“电荷数”是不同的,如Cl-的核电荷数为17,电荷数为1.
[质量数]用符号A表示.将某元素原子核内的所有质子和中子的相对质量取近似整数值相加所得的整数值,叫做该原子的质量数.
说明(1)质量数(A)、质子数(Z)、中子数(N)的关系:A=Z+N.(2)符号X的意义:表示元素符号为X,质量数为A,核电荷数(质子数)为Z的一个原子.例如,Na中,Na原子的质量数为23、质子数为11、中子数为12.
[原子核外电子运动的特征]
(1)当电子在原子核外很小的空间内作高速运动时,没有确定的轨道,不能同时准确地测定电子在某一时刻所处的位置和运动的速度,也不能描绘出它的运动轨迹.在描述核外电子的运动时,只能指出它在原子核外空间某处出现机会的多少.
(2)描述电子在原子核外空间某处出现几率多少的图像,叫做电子云.电子云图中的小黑点不表示电子数,只表示电子在核外空间出现的几率.电子云密度的大小,表明了电子在核外空间单位体积内出现几率的多少.
(3)在通常状况下,氢原子的电子云呈球形对称。在离核越近的地方电子云密度越大,离核越远的地方电子云密度越小.
[原子核外电子的排布规律]
(1)在多电子原子里,电子是分层排布的.
电子层数(n)1234567表示符号KLMNOPQ离核远近能量高低n值越大,电子离原子核越远,电子具有的能量越高(2)能量最低原理:电子总是尽先排布在能量最低的电子层里,而只有当能量最低的电子层排满后,才依次进入能量较高的电子层中.因此,电子在排布时的次序为:K→L→M……
(3)各电子层容纳电子数规律:①每个电子层最多容纳2n2个电子(n=1、2……).②最外层容纳的电子数≤8个(K层为最外层时≤2个),次外层容纳的电子数≤18个,倒数第三层容纳的电子数≤32个.例如:当M层不是最外层时,最多排布的电子数为2×32=18个;而当它是最外层时,则最多只能排布8个电子.
(4)原子最外层中有8个电子(最外层为K层时有2个电子)的结构是稳定的,这个规律叫“八隅律”.但如PCl5中的P原子、BeCl2中的Be原子、XeF4中的Xe原子,等等,均不满足“八隅律”,但这些分子也是稳定的.
2.元素周期律
[原子序数]按核电荷数由小到大的顺序给元素编的序号,叫做该元素的原子序数.
原子序数=核电荷数=质子数=原子的核外电子数
[元素原子的最外层电子排布、原子半径和元素化合价的变化规律]
对于电子层数相同(同周期)的元素,随着原子序数的递增:
(1)最外层电子数从1个递增至8个(K层为最外层时,从1个递增至2个)而呈现周期性变化.
(2)元素原子半径从大至小而呈现周期性变化(注:稀有气体元素的原子半径因测定的依据不同,而在该周期中是最大的).
(3)元素的化合价正价从+1价递增至+5价(或+7价),负价从-4价递增至-1价再至0价而呈周期性变化.
[元素金属性、非金属性强弱的判断依据]
元素金属性强弱的判断依据:①金属单质跟水(或酸)反应置换出氢的难易程度.金属单质跟水(或酸)反应置换出氢越容易,则元素的金属性越强,反之越弱.②最高价氧化物对应的水化物——氢氧化物的碱性强弱.氢氧化物的碱性越强,对应金属元素的金属性越强,反之越弱.③还原性越强的金属元素原子,对应的金属元素的金属性越强,反之越弱.(金属的相互置换)
元素非金属性强弱的判断依据:①非金属单质跟氢气化合的难易程度(或生成的氢化物的稳定性),非金属单质跟氢气化合越容易(或生成的氢化物越稳定),元素的非金属性越强,反之越弱.②最高价氧化物对应的水化物(即最高价含氧酸)的酸性强弱.最高价含氧酸的酸性越强,对应的非金属元素的非金属性越强,反之越弱.③氧化性越强的非金属元素单质,对应的非金属元素的非金属性越强,反之越弱.(非金属相互置换)
[两性氧化物]既能跟酸反应生成盐和水,又能跟碱反应生成盐和水的氧化物,叫做两性氧化物.如A12O3与盐酸、NaOH溶液都能发生反应:A12O3+6H+=2A13++3H2OA12O3+2OH-=2A1O2-+H2O
[两性氢氧化物]既能跟酸反应又能跟碱反应的氢氧化物,叫做两性氢氧化物.如A1(OH)3与盐酸、NaOH溶液都能发生反应:Al(OH)3+3H+=2A13++3H2OA1(OH)3+OH-=A1O2-+2H2O
[原子序数为11—17号主族元素的金属性、非金属性的递变规律]
NaMgAlSiPSCl原子序数11121314151617单质与水(或酸)
的反应情况与冷水剧烈反应与冷水反应缓慢,与沸水剧烈反应与沸水反应很缓慢,与冷水不反应,部分溶于水,部分与水反应非金属单质与氢气化合情况反应
条件高温磷蒸汽与氢气能反应加热光照或点燃氢化物稳定性SiH4
极不
稳定PH3
高温
分解H2S
受热
分解HCl
很稳定最高价氧化物
对应水化物
的碱(酸)性强弱NaOH
强碱Mg(OH)2
中强碱Al(OH)3
或H3AlO3两性氢氧化物H4SiO4
极弱酸H3PO4
中强酸H2SO4
强酸HClO4
强酸金属性、非金属性
递变规律金属性逐渐减弱、非金属性逐渐增强[元素周期律]元素的性质随着原子序数的递增而呈周期性变化,这个规律叫做元素周期律.

3.元素周期表
[元素周期表]把电子层数相同的各种元素,按原子序数递增的顺序从左到右排成横行,再把不同横行中最外层电子数相同的元素,按电子层数递增的顺序由上至下排成纵行,这样得到的一个表叫做元素周期表.
[周期]具有相同的电子层数的元素按原子序数递增的顺序排列而成的一个横行,叫做一个周期.
(1)元素周期表中共有7个周期,其分类如下:
短周期(3个):包括第一、二、三周期,分别含有2、8、8种元素
周期(7个)长周期(3个):包括第四、五、六周期,分别含有18、18、32种元素
不完全周期:第七周期,共26种元素(1999年又发现了114、116、118号三种元素)
(2)某主族元素的电子层数=该元素所在的周期数.
(3)第六周期中的57号元素镧(La)到71号元素镥(Lu)共15种元素,因其原子的电子层结构和性质十分相似,总称镧系元素.
(4)第七周期中的89号元素锕(Ac)到103号元素铹(Lr)共15种元素,因其原子的电子层结构和性质十分相似,总称锕系元素.在锕系元素中,92号元素铀(U)以后的各种元素,大多是人工进行核反应制得的,这些元素又叫做超铀元素.
[族]在周期表中,将最外层电子数相同的元素按原子序数递增的顺序排成的纵行叫做一个族.
(1)周期表中共有18个纵行、16个族.分类如下:
①既含有短周期元素同时又含有长周期元素的族,叫做主族.用符号“A”表示.主族有7个,分别为IA、ⅡA、ⅢA、ⅣA、VA、ⅥA、ⅦA族(分别位于周期表中从左往右的第1、2、13、14、15、16、17纵行).
②只含有短周期元素的族,叫做副族.用符号“B”表示.副族有7个,分别为IB、ⅡB、ⅢB、ⅣB、VB、ⅥB、ⅦB族(分别位于周期表中从左往右的第11、12、3、4、5、6、7纵行).
③在周期表中,第8、9、10纵行共12种元素,叫做Ⅷ族.
④稀有气体元素的化学性质很稳定,在通常情况下以单质的形式存在,化合价为0,称为0族(位于周期表中从左往右的第18纵行).
(2)在元素周期表的中部,从ⅢB到ⅡB共10个纵列,包括第Ⅷ族和全部副族元素,统称为过渡元素.因为这些元素都是金属,故又叫做过渡金属.
(3)某主族元素所在的族序数:该元素的最外层电子数=该元素的最高正价数

[原子序数与化合价、原子的最外层电子数以及族序数的奇偶关系]
(1)原子序数为奇数的元素,其化合价通常为奇数,原子的最外层有奇数个电子,处于奇数族.如氯元素的原子序数为17,而其化合价有-1、+1、+3、+5、+7价,最外层有7个电子,氯元素位于第ⅦA族.
(2)原子序数为偶数的元素,其化合价通常为偶数,原子的最外层有偶数个电子,处于偶数族.如硫元素的原子序数为16,而其化合价有-2、+4、+6价,最外层有6个电子,硫元素位于第ⅥA族.
[元素性质与元素在周期表中位置的关系]
(1)元素在周期表中的位置与原子结构、元素性质三者之间的关系:

(2)元素的金属性、非金属性与在周期表中位置的关系:
①同一周期元素从左至右,随着核电荷数增多,原子半径减小,失电子能力减弱,得电子能力增强.a.金属性减弱、非金属性增强;b.金属单质与酸(或水)反应置换氢由易到难;c.非金属单质与氢气化合由难到易(气态氢化物的稳定性增强);d.最高价氧化物的水化物的酸性增强、碱性减弱.
②同一主族元素从上往下,随着核电荷数增多,电子层数增多,原子半径增大,失电子能力增强,得电子能力减弱.a.金属性增强、非金属性减弱;b.金属单质与酸(或水)反应置换氢由难到易。c.非金属单质与氢气化合由易到难(气态氢化物的稳定性降低);d.最高价氧化物的水化物的酸性减弱、碱性增强.
③在元素周期表中,左下方的元素铯(Cs)是金属性最强的元素;右上方的元素氟(F)是非金属性最强的元素;位于金属与非金属分界线附近的元素(B、A1、Si、Ge、As、Sb、Te等),既具有某些金属的性质又具有某些非金属的性质.
(3)元素化合价与元素在周期表中位置的关系:
①在原子结构中,与化合价有关的电子叫价电子.主族元素的最外层电子即为价电子,但过渡金属元素的价电子还与其原子的次外层或倒数第三层的部分电子有关.
②对于非金属元素,最高正价+最低负价的绝对值=8(对于氢元素,负价为-1,正价为+1).

[核素]具有一定数目的质子和一定数目的中子的一种原子,叫做一种核素.也就是说,每一种原子即为一种核素,如H、H、C、C等各称为一种核素.
注意核素有同种元素的核素(如H、H)和不同种元素的核素(如C、C1等).
[同位素]质子数相同而中子数不同的同一元素的不同原子互称同位素.
说明(1)只有同一种元素的不同核素之间才能互称同位素.即同位素的质子数必定相同,而中子数一定不同,质量数也不同.
(2)由于一种元素往往有多种同位素,因此同位素的种数要多于元素的种数.
(3)同位素的特性:①物理性质不同(质量数不同),化学性质相同;②在天然存在的某种元素里,不论是游离态还是化合态,各种同位素所占的原子个数的百分比是不变的.
(4)氢元素的三种同位素:氕H(特例:该原子中不含中子)、氘H(或D)、氚H(或T).
(5)重要同位素的用途:H、H为制造氢弹的材料;U为制造原子弹的材料和核反应堆燃料.

[元素的相对原子质量]按各种天然同位素原子的相对原子质量与其所占的原子百分比(摩尔分数)求出的平均值.
(1)元素的相对原子质量的求法:
设某元素有A、B、C三种同位素,其相对原子质量分别为MA、MB、MC……,它们的原子个数百分比分别为a%、b%、c%,则:
该元素的相对原子质量=MA×a%+MB×b%+MC×c%+……
(2)要特别注意对“元素的相对原子质量”、“原子的相对原子质量”、“原子的质量数”、“原子的质量”这四个概念的辨析.

[元素周期律和元素周期表的意义]
1869年,俄国化学家门捷列夫发现了元素周期律,并编制了第一张元素周期表.到20世纪,随着原子结构理论的发展,元素周期律和周期表才发展为现在的形式.
(1)利用元素周期律,可预言未知元素.元素周期律和元素周期表为新元素的发现及预测它们的原子结构和性质提供了线索.(2)利用元素周期律和元素周期表,在周期表中一定的区域内寻找新元素.例如,在周期表右上角寻找制造新品种农药的元素;在金属与非金属的分界处附近寻找半导体材料;在过渡元素中寻找催化剂和耐高温、耐腐蚀的合金材料;等等.(3)元素周期律从自然科学方面有力地论证了事物变化中量变引起质变的规律性.

4.化学键
[离子键]使阴、阳离子结合而成的静电作用,叫做离子键.
说明(1)阴、阳离子间的静电作用包括静电排斥作用和吸引作用两个方面.
(2)阴、阳离子通过静电作用所形成的化合物,叫做离子化合物.
[电子式]在元素符号的周围用小黑点(·或×)来表示原子最外层电子的式子,称做电子式.电子式的几种表示方法:
(1)原子的电子式:将原子的所有最外层电子数在元素符号的周围标出.例如:
氢原子()、钠原子()、镁原子()、铝原子()、碳原子()、氮原子()、硫原子()、氩原子().
(2)离子的电子式:
①阴离子:在书写阴离子的电子式时,须在阴离子符号的周围标出其最外层的8个电子(H-为2个电子),外加方括号,再在括号外的右上角注明阴离子所带的电荷数.例如S2-的电子式为[]2-,OH-的电子式为.
②阳离子;对于简单阳离子,其电子式即为阳离子符号,如钠离子Na+、镁离子Mg2+等.对于带正电荷的原子团,书写方法与阴离子类似,区别在于在方括号右上角标上阳离子所带的正电荷数.如NH4+电子式为
(3)离子化合物的电子式:在书写离子化合物的电子式时,每个离子都要分开写.如CaCl2的电子式应为.
(4)用电子式表示离子化合物的形成过程:先在左边写出构成该离子化合物的元素原子的电子式,标上“→”,再在右边写出离子化合物的电子式.例如,用电子式表示MgBr2、Na2S的形成过程:


说明含有离子键的物质:①周期表中IA、IA族元素分别与ⅥA、ⅦA族元素形成的盐;②IA、ⅡA族元素的氧化物;③铵盐,如NH4Cl、NH4NO3等;④强碱,如NaOH、KOH等.

[共价键]原子间通过共用电子对所形成的相互作用.由共价键形成的化合物叫做共价化合物.
说明(1)形成共价键的条件:原子里有未成对电子(即原子最外层电子未达8电子结构,其中H原子最外层未达2电子结构).各种非金属元素原子均可以形成共价键,但稀有气体元素原子因已达8电子(He为2电子)稳定结构,故不能形成共价键.
(2)共价键形成的表示方法:
①用电子式表示.例如,用电子式表示HCl分子的形成过程:。
注意:
a.书写由原子构成的单质分子或共价化合物的电子式时,必须使分子中每个原子都要达到8电子结构(H原子为2电子结构).例如,HCl分子的电子式为。
b.由原子构成的分子与由阴、阳离子构成的离子化合物的区别.如:HCl、NaCl
②用结构式表示.用短线(一根短线表示一对共用电子对)将分子中各原子连接,以表示分子中所含原子的排列顺序和结合方式.如H-C1、N≡N、O=C=O等.
(3)共价键的存在情况:共价键既存在于由原子直接构成的单质分子(H2、N2)或共价化合物分子(H2O、CH4)中,也存在于多原子离子化合物中.含有共价键的化合物不一定是共价化合物,也可能是离子化合物(NaOH、Na2O2);同时含有离子键和共价键的化合物必定是离子化合物,如NaOH、NH4C1等.
[化学键]相邻的原子之间强烈的相互作用叫做化学键.
说明(1)化学键只存在于分子内直接相邻的原子之间,存在于分子之间的作用不属于化学键.
(2)离子键、共价键都属于化学键.
(3)化学反应的过程,本质上就是旧化学键的断裂和新化学键的形成过程.
5.非极性分子和极性分子
[非极性键]同一元素原子间通过共用电子对形成的一类共价键.
如C12分子中的Cl-C1键即为非极性键.
说明非极性键是非极性共价键的简称.非极性键只能存在于同种元素的原子之间.
[极性键]不同种元素原子间通过共用电子对形成的一类共价键.
如HCl分子中的H-C1键属于极性键.
说明极性键是极性共价键的简称.只要是不同种元素原子之间形成的共价键都属于极性键.
[非极性分子]指整个分子的电荷分布均匀、分子结构对称的一类分子.
如H2、O2、N2等单质分子,以及CO2、CH4等均属于非极性分子.
[极性分子]指分子中的电荷分布不均匀、结构不对称的一类分子.
如H2O、H2S、HCl分子等均属于极性分子.

[键的极性与分子的极性]
键的极性分子的极性分类极性键和非极性键极性分子和非极性分子决定因素是否由同种元素的原子形成分子内电荷分布是否均匀,分子结构是否对称联系①以非极性键结合的双原子分子必为非极性分子,如H2、C12、N2等
②以极性键结合的双原子分子一定是极性分子,如HCl、CO等
③以极性键结合的多原子分子,究竟是极性分子还是非极性分子,
要根据该分子的具体分子结构然后确定.如H2O的分子结构为“∧”型,属于极性分子;而CO2分子结构为直线形,属于非极性分子说明键有极性;分子不一定有极性
ABn型化合物分子的极性的简易判断方法:
若ABn中A元素的化合价数等于A元素所在族的序数,则ABn为非极性分子.例如,CO2分子中C元素化合价为+4价,C元素属于ⅣA族,故CO2分子为非极性分子;CCl4分子中C元素化合价为+4价,C元素属于ⅣA族,故CCl4分子为非极性分子.
若ABn中A元素的化合价数不等于A元素所在族的序数,则ABn为极性分子.例如,H2O分子中O元素化合价为-2价,O元素属于ⅥA族,故H2O分子为极性分子;NH3分子中N元素化合价为-3价,N元素属于ⅤA族,故NH3分子为极性分子.

[分子间作用力]指在物质的分子与分子之间存在着的作用力.
说明(1)荷兰物理学家范德华首先研究了分子间作用力,所以分子间作用力又叫范德华力;(2)分子间作用力要比化学键弱得多;(3)化学键的强弱影响着物质的化学性质;分子间作用力的大小对由分子构成的物质的物理性质如熔点、沸点、溶解度等有影响.



高中化学知识点规律大全
——硫和硫的化合物环境保护

1.氧族元素
[氧族元素]包括氧(8O)、硫(16S)、硒(34Se)、碲(52Te)和放射性元素钋(84Po).氧族元素位于元素周期表中第ⅥA族.
[氧族元素的原子结构]
(1)相似性:①最外层电子数均为6个;②主要化合价:氧为-2价,硫、硒、碲有-2、+4、+6价.
(2)递变规律:按氧、硫、硒、碲的顺序,随着核电荷数的增加,电子层数增多,原子半径增大,失电子能力增强,得电子能力减弱,非金属性减弱,金属性增强.

[氧族元素单质的物理性质]
O2SSeTe颜色无色黄色灰色银白色状态气体固体固体固体密度逐渐增大熔点、沸点逐渐升高导电性不导电不导电半导体导电
[氧族元素的化学性质]
O2SSeTe与H2化合的条件及氢化物的稳定性反应条件点燃加热高温不能直接化合氢化物
稳定性H2O很稳定H2S不稳定H2Se不稳定H2Te
很不稳定常见氧化物的化学式SO2、SO3SeO2、SeO3TeO2、TeO3高价含氧酸的化学式H2SO4H2SeO4H2TeO4与同周期ⅣA、VA、ⅦA族元素的非金属性强弱比较同周期元素的非金属性:ⅣA<VA<ⅥA<ⅦA
[同素异形体]由同种元素形成的几种性质不同的单质,叫做这种元素的同素异形体.例如,O2与O3,金刚石、石墨与C60,白磷与红磷,均分别互为同素异形体;硫元素也有多种同素异形体.
注意“同位素”与“同素异形体”的区别.同位素研究的对象是微观的原子,而同素异形体研究的对象是宏观的单质.

[臭氧]
(1)物理性质:在常温、常压下,臭氧是一种具有特殊臭味的淡蓝色气体,密度比氧气大,也比氧气易溶于水.液态臭氧呈深蓝色,固态臭氧呈紫黑色.
(2)化学性质:
①不稳定性.O3在常温时能缓慢分解,高温时分解加速:2O3=3O2.
②强氧化性.例如:a.Ag、Hg等不活泼金属能与O3发生反应;
b.O3+2KI+H2O=O2+I2+2KOH.(此反应可用于O3的定量分析)
(3)用途:
①作漂白剂.O3能使有机物的色素和染料褪色(其褪色原理与HClO类似).如将O3通入石蕊试液中,溶液变为无色.②消毒剂.
(4)制法:3O22O3
(5)臭氧在自然界中的存在及其与人类的关系.
①存在:自然界中含有臭氧,其中90%集中在距离地面15km~50km的大气平流层中(即通常所说的臭氧层).②与人类的关系:空气中的微量臭氧能刺激中枢神经,加速血液循环,令人产生爽快和振奋的感觉.大气中的臭氧层能吸收太阳的大部分紫外线,使地球上的生物免遭伤害.但氟氯烃(商品名为氟利昂)等气体能破坏臭氧层.因此,应减少并逐步停止氟氯烃等的生产和使用,以保护臭氧层.
[过氧化氢]
(1)物理性质:过氧化氢俗称双氧水,是一种无色粘稠液体.市售双氧水中H2O2的质量分数一般约为30%.
(2)化学性质:
①H2O2显弱酸性,是二元弱酸.其电离方程式可表示为:
H2O2H++HO2-HO2-H++O22-
②不稳定性.H2O2贮存时就会分解.在其水溶液中加入MnO2等催化剂,分解速度大大加快.
2H2O22H2O+O2↑
说明该反应原理是实验室制O2的常见方法之一.其发生装置为“固+液不加热”型.
③H2O2既具有氧化性又具有还原性.H2O2中的氧元素为-1价,介于0价与-2价之间,当H2O2遇到强氧化剂时表现出还原性,而当遇到强还原剂时则表现出氧化性.例如:
2KMnO4+5H2O2+3H2SO4=K2SO4+2MnSO4+5O2↑+8H2O(H2O2表现还原性)
H2O2+2KI=2KOH+I2(H2O2表现氧化性)
(3)重要用途:
①医疗上广泛使用稀双氧水(含H2O2的质量分数为3%或更小)作为消毒杀菌剂.
②工业上用10%的双氧水作漂白剂(漂白毛、丝及羽毛等)、脱氯剂.
③实验室制取氧气.
[硫化氢]
(1)物理性质:
①硫化氢是一种无色、有臭鸡蛋气味的气体,密度比空气大.
②硫化氢有剧毒,是一种大气污染物.在制取和使用H2S气体时,必须在密闭系统如通风橱中进行.
③在常温、常压下,1体积水中能溶解2.6体积的硫化氢.
(2)化学性质:
①不稳定性:H2S受热(隔绝空气)能分解:H2SH2+S
②可燃性:H2S气体能在空气中燃烧:
2H2S+3O2(充足)2H2O+2SO22H2S+O2(不足)2H2O+2S
(发出淡蓝色火焰)(析出黄色固体)
③强还原性:H2S中的硫为-2价,处在最低价态,当遇到氧化剂时,硫被氧化为0价、+4价或+6价.如:
H2S+X2=2HX+S↓(X=Cl、Br、I)
H2S+H2SO4(浓)=S↓+SO2+2H2O
④水溶液显弱酸性.硫化氢的水溶液叫氢硫酸.氢硫酸是一种二元弱酸,具有酸的通性.氢硫酸易挥发,当氢硫酸受热时,硫化氢会从溶液里逸出.
(3)实验室制法:
反应原理:FeS+2H+=Fe2++H2S↑(因H2S有强还原性,故不能用HNO3或浓H2SO4制取H2S气体)发生装置:固+液→气体型装置
干燥剂:用P2O5或CaCl2(不能用浓H2SO4或碱性干燥剂).

2.二氧化硫
[二氧化硫]
(1)物理性质:
①二氧化硫是一种无色、有刺激性气味的气体,有毒,密度比空气大,易液化.
②易溶于水.在常温、常压下,1体积水能溶解40体积的SO2气体.
(2)化学性质:
①二氧化硫与水反应:SO2+H2OH2SO3(该反应为可逆反应)
说明a.将装满SO2气体的试管倒立在滴有紫色石蕊试液的水槽中,一段时间后,水充满试管,试管中的液体变为红色.
b.反应生成的H2SO3为二元中强酸,很不稳定,易分解:H2SO3H2O+SO2
②二氧化硫与氧气的反应:2SO2+O22SO3
说明a.该反应是工业上制造硫酸的反应原理之一.
b.反应产物SO3是一种无色固体,熔点(16.8℃)和沸点(44.8℃)都很低.SO3与H2O反应生成H2SO4,同时放出大量的热:SO3+H2O=H2SO4+热量
c.SO2中的硫处于+4价,因此SO2既具有氧化性又具有还原性.例如:
SO2+2H2S=3S+2H2O
SO2+X2+2H2O=2HX+H2SO4(X=C1、Br、I)
③二氧化硫的漂白性:

说明a.SO2和C12(或O3、H2O2、Na2O2等)虽然都有漂白作用,但它们的漂白原理和现象有不同的特点.Cl2的漂白原理是因为C12与H2O反应生成的HClO具有强氧化性(O3、H2O2、Na2O2等与此类似),将有色物质(如有色布条、石蕊试液、品红试液等)氧化成无色物质,褪色后不能再恢复到原来的颜色;而SO2是因它与水反应生成的H2SO3跟品红化合生成了无色化合物,这种不稳定的化合物在一定条件下(如加热或久置)褪色后又能恢复原来的颜色,用SO2漂白过的草帽辫日久又渐渐变成黄色就是这个缘故.
b.SO2能使橙色的溴水、黄绿色的氯水、紫红色的酸性KMnO4溶液等褪色,这是因为SO2具有还原性的缘故,与SO2的漂白作用无关.
c.利用SO2气体使品红溶液褪色、加热后红色又复现的性质,可用来检验SO2气体的存在和鉴别SO2气体.
④二氧化硫能杀菌,可以用作食物和水果的防腐剂.
[二氧化硫的污染和治理]
(1)SO2的污染:二氧化硫是污染大气的主要有害物质之一.它对人体的直接危害是引起呼吸道疾病,严重时还会使人死亡.
(2)酸雨的形成和危害:空气中的SO2在O2和H2O的作用下生成H2SO3、H2SO4。
2SO2+O2=2SO3SO2+H2O=H2SO3SO3+H2O=H2SO4
下雨时,硫的氧化物(和氮的氧化物)以及所形成的硫酸(和硝酸)随雨水降下,就形成酸雨.酸雨的pH小于5.6(正常雨水因溶解了CO2,其pH约为5.6).
酸雨能使湖泊水质酸化,毒害鱼类和其他水生生物;使土壤酸化,破坏农田,损害农作物和森林;酸雨还会腐蚀建筑物、工业设备和名胜古迹等.
(3)治理:空气中的二氧化硫主要来自化石燃料(煤和石油)的燃烧.此外,还有含硫矿石的冶炼和硫酸、磷肥、纸浆生产等产生的工业废气.消除大气污染的主要方法之一是减少污染物的排放、例如,硫酸厂、化工厂、冶炼厂等的尾气在排放前进行回收处理.

3.硫酸
[硫酸]
(1)物理性质:
①纯硫酸是一种无色透明、粘稠的油状液体.常用的浓硫酸的质量分数为98.3%,密度为1.84g·cm-3(物质的量浓度为18.4mol·L-1),沸点为338℃(因此,浓硫酸属高沸点、难挥发性酸).
②硫酸易溶于水,能以任意比与水混溶.浓硫酸溶于水时放出大量的热.因此,在稀释浓硫酸时,要将浓硫酸缓慢倒入水中,并边加边搅拌.
(2)化学性质:
①硫酸属于强电解质,是二元强酸,稀H2SO4具有酸的通性.例如:
Zn+2H+=Zn2++H2↑(实验室制H2原理)
Fe2O3+6H+=2Fe3++3H2O(除铁锈原理)
H2SO4+Ba(OH)2=BaSO4↓+2H2O
说明:浓硫酸中含水量很少,因此,浓H2SO4的电离程度很小,其中主要含H2SO4分子.
②吸水性:
a.浓H2SO4能吸收空气中的水分或各种物质中混有的游离态的H2O,形成一系列稳定的化合物,如H2SO4·H2O、H2SO4·2H2O和H2SO4·4H2O等.因此,在实验室中浓H2SO4可用来作气体干燥剂,但不能干燥可与浓H2SO4反应的碱性气体(如NH3等)和强还原性气体(如H2S、HI、HBr等).
b.因为浓H2SO4能吸收空气中的水分,所以实验室保存浓H2SO4时应注意密封,以防止浓H2SO4吸收水分而变稀.
③脱水性:浓H2SO4能将有机物中的氢、氧元素按2∶1的组成比脱出生成水,使有机物发生变化并生成黑色的炭.例如:C12H22O11(蔗糖)12C+11H2O
又如将浓H2SO4滴到蓝色石蕊试纸上,试纸先变红色然后变黑色.
注意浓H2SO4的脱水性及溶于水时放出大量热的性质,使浓H2SO4对有机物具有强烈的腐蚀性.因此,如皮肤上不慎沾上浓H2SO4时,不能先用水冲洗,而先要用干布迅速擦去,再用大量水冲洗.
④强氧化性:浓H2SO4中的硫为+6价,处于硫元素的最高价态,因此浓H2SO4具有强氧化性.在反应中,浓H2SO4被还原为+4价硫的化合物、单质硫或-2价硫的化合物.
a.常温下,浓H2SO4使Fe、A1发生钝化(Fe、A1难溶于冷的浓H2SO4中).
说明浓硫酸跟某些金属接触,使金属表面生成一薄层致密的氧化物保护膜,阻止内部金属继续跟硫酸反应,这一现象叫做金属的钝化.钝化是化学变化.利用Fe、A1在冷的浓H2SO4中产生钝化的性质,可用铁或铝制容器装盛浓硫酸.
b.加热时,浓H2SO4能跟除Pt、Au外的金属发生反应.反应的通式可表示为:
金属(Pt、Au除外)+H2SO4(浓)硫酸盐+SO2↑+H2O
例如:2H2SO4(浓)+CuCuSO4+2H2O+SO2↑
说明Cu与浓H2SO4的反应中,由于H2SO4中的硫元素的化合价只有部分改变,因此浓硫酸同时表现出了氧化性和酸性.此外,随着反应的进行,浓H2SO4会渐渐变稀,而稀H2SO4是不与Cu发生反应的.因此,反应物Cu和H2SO4都有可能剩余,且实际产生的SO2气体的体积要比理论值小.
c.加热时,浓H2SO4能使非金属单质C、S、P等氧化.例如:
2H2SO4(浓)+CCO2↑+2SO2↑+2H2O(在此反应中,H2SO4只表现出氧化性)
d.浓H2SO4能氧化某些具有还原性的物质.例如:
H2SO4(浓)+H2S=S+SO2+2H2O
2HBr+H2SO4(浓)=Br2+SO2+2H2O
8HI+H2SO4(浓)=4I2+H2S+4H2O
[氧化性酸与酸的氧化性]所谓“氧化性酸”是指酸根部分易于获得电子的酸,如浓H2SO4、HNO3等,由于其中、易获得电子而表现出很强的氧化性;而盐酸、稀硫酸等酸根部分不能或不易获得电子,所以它们是非氧化性酸.
在水溶液中任何酸都能不同程度地电离出H+,H+在一定条件下可获得电子形成H2.从这一观点看,酸都具有氧化性,但这是H+表现出来的氧化性,它与氧化性酸中的中心元素处于高价态易获得电子具有的氧化性是不同的.
区别“氧化性酸”与“酸的氧化性”这两个概念的关键如下:酸根部分易获得电子→有氧化性→是氧化性酸
酸电离出的H+→有氧化性→酸的氧化性→是非氧化性酸
[SO42-的检验]正确操作步骤:
待检溶液无现象产生白色沉淀,说明原溶液中含SO42—离子.
离子方程式:SO42-+Ba2+=BaSO4↓
注意①加入盐酸的目的是将待检溶液中可能存在的、对检验SO42-有干扰作用的CO32-、SO32-等阴离子通过反应而除去:
CO32-+2H+=CO2↑+H2OSO32-+2H+=SO2↑+H2O
AgCl也是不溶于稀HNO3的白色沉淀.向待检液中加入盐酸时,若有白色沉淀产生,需进行过滤才能继续下一步操作.
②在加入BaCl2或Ba(NO3)2溶液前,不能用HNO3酸化待检溶液.因为若待检溶液中含有SO32-时,会被HNO3氧化为SO42-,也能产生同样的现象.

[硫酸钙和硫酸钡]
硫酸钙(CaSO4)硫酸钡(BaSO4)自然界存在的形式石膏(CaSO4·2H2O)重晶石性质①白色固体,微溶于水②2(CaSO4·2H2O)2CaSO4·H2O(熟石膏)+3H2O,熟石膏与水混合后很快凝固,重新变成生石膏不溶于水,也不溶于酸.不易被X-射线透过用途①制作各种模型和医疗用的石膏绷带
②调节水泥的凝固速度①作X-射线透视肠胃的内服药剂(俗称“钡餐”)②作白色颜料
4.环境保护
[大气污染及其防治]当大气中某些有毒物质的含量超过正常值或大气的自净能力时,就发生了大气污染.大气污染既危害人体健康又影响动植物的生长,同时会破坏建筑材料,严重时会改变地球的气候.例如,使气候变暖、破坏臭氧层,形成酸雨等.大气污染的防治要采取综合措施.主要包括:调整能源结构,合理规划工业发展和城市建设布局,综合运用各种防治污染的技术措施,制定大气质量标准、加强大气质量监测,采取生物措施、改善生态环境,植树造林、充分利用环境的自净能力等.
[空气质量日报、周报]从1997年5月起,我国有几十座城市先后开始定期发布城市空气质量周报.在此基础上,又有许多城市开始发布空气质量日报.空气质量日报的主要内容包括“空气污染指数”、“空气质量级别”、“首要污染物”等.空气污染指数(简称APT)就是将常规监测的几种空气污染物的浓度简化为单一的数值形式,并分级表示空气污染程度和空气质量状况.这种方式适用于表示城市的短期空气质量状况和变化趋势.根据我国空气污染的特点和污染防治重点,目前计入空气污染指数的项目暂定为:二氧化硫、二氧化氮和可吸入颗粒等。
空气质量分级标准是:空气污染指数50点对应的污染物浓度为空气质量日均值的一级标准,空气质量优;100点对应二级标准,空气质量良好;200点对应三级标准,空气轻度污染;300点对应四级标准,空气质量中度污染;超过300点则为五级标准,空气质量属重度污染.
[水污染及其防治]由于人类活动排放的污染物,使水的物理、化学性质发生变化或生物群落组成发生变化,从而降低了水的使用价值的现象,叫做水污染.水污染的主要物质有重金属、酸、碱、盐等无机污染物,耗氧物质,植物营养物质,石油和难降解有机物等.此外,对水体造成污染的还有病原体污染、放射性污染、悬浮固体物污染、热污染等.日常使用的合成洗涤剂也会对水体造成污染.防治水污染的根本措施是控制污水的任意排放.污水要经过处理,达到国家规定的排放标准后再排放.污水处理的方法一般可归纳为物理法、生物法和化学法.各种方法都各有特点和适用条件,往往需要配合使用.



高中化学知识点规律大全
——硅和硅酸盐工业
1.碳族元素
[碳族元素]包括碳(6C)、硅(14Si)、锗(32Ge)、锡(50Sn)和铅(82Pb)5种元素.碳族元素位于元素周期表中第ⅣA族。
[碳族元素的原子结构]
相似性:
①最外层电子数均为4个;
②主要化合价:+2价、+4价.其中C、Si、Ge、Sn的+4价化合物稳定;Pb的+2价的化合物稳定,但+4价的Pb的化合物却是不稳定的,如PbO2具有强氧化性。
(2)递变规律:按碳、硅、锗、锡、铅的顺序,随着核电荷数的增加,电子层数增多,原子半径增大,失电子能力增强,得电子能力减弱,非金属性减弱,金属性增强。由于碳族元素的最外层为4个电子,因此由非金属性向金属性递变的趋势很明显。在碳族元素的单质中,碳是非金属;硅虽然是非金属,但却貌似金属(为灰黑色固体),且为半导体;锗具有两性,但金属性比非金属性强,为半导体;锡和铅为金属。

[C60]C60与金刚石、石墨一样,都属于碳的同素异形体。C60是一种由60个碳原子构成的单质分子,其形状如球状的多面体,在C60分子中有12个五边形和20个六边形。



[硅]
(1)硅在自然界中的含量:硅在地壳中的含量居第二位(含量第一位的为氧元素)。
(2)硅在自然界中的存在形式:自然界中无单质硅,硅元素全部以化合态存在,如二氧化硅、硅酸盐等.化合态的硅是构成地壳的矿石和岩石的主要成分。
(3)单质硅的物理性质:单质硅有晶体硅和无定形硅两种。晶体硅是灰黑色、有金属光泽、硬而脆的固体。其熔点、沸点很高,硬度很大(晶体硅的结构类似于金刚石)。晶体硅是半导体。
(4)单质硅的化学性质:
①在常温下,硅的化学性质不活泼,不与O2、Cl2、H2SO4、HNO3等发生反应,但能与F2、HF和强碱反应。例如:Si+2NaOH+H2O=Na2SiO3+2H2↑
②在加热时,研细的硅能在氧气中燃烧:Si+O2SiO2
(5)用途:
①硅可用来制造集成电路、晶体管、硅整流器等半导体器件,还可制成太阳能电池。
②利用硅的合金,可用来制造变压器铁芯和耐酸设备等。
(6)工业制法.用焦炭在高温下还原SiO2可制得含有少量杂质的粗硅:
SiO2+2CSi+2CO↑
[二氧化硅]
(1)二氧化硅在自然界中的存在:天然二氧化硅叫硅石。石英的主要成分为二氧化硅晶体,透明的石英晶体叫做水晶,含有有色杂质的石英晶体叫做玛瑙。二氧化硅是一种硬度很大、熔点很高的固体。
(2)化学性质:
①SiO2是酸性氧化物.例如:SiO2+CaOCaSiO3
SiO2还可与NaOH反应:SiO2+2NaOH(水溶液中或熔融态)=Na2SiO3+H2O
注意a.由于SiO2与强碱溶液反应生成了粘性很强的Na2SiO3溶液,因此盛放碱性的试剂瓶不能用玻璃塞,以防止瓶塞和瓶子粘在一起.
b.SiO2不溶于水,也不与水反应.因此,不能通过SiO2与H2O反应的方法来制取其对应的水化物——硅酸(H2SiO3).制取H2SiO3的方法如下:
Na2SiO3+2HCl=2NaCl+H2SiO3↓
或Na2SiO3+CO2+H2O=Na2CO3+H2SiO3↓
硅酸(H2SiO3)不溶于水,其酸性比H2CO3还弱。
②SiO2能与氢氟酸发生反应:4HF+SiO2=SiF4+2H2O
SiO2是玻璃的主要成分,因此盛氢氟酸的试剂瓶不能用玻璃容器(可用塑料瓶)。
(3)用途:
①二氧化硅是制造高性能通讯材料——光导纤维的重要原料。
②石英用来制造石英电子表、石英钟。较纯净的石英用来制造石英玻璃,石英玻璃常用来制造耐高温的化学仪器。
③水晶常用来制造电子工业中的重要部件、光学仪器、工艺品和眼镜片等。
④玛瑙用于制造精密仪器轴承、耐磨器皿和装饰品。

[硅酸盐]
(1)自然界中硅酸盐的存在:硅酸盐是构成地壳岩石的主要成分,自然界中存在的各种天然硅酸盐约占地壳质量的5%。粘土的主要成分是硅酸盐。粘土是制造陶瓷器的主要原料。
(2)用氧化物的形式来表示硅酸盐的方法:
①先将硅酸盐中所含的各元素用氧化物形式表示;
②将各种氧化物按下列顺序进行排列,各氧化物之间用“·”开。例如:
金属氧化物(有多种金属氧化物时按金属活动顺序表排列)→SiO2→H2O
Na2SiO3:Na2O·SiO2
A12(Si2O5)(OH)4:A12O3·2SiO2·2H2O

2.硅酸盐工业

[硅酸盐工业]以含硅物质为原料经加热而制成硅酸盐产品的工业,叫做硅酸盐工业。如制造水泥、玻璃、陶瓷等的工业都属于硅酸盐工业。
[水泥、玻璃、陶瓷的比较]
水泥玻璃陶瓷生产原料粘土、石灰石、石膏纯碱、石灰石、石英(过量)粘土生产设备水泥回转窑玻璃窑生产原理将原料磨细,混合后在水泥回转窑中煅烧,再加入适量石膏,并研成细粉Na2CO3+SiO2Na2SiO3+CO2↑
CaCO3+SiO2CaSiO3+CO2↑烧制前在坯体上涂彩釉主要成分硅酸三钙(3CaO·SiO2)
硅酸二钙(2CaO·SiO2)
铝酸三钙(3CaO·A12O3)Na2SiO3、CaSiO3、SiO2
(Na2SiO3·CaSiO3·4SiO2或Na2O·CaO·6SiO2)重要性质具有水硬性,跟水掺和搅拌并静置后,很容易凝固变硬无固定熔点,在一定温度范围内逐渐熔化(玻璃态物质)具有抗氧性,耐高温,绝缘,易成形种类矿渣硅酸盐水泥、沸石岩水泥有色玻璃:(加入Co2O3后的玻璃呈蓝色,加入Cu2O后的玻璃呈红色.普通玻璃呈淡绿色是因为原料中混有Fe2+)、石英玻璃、光学玻璃、玻璃纤维、钢化玻璃土器、陶器、炻器、瓷器3.新型无机非金属材料
[新型无机非金属材料]最初的无机非金属材料主要是指硅酸盐材料,所以,硅酸盐材料也称为传统无机非金属材料.随着科学和生产技术的发展,以及人们生活的需要,一些具有特殊结构、特殊功能的新材料被相继研制出来,如半导体材料、超硬耐高温材料、发光材料等,这些材料称为新型无机非金属材料.
新型无机非金属材料的特性主要有:①能承受高温,强度大;②具有电学特性;③具有光学特性;④具有生物功能.
[高温结构陶瓷和光导纤维]
高温结构陶瓷光导纤维(光纤)氧化铝陶瓷(人造刚玉)氮化硅陶瓷性能经受高温,不怕氧化,耐酸碱腐蚀,硬度大,耐磨损,密度小传导光能力很强,能同时传输大量信息;抗干扰性能好,不发生电磁辐射;通讯质量高,能防止窃听;质量小且细,不怕腐蚀,铺设方便主要
用途用作高级耐火材料;制造刚玉球磨机;制作高压钠灯的灯管制造轴承、汽轮机叶片、机械密封环、永久性模具等机械构件;制造柴油机用作长途通讯的干线;用于医疗、信息处理、传能传像、遥测遥控、照明等;用于能量传输和信息传输


高中化学知识点规律大全
——氮族元素
1.氮和磷
[氮族元素]包括氮(7N)、磷、(15P)、砷(33As)、锑(51Sb)、铋(83Bi)五种元素.氮族元素位于元素周期表中第VA族,其代表元素为氮和磷.
[氮族元素的原子结构]
(1)相似性:
①最外层电子数均为5个;
②主要化合价:氮有-3、+1、+2、+3、+4、+5价;磷和砷有-3、+3、+5价;锑、铋有+3、+5价.
(2)递变规律:按氮、磷、砷、锑、铋的顺序,随着核电荷数的增加,电子层数增多,原子半径增大,失电子能力增强,得电子能力减弱,非金属性减弱,金属性增强.在氮族元素的单质中,氮、磷具有较明显的非金属性;砷虽然是非金属,但有一些金属性;锑、铋为金属.
[氮族元素单质的物理性质]
N2PAsSbBi颜色无色白磷:白色或黄色
红磷:红棕色灰砷:灰色银白色银白色或微显红色状态气体固体固体固体固体密度逐渐增大
熔点、沸点先按N2、P、As的顺序逐渐升高,而后按Sb、Bi的顺序逐渐降低
[氮气]
(1)氮元素在自然界中的存在形式:既有游离态又有化合态.空气中含N278%(体积分数)或75%(质量分数);化合态氮存在于多种无机物和有机物中,氮元素是构成蛋白质和核酸不可缺少的元素.
(2)氮气的物理性质:纯净的氮气是无色气体,密度比空气略小.氮气在水中的溶解度很小.在常压下,经降温后,氮气变成无色液体,再变成雪花状固体.
(3)氮气的分子结构:氮分子(N2)的电子式为,结构式为N≡N.由于N2分子中的N≡N键很牢固,所以通常情况下,氮气的化学性质稳定、不活泼.
(4)氮气的化学性质:
①N2与H2化合生成NH3N2+3H22NH3
说明该反应是一个可逆反应,是工业合成氨的原理.
②N2与O2化合生成NO:N2+O22NO
说明在闪电或行驶的汽车引擎中会发生以上反应.
(5)氮气的用途:
①合成氨,制硝酸;
②代替稀有气体作焊接金属时的保护气,以防止金属被空气氧化;
⑧在灯泡中填充氮气以防止钨丝被氧化或挥发;
④保存粮食、水果等食品,以防止腐烂;
⑤医学上用液氮作冷冻剂,以便在冷冻麻醉下进行手术;
⑥利用液氮制造低温环境,使某些超导材料获得超导性能.
[NO、NO2性质的比较]
氮的氧化物一氧化氮(NO)二氧化氮(NO2)物理性质为无色、不溶于水、有毒的气体为红棕色、有刺激性气味、有毒的气体,易溶于水化学性质①极易被空气中的O2氧化:
2NO+O2=2NO2
②NO中的氮为+2价,处于中间价态,既有氧化性又有还原性与H2O反应:
3NO2+H2O=2HNO3+NO
(工业制HNO3原理.在此反应中,NO2同时作氧化剂和还原剂)
[自然界中硝酸盐的形成过程]
(1)电闪雷鸣时:N2+O22NO
(2)2NO+O2=2NO2
(3)下雨时:3NO2+H2O=2HNO3+NO
(4)生成的硝酸随雨水淋洒到土壤中,并与土壤中的矿物作用生成能被植物吸收的硝酸盐.

[光化学烟雾]NO、NO2有毒,是大气的污染物.空气中的NO、NO2污染物主要来自于石油产品和煤燃烧的产物、汽车尾气以及制硝酸工厂的废气.NO2在紫外线照射下,发生一系列光化学反应,产生一种有毒的烟雾——光化学烟雾.因此,NO2是造成光化学烟雾的主要因素.光化学烟雾刺激呼吸器官,使人生病甚至死亡.

[磷]
(1)磷元素在自然界中的存在形式:自然界中无游离态的磷.化合态的磷主要以磷酸盐的形式存在于矿石中.动物的骨骼、牙齿和神经组织,植物的果实和幼芽,生物的细胞里都含有磷.
(2)单质磷的化学性质:
①与O2反应:4P+5O22P2O5
②磷在C12中燃烧:2P+3C12(不足量)2PCl32P+5Cl2(足量)2PCl5


[磷的同素异形体——白磷与红磷]
磷的同素异形体白磷红磷说明






质颜色、状态无色蜡状固体红棕色粉末
①白磷与红磷的结构不同是物理性质存在差别的原因②由两者物理性质的不同,证明了白磷与红磷是不同的单质密度(g·cm-3)1.822.34溶解性不溶于水,溶于CS2不溶于水,也不溶于CS2毒性剧毒无毒着火点40℃(白磷受到轻微的摩擦就会燃烧;常温时,白磷可被氧化而发光)240℃化学性质白磷、红磷在空气中燃烧,都生成白色的P2O5白磷与红磷燃烧都生成P2O5,证明它们都是由磷元素形成的单质相互转化白磷红磷证明白磷与红磷所含元素相同——互为同素异形体保存方法密封保存,少量白磷保存在水中密封保存,防止吸湿切削白磷应在水中进行用途制造高纯度磷酸;制造燃烧弹、烟幕弹制造高纯度磷酸;制农药、安全火柴
[五氧化二磷、磷酸]
(1)五氧化二磷的性质:五氧化二磷是白色粉末状固体,极易吸水(因此可作酸性气体的干燥剂).P2O5是酸性氧化物,与水反应:
P2O5+3H2O2H3PO4
(2)磷酸的性质、用途:磷酸(H3PO4)是一种中等强度的三元酸,具有酸的通性.磷酸主要用于制造磷肥,也用于食品、纺织等工业.

[氮、磷元素及其单质、化合物性质的比较]
元素氮(N)磷(P)自然界中存在的形式游离态和化合态只有化合态单质与O2化合的情况N2+O22NO(易)
4P+5O22P2O5(难)单质与H2化合的情况N2+3H22NH3
2P(蒸汽)+3H22PH3单质的化学活泼性及原因单质活泼性:N2<P
原因:N2分子中N≡N键很牢固,故N2性质稳定、不活泼氢化物的稳定性NH3>PH3最高价氧化物对应水化物的酸性HNO3>H3PO4非金属性N>P
2.铵盐
[氨]
(1)氨的物理性质:
①氨是无色、有刺激性气味的气体,比空气轻;②氨易液化.在常压下冷却或常温下加压,气态氨转化为无色的液态氨,同时放出大量热.液态氨气化时要吸收大量的热,使周围的温度急剧下降;③氨气极易溶于水.在常温、常压下,1体积水中能溶解约700体积的氨气(因此,氨气可进行喷泉实验);④氨对人的眼、鼻、喉等粘膜有刺激作用.若不慎接触过多的氨而出现病症,要及时吸入新鲜空气和水蒸气,并用大量水冲洗眼睛.
(2)氨分子的结构:NH3的电子式为,结构式为,氨分子的结构为三角锥形,N原子位于锥顶,三个H原子位于锥底,键角107°18′,是极性分子.
(3)氨的化学性质:
①跟水反应.氨气溶于水时(氨气的水溶液叫氨水),大部分的NH3分子与H2O分子结合成NH3·H2O(叫一水合氨).NH3·H2O为弱电解质,只能部分电离成NH4+和OH-:
NH3+H2ONH3·H2ONH4++OH-
a.氨水的性质:氨水具有弱碱性,使无色酚酞试液变为浅红色,使红色石蕊试液变为蓝色.氨水的浓度越大,密度反而越小(是一种特殊情况).NH3·H2O不稳定,故加热氨水时有氨气逸出:
NH4++OH-NH3↑+H2O
b.氨水的组成:氨水是混合物(液氨是纯净物),其中含有3种分子(NH3、NH3·H2O、H2O)和3种离子(NH4+和OH-、极少量的H+).
c.氨水的保存方法:氨水对许多金属有腐蚀作用,所以不能用金属容器盛装氨水.通常把氨水盛装在玻璃容器、橡皮袋、陶瓷坛或内涂沥青的铁桶里.
d.有关氨水浓度的计算:氨水虽然大部分以NH3·H2O形式存在,但计算时仍以NH3作溶质.
②跟氯化氢气体的反应:NH3+HCl=NH4C1
说明a.当蘸有浓氨水的玻璃棒与蘸有浓盐酸的玻璃棒靠近时,产生大量白烟.这种白烟是氨水中挥发出来的NH3与盐酸挥发出来的HCl化合生成的NH4C1晶体小颗粒.
b.氨气与挥发性酸(浓盐酸、浓硝酸等)相遇,因反应生成微小的铵盐晶体而冒白烟,这是检验氨气的方法之—.
c.氨气与不挥发性酸(如H2SO4、H3PO4等)反应时,无白烟生成.
③跟氧气反应:4NH3+5O24NO+6H2O
说明这一反应叫做氨的催化氧化(或叫接触氧化),是工业上制硝酸的反应原理之一.
(4)氨气的用途:
①是氮肥工业及制造硝酸、铵盐、纯碱的原料;②是有机合成工业如合成纤维、塑料、染料、尿素等的常用原料;③用作冰机中的致冷剂.

[铵盐]
铵盐是由铵离子(NH4+)和酸根阴离子组成的化合物.铵盐都是白色晶体,都易溶于水.
(1)铵盐的化学性质:
①受热分解.固态铵盐受热都易分解.根据组成铵盐的酸根阴离子对应的酸的性质的不同,铵盐分解时有以下三种情况:
a.组成铵盐的酸根阴离子对应的酸是非氧化性的挥发性酸时,则加热时酸与氨气同时挥发,冷却时又重新化合生成铵盐。例如:
NH4Cl(固)NH3↑+HCl↑NH3+HCl=NH4Cl(试管上端又有白色固体附着)
又如:
(NH4)2CO32NH3↑+H2O+CO2↑NH4HCO3NH3↑+H2O+CO2↑
b.组成铵盐的酸根阴离子对应的酸是难挥发性酸,加热时则只有氨气逸出,酸或酸式盐仍残留在容器中.如:
(NH4)2SO4NH4HSO4+NH3↑(NH4)3PO4H3PO4+3NH3↑
c.组成铵盐的酸根阴离子对应的酸是氧化性酸,加热时则发生氧化还原反应,无氨气逸出.例如:
NH4NO3N2O↑+2H2O
②跟碱反应——铵盐的通性.
固态铵盐+强碱(NaOH、KOH)无色、有刺激性气味的气体试纸变蓝色.例如:
(NH4)2SO4+2NaOHNa2SO4+2NH3↑+2H2O
NH4NO3+NaOHNaNO3+NH3↑+H2O
说明:a.若是铵盐溶液与烧碱溶液共热,则可用离子方程式表示为:
NH4++OH-NH3↑+H2O
b.若反应物为稀溶液且不加热时,则无氨气逸出,用离子方程式表示
为:NH4++OH-=NH3·H2O
c.若反应物都是固体时,则只能用化学方程式表示.
(2)氮肥的存放和施用.铵盐可用作氮肥.由于铵盐受热易分解,因此在贮存时应密封包装并存放在阴凉通风处;施用氮肥时应埋在土下并及时灌水,以保证肥效.
[铵盐(NH4+)的检验]将待检物取出少量置于试管中,加入NaOH溶液后,加热,用湿润的红色石蕊试纸在管口检验,若试纸变蓝色,则证明待检物中含铵盐(NH4+).
[氨气的实验室制法]
(1)反应原理:固态铵盐[如NH4Cl、(NH4)2SO4等]与消石灰混合共热:
2NH4Cl+Ca(OH)2CaCl2+2NH3↑+2H2O
(2)发生装置类型:固体+固体气体型装置(与制O2相同).
(3)干燥方法:常用碱石灰(CaO和NaOH的混合物)作干燥剂.不能用浓H2SO4、P2O5等酸性干燥剂和CaCl2干燥氨气,因为它们都能与氨气发生反应(CaCl2与NH3反应生成CaCl2·8NH3).
(4)收集方法:只能用向下排气法,并在收集氨气的试管口放一团棉花,以防止氨气与空气形成对流而造成制得的氨气不纯.
(5)验满方法;①将湿润的红色石蕊试纸接近集气瓶口,若试纸变蓝色,则说明氨气已充满集气瓶;②将蘸有浓盐酸的玻璃棒接近集气瓶口,有白烟产生,说明氨气已充满集气瓶.
注意①制氨气所用的铵盐不能用NH4NO3、NH4HCO3、(NH4)2CO3等代替,因为NH4NO3在加热时易发生爆炸,而NH4HCO3、(NH4)2CO3极易分解产生CO2气体使制得的NH3不纯.
②消石灰不能用NaOH、KOH等强碱代替,因为NaOH、KOH具有吸湿性,易潮解结块,不利于生成的氨气逸出,而且NaOH、KOH对玻璃有强烈的腐蚀作用.
③NH3极易溶于水,制取和收集的容器必须干燥.
④实验室制取氨气的另一种常用方法:将生石灰或烧碱加入浓氨水中并加热.有关反应的化学方程式为:CaO+NH3·H2OCa(OH)2+NH3↑
加烧碱的作用是增大溶液中的OH-浓度,促使NH3·H2O转化为NH3,这种制氨气的发生装置与实验室制Cl2、HCl气体的装置相同.

3.硝酸
[硝酸]
(1)物理性质:
①纯硝酸是无色、易挥发(沸点为83℃)、有刺激性气味的液体.打开盛浓硝酸的试剂瓶盖,有白雾产生.(与盐酸相同)
②质量分数为98%以上的浓硝酸挥发出来的HNO3蒸气遇空气中的水蒸气形成的极微小的硝酸液滴而产生“发烟现象”.因此,质量分数为98%以上的浓硝酸通常叫做发烟硝酸.
(2)化学性质:
①具有酸的一些通性.例如:CaCO3+2HNO3(稀)=Ca(NO3)2+CO2↑+H2O
(实验室制CO2气体时,若无稀盐酸可用稀硝酸代替)
②不稳定性.HNO3见光或受热发生分解,HNO3越浓,越易分解.硝酸分解放出的NO2溶于其中而使硝酸呈黄色.有关反应的化学方程式为:
4HNO32H2O+4NO2↑+O2↑
③强氧化性:不论是稀HNO3还是浓HNO3,都具有极强的氧化性.HNO3浓度越大,氧化性越强.其氧化性表现在以下几方面:
a.几乎能与所有金属(除Hg、Au外)反应.当HNO3与金属反应时,HNO3被还原的程度(即氮元素化合价降低的程度)取决于硝酸的浓度和金属单质还原性的强弱.对于同一金属单质而言,HNO3的浓度越小,HNO3被还原的程度越大,氮元素的化合价降低越多.一般反应规律为:
金属+HNO3(浓)→硝酸盐+NO2↑+H2O
金属+HNO3(稀)→硝酸盐+NO↑+H2O
较活泼的金属(如Mg、Zn等)+HNO3(极稀)→硝酸盐+H2O+N2O↑(或NH3等)
金属与硝酸反应的重要实例为:
3Cu+8HNO3(稀)=3Cu(NO3)2+2NO↑+4H2O
该反应较缓慢,反应后溶液显蓝色,反应产生的无色气体遇到空气后变为红棕色(无色的NO被空气氧化为红棕色的NO2)。实验室通常用此反应制取NO气体.
Cu+4HNO3(浓)=Cu(NO3)2+2NO2↑+2H2O
该反应较剧烈,反应过程中有红棕色气体产生.此外,随着反应的进行,硝酸的浓度渐渐变稀,反应产生的气体是NO2、NO等的混合气体.
b.常温下,浓HNO3能将金属Fe、A1钝化,使Fe、A1的表面氧化生成一薄层致密的氧化膜.因此,可用铁或铝制容器盛放浓硝酸,但要注意密封,以防止硝酸挥发变稀后与铁、铝反应.(与浓硫酸相似)
c.浓HNO3与浓盐酸按体积比1∶3配制而成的混合液叫王水.王水溶解金属的能力更强,能溶解金属Pt、Au.
d.能把许多非金属单质(如C、S、P等)氧化,生成最高价含氧酸或最高价非金属氧化物.例如:
C+4HNO3(浓)=CO2↑+4NO2↑+2H2O
e.能氧化某些具有还原性的物质,如H2S、SO2、Na2SO3、HI、HBr、Fe2+等.应注意的是,NO3-无氧化性,而当NO3-在酸性溶液中时,则具有强氧化性.例如,在Fe(NO3)2溶液中加入盐酸或硫酸,因引入了H+而使Fe2+被氧化为Fe3+;又如,向浓HNO3与足量的Cu反应后形成的Cu(NO3)2中再加入盐酸或硫酸,则剩余的Cu会与后来新形成的稀HNO3继续反应.
f.能氧化并腐蚀某些有机物,如皮肤、衣服、纸张、橡胶等.因此在使用硝酸(尤其是浓硝酸)时要特别小心,万一不慎将浓硝酸弄到皮肤上,应立即用大量水冲洗,再用小苏打或肥皂液洗涤.
(3)保存方法.硝酸易挥发,见光或受热易分解,具有强氧化性而腐蚀橡胶,因此,实验室保存硝酸时,应将硝酸盛放在带玻璃塞的棕色试剂瓶中,并贮存在黑暗且温度较低的地方.
(4)用途.硝酸是一种重要的化工原料,可用于制造炸药、染料、塑料、硝酸盐等.
[亚硝酸盐]
(1)亚硝酸钠的性质:亚硝酸钠(NaNO2)是无色或浅黄色晶体,外观类似食盐,有咸味,易溶于水,有毒.既具有氧化性又具有还原性.
(2)亚硝酸钠的存在:①长时间加热煮沸或反复加热沸腾的水,由于水中NO3-浓度增大,饮用后部分NO3-在人体内被还原为NO㈠②腐烂的蔬菜中;⑧腌制的食品如酸菜、肉制品中.
(3)亚硝酸盐的用途:①用于印染、漂白等行业;②在某些食品如腊肉、香肠中用作防腐剂和增色剂;⑧用作混凝土的掺合剂等.
(4)亚硝酸盐对人体的危害.亚硝酸盐是一种潜在的致癌物质,过量或长期食用对人体会造成危害.若误食亚硝酸盐或食用含有过量的亚硝酸盐的食物,会出现嘴唇、指甲、皮肤发紫以及头晕、呕吐、腹泻等症状,严重时可致人死亡.所以,国家对食品中的亚硝酸盐的含量有严格的限制.

4.氧化还原反应方程式的配平
[氧化还原反应方程式的配平]
氧化还原反应方程式的配平包括氧化还原反应化学方程式的配平和氧化还原反应离子方程式的配平.
(1)配平的原则:
①质量守恒原则:反应前后各元素的原子个数相等.
②化合价守恒原则:氧化剂化合价降低的总数与还原剂化合价升高的总数相等.
③电荷守恒原则:离子方程式两边阴、阳离子所带的正、负电荷的总数相等.
(2)配平的一般步骤:
①“标价态”.将反应前后价态发生了改变的元素的化合价标出.
②“列变化”.根据所标价态,列出化合价升高值和降低值.
③“求总数”.用最小公倍数法使化合价升降的总数相等,以保证化合价守恒.
④“配系数”.先将氧化剂、还原剂、氧化产物和还原产物配平后,再配平价态未发生变化的物质(一般为酸、碱、水),以保证质量守恒和电荷守恒.
(3)配平的一般方法:
在具体涉及到一个氧化还原反应方程式的配平时,究竟是先配反应物还是产物,或是先配氧化剂及其还原产物、再配还原剂及其氧化产物,则需根据不同的氧化还原反应方程式作具体分析.
①顺向法.配系数时,先配反应物、后配生成物.适用情况:这种配平方法适用于大多数的氧化还原反应方程式的配平,尤其是下列几类反应的配平,
a.有两种以上元素被氧化或还原的反应;
b.归中反应;
c.氧化剂或还原剂的化学式中有脚标的反应.
例1配平化学方程式:FeS2+O2一Fe2O3+SO2
分析从化学式可知,在反应过程中Fe:+2价→+3价,S:-1价→+4,O:0价→-2价,其中Fe、S元素化合价升高,FeS2中S元素有脚标2,故化合价升高数为:1+5×2=11;O元素化合价降低且O元素有脚标2,故化合价降低数为:2×2=4.显然,两者的最小公倍数为44,则在FeS2前配上系数4,在O2前配上系数11,这样就配好了反应物.即:
4FeS2+11O2—Fe2O3+SO2
再根据质量守恒原则配平生成物Fe2O3和SO2,得到配平后的化学方程式如下:
4FeS2+11O2=2Fe2O3+8SO2答案:略.
②逆向法.配系数时,先配生成物、再配反应物.适用情况:
a.歧化反应;
b.某元素被氧化或还原成不止一种价态的产物的反应;
c.产物的化学式中有脚标的反应.
例2配平化学方程式:S+KOH—K2S+K2SO3
分析反应过程中只有S元素的化合价发生变化,且在反应后。0价的S元素部分降低至-2价,部分升高至+4价.在配平时,先配产物K2S、K2SO3,由于化合价升降的最小公倍数为4,因此,在化学式K2SO3前配系数l(注意:系数为1时通常不写,但有些题目在化学式前打上方框或括号,则此时必须将系数1填入),在K2S前配系数2.即:
S+KOH-2K2S+K2SO3
再配反应物S和KOH.为了保证反应前后O、H元素的原子个数守恒,在产物中还应加上H2O,这样得到配平后的化学方程式如下:
3S+6KOH=2K2S+K2SO3+3H2O答案:略.
③交叉法.配系数时,先配氧化剂及其对应的还原产物(或先配还原剂及其对应的氧化产物),再配另一反应物及其对应的产物.适用情况:
a.某一反应物有脚标,其对应的产物也有脚标的反应;
b.某反应物在反应中既作氧化剂(或还原剂)又起酸(既生成盐)的作用(一般为HNO3、H2SO4、HCl等酸)的反应.
例3配平化学方程式Cu2S+HNO3—Cu(NO3)2+H2SO4+NO,求出氧化剂与还原剂的物质的量之比.
分析在反应中Cu2S为还原剂,其中的Cu、S两种元素均被氧化;HNO3中的N元素的化合价只有部分发生变化,既作氧化剂同时又起了酸的作用.因此配平时,先配Cu2S(有脚标)及其对应氧化产物Cu(NO3)2和H2SO4.Cu2S中化合价升高的总数为:1×2+8=10,HNO3中N元素化合价降低数为3,故最小公倍数为30,于是有:
3Cu2S+HNO3—6Cu(NO)3+3H2SO4+NO
再配HNO3和NO的系数.显然,NO前的系数应为10,HNO3前的系数应为参与氧化还原反应并作氧化剂的HNO3和未参与氧化还原反应的HNO3的总和:10+6×2=22.最后根据各元素反应前后原子个数守恒,在产物中添加H2O并配上系数8.
答案:3Cu2S+22HNO3=6Cu(NO3)2+3H2SO4+10NO↑+8H2O
氧化剂与还原剂的物质的量之比为10∶3.

5.有关化学方程式的计算
[有一种反应物过量的计算]
在化学反应中,反应物之间是按化学方程式所确定的质量比进行反应的.若反应中给出了一种反应物的质量,而其他反应物是足量的或过量的,则可利用已知的反应物的质量求算生成物的质量.若反应中的两种反应物的质量都已给出,则应先通过计算判断两种反应物是否恰好完全反应,如果不是恰好完全反应,应判断哪种反应物有剩余(即过量),然后再根据不足量的反应物求算生成物的质量.
判断反应物过量的方法有:
(1)假设法.假设一种反应物A完全反应,根据A的质量求算出与A恰好反应的另一反应物B的质量χ(B),再将χ(B)与题给的B的质量m(B)相比较.
若χ(B)<m(B),则假设成立,即B过量,A完全反应,应以A求算生成物的量;
若χ(B)>m(B),则假设不成立,即A过量,B完全反应,应以B求算生成物的量.
(2)比较法.设A与B按化学方程式所确定的质量分别为M(A)和M(B),然后将题目所给的质量m(A)与m(B)分别与M(A)和M(B)相比,再看比较结果的大小.
若>,则反应物A过量,B反应完全,用B求算生成物的量;
若<,则反应物B过量,A反应完全,用A求算生成物的量;
若=,则A与B恰好完全反应,用A或B求算生成物的量均可.
(3)交叉法.将两种反应物的质量m(A)、m(B)分别列入化学方程式中对应物质的质量M(A)、M(B)之下,然后交叉相乘,乘积大者的已知量为过量,小者则反应完全.例如,M(B)·m(A)>M(A)·m(B)时,反应物A过量,B反应完全.
注意在进行有一种反应物过量的计算时,还要考虑生成物是否与过量的反应物继续反应,若继续反应,又要进一步判断继续反应时哪一种反应物过量,再进行下一步计算.
例1将3.3gCO2通入含3.7gCa(OH)2的澄清石灰水中,问能产生CaCO3沉淀多少克?
分析此题中两种反应物的质量都已给出.若CO2气体过量,则反应生成的CaCO3与可能过量的CO2会再发生反应,生成Ca(HCO3)2,使生成的CaCO3部分溶解.
解:先判断CO2气体与Ca(OH)2哪个过量.
设3.3gCO2完全反应需Ca(OH)2χg,则
Ca(OH)2+CO2=CaCO3↓+H2O
7444
χ3.3
χ==5.55
由于χ=5.55(g)>3.7(g),即所需的Ca(OH)2的质量小于题给的质量,故Ca(OH)2为不足量,CO2过量.用不足量的Ca(OH)2求算CaCO3的质量.
Ca(OH)2+CO2=CaCO3↓+H2O
7444100
3.7m1(CO2)m1(CaCO3)
m1(CO2)==2.2
故剩余m(CO2)=3.3-2.2=1.1(g).
ml(CaCO3)==5.0
又判断CO2与CaCO3哪个过量.
CaCO3+CO2+H2O=Ca(HCO3)2
10044
5.01.1
>,比值大者为过量.所以CaCO3过量,用CO2求算溶解的CaCO3的质量.
CaCO3+CO2+H2O=Ca(HCO3)2
10044
m2(CaCO3)1.1
m2(CaCO3)==2.5(g)
所以最后剩余的CaCO3的质量为:m(CaCO3)=ml(CaCO3)-m2(CaCO3)=5.0-2.5=2.5(g)
即生成的CaCO3沉淀为2.5g.答案:略.

[多步反应的计算]
从最初的原料反应物经过多步反应变成最后的产物,要求根据反应物的量计算生成物的量或者根据生成物的量求算反应物的量时,可用关系式法求解.关系式法的解题原理是:根据多步反应中的每一步化学方程式,找出最初反应物与最终生成物之间的物质的量的关系,一步列式进行计算.
多步反应计算的一般步骤为:
(1)写出各步反应的化学方程式并配平;
(2)根据化学方程式找出可作为中介的物质,并确定最初反应物、中介物质及最终生成物之间量的关系;
(3)确定最初反应物和最终生成物之间的量的关系;
(4)根据所确定的最初反应物与最终生成物之间的量的关系和已知条件进行计算
注意①若最初的反应物与最终的生成物含有相同元素,则可直接利用元素的原子个数守恒来列式计算.例如,接触法制H2SO4时,若用FeS2为原料,则有:FeS2~2H2SO4;若用S为原料,则有:S~H2SO4.
②若在反应的各步均有反应物损失,可利用下列关系进行计算:
a.每步反应的转化率可累积到原料或产物上;
b.某一化合物中的某一元素的损失率等于该化合物的损失率.例如:
S的损失率=FeS2的损失率;
c.原料利用率=1-原料损失率.
例2接触法制硫酸尾气中的SO2可用氨水吸收,吸收达到饱和后的溶液再与93%的硫酸反应,可放出SO2并得到(NH4)2SO4溶液.此法可制得较纯的SO2,将(NH4)2SO4溶液经结晶、分离、干燥后可制得固体硫酸铵肥料.
(1)写出有关反应的化学方程式.
(2)某厂每天排放含SO2的体积分数为0.2%的尾气10000m3,问每天要消耗同温、同压下(标准状况)的氨气多少立方米?可得到硫酸铵多少千克?
解(1)①SO2+2NH3·H2O=(NH4)2SO3+H2O
②(NH4)2SO3+SO2+H2O=2NH4HSO3
③2NH4HSO3+H2SO4=(NH4)2SO4+2SO2↑+2H2O
④(NH4)2SO3+H2SO4=(NH4)2SO4+SO2↑+H2O
(2)从上述反应①、②可知:
2SO2~2NH3·H2O~2NH3~2NH4HSO3~(NH4)2SO4
则SO2与NH3之间的比例关系为:
SO2~NH3
1l
10000×0.2%V(NH3)
V(NH3)==20(m3)
又由上述关系知,SO2与(NH4)2SO4的关系为:
2SO2~(NH4)2SO4
2×64132
m[(NH4)2SO4]
m[(NH4)2SO4]==58.9(kg)
故每天消耗氨气20m3,可生产硫酸铵58.9kg.
答案:略.
说明此题利用关系式求硫酸铵的质量时,要注意SO2最后并未进入硫酸铵中,但通过与NH3反应生成NH4HSO3再与H2SO4反应制得硫酸铵,各步反应的化学计量数一定,不考虑损耗则量比关系一定,因此仍可找出SO2与硫酸铵之间的关系.







高中化学知识点规律大全
——化学平衡
1.化学反应速率
[化学反应速率的概念及其计算公式]
(1)概念:化学反应速率是用来衡量化学反应进行的快慢程度,通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示.单位有mol·L-1·min-1或mol·L-1·s-1
(2)计算公式:某物质X的化学反应速率:

注意①化学反应速率的单位是由浓度的单位(mol·L-1)和时间的单位(s、min或h)决定的,可以是mol·L-1·s-1、mol·L-1·min-1或mol·L-1·h-1,在计算时要注意保持时间单位的一致性.
②对于某一具体的化学反应,可以用每一种反应物和每一种生成物的浓度变化来表示该反应的化学反应速率,虽然得到的数值大小可能不同,但用各物质表示的化学反应速率之比等于化学方程式中相应物质的化学计量数之比.如对于下列反应:
mA+nB=pC+qD
有:∶∶∶=m∶n∶p∶q
或:
③化学反应速率不取负值而只取正值.
④在整个反应过程中,反应不是以同样的速率进行的,因此,化学反应速率是平均速率而不是瞬时速率.
[有效碰撞]化学反应发生的先决条件是反应物分子(或离子)之间要相互接触并发生碰撞,但并不是反应物分子(或离子)间的每一次碰撞都能发生化学反应.能够发生化学反应的一类碰撞叫做有效碰撞.
[活化分子]能量较高的、能够发生有效碰撞的分子叫做活化分子.
说明①活化分子不一定能够发生有效碰撞,活化分子在碰撞时必须要有合适的取向才能发生有效碰撞.②活化分子在反应物分子中所占的百分数叫做活化分子百分数.当温度一定时,对某一反应而言,活化分子百分数是一定的.活化分子百分数越
大,活化分子数越多,有效碰撞次数越多.
[影响化学反应速率的因素]
影响因素对化学反应速率的影响说明或举例反应物本
身的性质不同的化学反应有不同的反应速率Mg粉和Fc粉分别投入等浓度的盐酸中时,Mg与盐酸的反应较剧烈,产生H2的速率较快浓度其他条件不变时,增大(减小)反应物的浓度,反应速率增大(减小)①增大(减小)反应物浓度,单位体积内活化分子数增多(减少),有效碰撞次数增多(减少),但活化分子百分数不变②气、固反应或固、固反应时,固体的浓度可认为是常数,因此反应速率的大小只与反应物之间的接触面积有关,而与固体量的多少无关.改变固体的量不影响反应速率压强温度一定时,对于有气体参加的反应,增大(减小)压强,反应速率增大(减小)①改变压强,实际是改变气体的体积,使气体的浓度改变,从而使反应速率改变②改变压强,不影响液体或固体之间的反应速率温度升高(降低)反应温度,反应速率增大(减小)①通常每升高10℃,反应速率增大到原来的2~4倍②升温,使反应速率加快的原因有两个方面:a.升温后,反应物分子的能量增加,部分原来能量较低的分子变为活化分子,增大了活化分子百分数,使有效碰撞次数增多(主要方面);b.升高温度,使分子运动加快,分子间的碰撞次数增多(次要方面)催化剂增大化学反应速率催化剂增大化学反应速率的原因:降低了反应所需的能量(这个能量叫做活化能),使更多的反应物分子成为活化分子,增大了活化分子百分数,从而使有效碰撞次数增多光、反应物颗粒的大小等将反应混合物进行光照、将块状固体粉碎等均能增大化学反应速率AgBr、HClO、浓HNO3等见光分解加快,与盐酸反应时,大理石粉比大理石块的反应更剧烈
2.化学平衡
[化学平衡]
(1)化学平衡研究的对象:可逆反应的规律.
①可逆反应的概念:在同一条件下,既能向正反应方向进行同时又能向逆反应方向进行的反应,叫做可逆反应.可逆反应用可逆符号“”表示.
说明a.绝大多数化学反应都有一定程度的可逆性,但有的逆反应倾向较小,从整体看实际上是朝着同方向进行的,例如NaOH+HCl=NaCl+H2O.
b.有气体参加或生成的反应,只有在密闭容器中进行时才可能是可逆反应.如CaCO3受热分解时,若在敞口容器中进行,则反应不可逆,其反应的化学方程式应写为:CaCO3CaO+CO2↑;若在密闭容器进行时,则反应是可逆的,其反应的化学方程式应写为:CaCO3CaO+CO2
②可逆反应的特点:反应不能进行到底.可逆反应无论进行多长时间,反应物都不可能100%地全部转化为生成物.
(2)化学平衡状态.
①定义:一定条件(恒温、恒容或恒压)下的可逆反应里,正反应和逆反应的速率相等,反应混合物(包括反应物和生成物)中各组分的质量分数(或体积分数)保持不变的状态.
②化学平衡状态的形成过程:在一定条件下的可逆反应里,若开始时只有反应物而无生成物,根据浓度对化学反应速率的影响可知,此时ν正最大而ν逆为0.随着反应的进行,反应物的浓度逐渐减小,生成物的浓度逐渐增大,则ν正越来越小而ν逆越来越大.当反应进行到某一时刻,ν正=ν逆,各物质的浓度不再发生改变,反应混合物中各组分的质量分数(或体积分数)也不再发生变化,这时就达到了化学平衡状态.
(3)化学平衡的特征:
①“动”:化学平衡是动态平衡,正反应和逆反应仍在继续进行,即ν正=ν逆≠0.
②“等”:达平衡状态时,ν正=ν逆,这是一个可逆反应达平衡的本质.ν正=ν逆的具体含意包含两个方面:a.用同一种物质来表示反应速率时,该物质的生成速率与消耗速率相等,即单位时间内消耗与生成某反应物或生成物的量相等;b.用不同物质来表示时,某一反应物的消耗速率与某一生成物的生成速率之比等于化学方程式中相应物质的化学计量数之比.
③“定”:达平衡时,混合物各组分的浓度一定;质量比(或物质的量之比、体积比)一定;各组分的质量分数(或摩尔分数、体积分数)一定;对于有颜色的物质参加或生成的可逆反应,颜色不改变.同时,反应物的转化率最大.
对于反应前后气体分子数不相等的可逆反应,达平衡时:气体的总体积(或总压强)一定;气体的平均相对分子质量一定;恒压时气体的密度一定(注意:反应前后气体体积不变的可逆反应,不能用这个结论判断是否达到平衡).
④“变”.一个可逆反应达平衡后,若外界条件(浓度、温度、压强)改变,使各组分的质量(体积、摩尔、压强)分数也发生变化,平衡发生移动,直至在新的条件下达到新的平衡(注意:若只是浓度或压强改变,而ν正仍等于ν逆,则平衡不移动).反之,平衡状态不同的同一个可逆反应,也可通过改变外界条件使其达到同一平衡状态.
⑤化学平衡的建立与建立化学平衡的途径无关.对于一个可逆反应,在一定条件下,反应无论从正反应开始,还是从逆反应开始,或是正、逆反应同时开始,最终都能达到同一平衡状态.具体包括:
a.当了T、V一定时,按化学方程式中各物质化学式前系数的相应量加入,并保持容器内的总质量不变,则不同起始状态最终可达到同一平衡状态.
b.当T、P一定(即V可变)时,只要保持反应混合物中各组分的组成比不变(此时在各种情况下各组分的浓度仍然相等,但各组分的物质的量和容器内的总质量不一定相等),则不同的起始状态最终也可达到同一平衡状态.
如在恒温、恒压时,对于可逆反应:N2+3H22NH3,在下列起始量不同情况下达到的是同一平衡状态.
N2H2NH3A1mol3mol0B0.5mol1.5mol0C002molD1mol3mol2mol
c.对于反应前后气体体积相等的可逆反应,不论是恒温、恒容或是恒温、恒压,在不同的起始状态下,将生成物“归零”后,只要反应物的物质的量之比不变,就会达到同一平衡状态.
如:H2(g)+I2(g)2HI(g)等.

[判断化学平衡状态的依据]
mA(g)+nB(g)pC(g)+qD(g)反应混合物中各组分的含量
①各组分的物质的量或各组分的摩尔分数一定达平衡状态②各组分的质量或各组分的质量分数一定达平衡状态③各组分的体积或体积分数一定达平衡状态④总体积、总压强或总物质的量一定不一定达平衡状态ν正与ν逆的关系①单位时间内消耗mmolA,同时生成mmolA,达平衡状态②单位时间内消耗mmolA(或nmolB),同时消耗pmolC(或qmolD),既ν正=ν逆达平衡状态③∶∶∶=m∶n∶p∶q,此时ν正不一定等于ν逆不一定达平衡状态④单位时间内生成了pmolC(或qmolD)同时消耗了mmolA(或nmolB),此时均指ν正不一定达平衡状态压强①m+n≠p+q时,总压强一定达平衡状态②m+n=p+q时,总压强一定不一定达平衡状态混合气体的平均相对分子质量Mr①当m+n≠p+q时,Mr一定达平衡状态②当m+n=p+q时,Mr一定不一定达平衡状态混合气体的密度恒温、恒压或恒温、恒容时,密度一定不一定达平衡状态
[化学平衡常数]在一定温度下,当一个可逆反应达到平衡状态时,生成物的平衡浓度用化学方程式中的化学计量数作为指数的乘积与反应物的平衡浓度用化学方程式中的化学计量数作为指数的乘积的比值是一个常数,这个常数叫做化学平衡常数,简称平衡常数.用符号K表示.
(1)平衡常数K的表达式:对于一般的可逆反应:mA(g)+nB(g)pC(g)+qD(g)
当在一定温度下达到化学平衡时,该反应的平衡常数为:

注意:a.在平衡常数表达式中,反应物A、B和生成物C、D的状态全是气态,c(A)、c(B)、c(C)、c(D)均为平衡时的浓度.b.当反应混合物中有固体或纯液体时,他们的浓度看做是一个常数,不写入平衡常数的表达式中.例如,反应在高温下Fe3O4(s)+4H23Fe(s)+H2O(g)
的平衡常数表达式为:
又如,在密闭容器中进行的可逆反应CaCO3(s)CaO(s)+CO2↑的平衡常数表达式为:
K=c(CO2)
c.平衡常数K的表达式与化学方程式的书写方式有关.例如:
N2+3H22NH3
2NH3N2+3H2
N2+H2NH3
显然,K1、K2、K3具有如下关系:,
(2)平衡常数K值的特征:
①K值的大小与浓度、压强和是否使用催化剂无关.即对于一个给定的反应,在一定温度下,不论起始浓度(或压强)和平衡浓度(或压强)如何,也不论是否使用催化剂,达平衡时,平衡常数均相同.
②K值随温度的变化而变化.对于一个给定的可逆反应,温度不变时,K值不变(而不论反应体系的浓度或压强如何变化);温度不同时,K值不同.因此,在使用平衡常数K值时,必须指明反应温度.
(3)平衡表达式K值的意义:
①判断可逆反应进行的方向.对于可逆反应:mA(g)+nB(g)pC(g)+qD(g),如果知道在一定温度下的平衡常数,并且知道某个时刻时反应物和生成物的浓度,就可以判断该反应是否达到平衡状态,如果没有达到平衡状态,则可判断反应进行的方向.
将某一时刻时的生成物的浓度用化学方程式中相应的化学计量数为指数的乘积,与某一时刻时的反应物的浓度用化学方程式中相应的化学计量数为指数的乘积之比值,叫做浓度商,用Q表示.即:

当Q=K时,体系达平衡状态;当Q<K,为使Q等于K,则分子(生成物浓度的乘积)应增大,分母(反应物浓度的乘积)应减小,因此反应自左向右(正反应方向)进行,直至到达平衡状态;同理,当Q>K时,则反应自右向左(逆反应方向)进行,直至到达平衡状态.
②表示可逆反应进行的程度.
K值越大,正反应进行的程度越大(平衡时生成物的浓度大,反应物的浓度小),反应物的转化率越高;K值越小,正反应进行的程度越小,逆反应进行的程度越大,反应物的转化率越低.

[反应物平衡转化率的计算公式]
某一反应物的平衡转化率=%
=%
说明计算式中反应物各个量的单位可以是mol·L-1”、mol,对于气体来说还可以是L或mL,但必须注意保持分子、分母中单位的一致性.
3.影响化学平衡移动的条件
[化学平衡的移动]已达平衡状态的可逆反应,当外界条件(浓度、温度、压强)改变时.由于对正、逆反应速率的影响不同,致使ν正≠ν逆,则原有的化学平衡被破坏,各组分的质量(或体积)分数发生变化,直至在新条件一定的情况下ν正′=ν逆′,而建立新的平衡状态.这种可逆反应中旧化学平衡的破坏、新化学平衡的建立,由原平衡状态向新化学平衡状态的转化过程,称为化学平衡的移动.
说明(1)若条件的改变使ν正>ν逆,则平衡向正反应方向移动;若条件的改变使ν正<ν逆,则平衡向逆反应方向移动.但若条件改变时,ν正仍然等于ν逆,则平衡没有发生移动.
(2)化学平衡能够发生移动,充分说明了化学平衡是一定条件下的平衡状态,是一种动态平衡.
(3)化学平衡发生移动而达到新的平衡状态时,新的平衡状态与原平衡状态主要的不同点是:①新的平衡状态的ν正或ν逆与原平衡状态的ν正或ν逆不同;②平衡混合物里各组分的质量(或体积)分数不同.
[影响化学平衡的因素]
(1)浓度对化学平衡的影响.一般规律:当其他条件不变时,对于已达平衡状态的可逆反应,若增加反应物浓度或减少生成物浓度,则平衡向正反应方向移动(即向生成物方向移动);若减少反应物浓度或增加生成物浓度,则平衡向逆反应方向移动(即向反应物方向移动).
特殊性:对于气体与固体或固体与固体之间的反应,由于固体的浓度可认为是常数,因此改变固体的量平衡不发生移动.如反应C(s)+H2O(g)CO(g)+H2(g)达平衡状态后,再加入焦炭的量,平衡不发生移动.
说明①浓度对化学平衡的影响,可用化学反应速率与浓度的关系来说明.对于一个已达平衡状态的可逆反应,ν正=ν逆.若增大反应物的浓度,则ν正增大,而,ν逆增大得较慢,使平衡向正反应方向移动.如果减小生成物的浓度,这时虽然,ν正并未增大,但ν逆减小了,同样也使,ν正>ν逆,使平衡向正反应方向移动.同理可分析出:增大生成物的浓度或减小反应物的浓度时,平衡向逆反应方向移动.
②在生产上,往往采用增大容易取得的或成本较低的反应物浓度的方法,使成本较高的原料得到充分利用.例如,在硫酸工业里,常用过量的空气使SO2充分氧化,以生成更多的SO3.
(2)压强对化学平衡的影响.一般规律:对于有气体参加且反应前后气体体积不相等的可逆反应,在其他条件不变的情况下,若增大压强(即相当于缩小容器的体积),则平衡向气体总体积减小的方向移动,若减小压强(即增大容器的体积),则平衡向气体总体积增大的方向移动.
特殊性:①对于反应前后气体总体积相等的可逆反应达平衡后,改变压强,平衡不发生移动,但气体的浓度发生改变.例如可逆反应H2(g)+I2(g)2HI(g)达平衡后,若加大压强,平衡不会发生移动,但由于容器体积减小,使平衡混合气各组分的浓度增大,气体的颜色加深(碘蒸气为紫红色).②对于非气态反应(即无气体参加和生成的反应),改变压强,此时固、液体的浓度未改变,平衡不发生移动。
③恒温、恒容时充入不参与反应的气体,此时虽然容器内的压强增大了,但平衡混合气中各组分的浓度并未改变,所以平衡不移动.
说明①压强对平衡的影响实际上是通过改变容器的容积,使反应混合物的浓度改变,造成ν正≠ν逆。而使平衡发生移动.因此,有时虽然压强改变了,但ν正仍等于ν正,则平衡不会移动.
②对于有气体参加且反应前后气体体积不相等的可逆反应,增大压强,ν正、ν逆都会增大,减小压强,ν正、ν逆都会减小,但由于ν正、ν逆增大或减小的倍数不相同,从而导致平衡发生移动.例如,可逆反应N2(g)+3H2(g)2NH3(g)在一定温度和压强下达到平衡后,其平衡常数K为:

若将压强增至原来的2倍,则各组分的浓度增至原来的2倍.此时:

由于在一定温度下,K值为常数,要使上式的值仍等于K,则必须使c(NH3)增大、c(N2)和c(H2)减小,即平衡向合成NH3的方向(正反应方向)移动.
③对于反应前后气体总体积相等的可逆反应,改变压强,ν正与ν逆的变化程度相同,ν正仍然等于ν逆。,故平衡不发生移动.例如,可逆反应H2(g)+I2(g)2HI(g)在一定温度和压强下达到平衡后,其平衡常数K为:

若将压强增至原来的2倍,则各组分的浓度增至原来的2倍.此时:

上式的值仍与K值相等,即平衡不发生移动.
(3)温度对化学平衡的影响.一般规律:当其他条件不变时,升高温度,使平衡向吸热方向移动;降低温度,则使平衡向放热反应方向移动.
说明①化学反应过程均有热效应.对于一个可逆反应来说,如果正反应是放热反应,则逆反应必为吸热反应.
②当升高(降低)温度时,ν正、ν逆会同时增大(减小),但二者增大(减小)的倍数不相同,从而导致化学平衡发生移动.(化学平衡移动原理(勒夏特列原理))
(1)原理内容:如果改变影响平衡的一个条件(如温度、压强或温度等),平衡就向能够减弱这种改变的方向移动.
(2)勒夏特列原理适用的范围:已达平衡的体系(如溶解平衡、化学平衡、电离平衡、水解平衡等).勒夏特列原理不适用于未达平衡的体系,如对于一个刚从反应物开始进行的气相可逆反应来说,增大压强,反应总是朝着正反应方向进行的,由于未达平衡,也就无所谓平衡移动,因而不服从勒夏特列原理.
(3)勒夏特列原理适用的条件:只限于改变影响平衡的一个条件.当有两个或两个以上的条件同时改变时,如果这些条件对平衡移动的方向是一致的,则可增强平衡移动.但如果这些条件对平衡移动的方向影响不一致,则需分析哪一个条件变化是影响平衡移动的决定因素.
(4)勒夏特列原理中“减弱这种改变”的解释:外界条件改变使平衡发生移动的结果,是减弱对这种条件的改变,而不是抵消这种改变.也就是说:外界因素对平衡体系的影响占主要方面.
[催化剂与化学平衡的关系]使用催化剂能同等程度地增大ν正、ν逆,因此,在一个可逆反应中使用催化剂时,能缩短反应达到平衡时所需的时间.但由于ν正仍等于ν逆,所以,使用催化剂对化学平衡的移动没有影响,不能改变平衡混合物中各组分的百分比组成.

[反应物用量对平衡转化率的影响]
(1)若反应物只有一种,如aA(g)bB(g)+cC(g),则增加A的量,平衡向正反应方向移动,但A的平衡转化率究竟如何变化,要具体分析反应前后气体体积的相对大小.如:①若a=b+c,则A的转化率不变;②若a>b+c,则A的转化率增大;③若a<b+c,则A的转化率减小.
(2)若反应物不只一种,如aA(g)+bB(g)cC(g)+dD(g).则:
①若只增加反应物A的量,平衡向正反应方向移动,则反应物B的转化率增大,但由于外界因素占主要方面,故A的转化率减小.
②若按原比例同倍数地增加反应物A与B的量,A、B的转化率的变化有以下三种情况:
a.当a+b=c+d时,A、B的转化率都不变;
b.当a+b>c+d时,A、B的转化率都减小;
c.当a+b<c+d时,A、B的转化率都增大.

[化学反应速率与化学平衡的区别与联系]
化学反应速率化学平衡区别概念略略研究对象所有化学反应只研究可逆反应催化剂的影响使用催化剂能加快化学反应速率催化剂不能使化学平衡发生移动相互联系①在一定条件下,当ν正=ν逆时,即说明该可逆反应达平衡状态
②在可逆反应中,反应速率大,达到平衡所需的时间短;反应速率小,达到平衡所需的时间长
③改变条件,若ν正增大,平衡不一定向正反应方向移动;同样,ν逆增大,平衡也不一定向逆反应方向移动.改变条件后,平衡究竟向哪一个方向移动,只有比较出ν正与ν逆哪个更大后,才能确定平衡移动的方向
[化学反应速率和化学平衡计算的基本关系式]对于可逆反应:
mA(g)+nB(g)pC(g)+qD(g)
(1)用各物质表示的反应速率之比等于化学方程式中相应物质化学式前的化学计量数之比.即:∶∶∶=m∶n∶p∶q
(2)各物质的变化量之比=化学方程式中相应的化学计量数之比
(3)反应物的平衡量=起始量-消耗量
生成物的平衡量=起始量+增加量



表示为:
mA(g)+nB(g)pC(g)+qD(g)
起始量/molabcd
变化量/mol
平衡量/molab

(4)达平衡时,反应物A(或B)的平衡转化率α(%):
α(A)(或B)=×100%
α(A)(或B)=×100%
α(A)(或B)=×100%
(5)在一定温度下,反应的平衡常数

(6)阿伏加德罗定律及其三个重要推论:
①恒温、恒容时:,Bp任何时刻时反应混合气体的总压强与其总物质的量成正比;
②恒温、恒压时:,即任何时刻时反应混合气体的总体积与其总的物质的量成正比;
③恒温、恒容时:,即任何时刻时反应混合气体的密度与其反应混合气体的平均相对分子质量成正比.
(7)混合气体的密度:

(8)混合气体的平均相对分子质量Mr的计算:
①Mr=M(A)·a%+M(B)·b%+…
其中M(A)、M(B)…分别是气体A、B…的相对分子质量;a%、b%…分别是气体A、B…的体积(或摩尔)分数.



4.合成氨条件的选择
[合成氨条件的选择]
(1)合成氨反应的特点:反应物、生成物均为气体且正反应是气体体积减小、放热的可逆反应.
N2(g)+H2(g)2NH3(g)
(2)选择适宜条件的目的:尽可能增大合成氨的反应速率,缩短到达平衡的时间,提高氨的产率.
(3)选择适宜条件的依据:外界条件对化学反应速率和化学平衡影响的规律.
(4)选择适宜条件的原则:
①既要注意外界条件对二者(合成氨的反应速率和氨的产率)影响的一致性,又要注意对二者影响的矛盾性;
②既要注意温度、催化剂对反应速率影响的一致性,又要注意催化剂的活性对温度的限制;
③既要注意理论上生产的要求,又要注意实际操作的可能性.
(5)合成氨的适宜条件:
①温度为500℃左右;
②压强为20Mpa~50MPa;
③使用以铁为主体的多成分催化剂(称为铁触媒).
说明①选择合成氨温度为500℃的原因:a.温度高时,虽然能增大合成NH3的反应速率,但温度越高越会使平衡向逆反应方向移动,越不利于NH3的合成;温度低时,虽有利于平衡向合成NH3的方向移动,但反应速率太小,达到平衡所需的时间太长.b.铁触媒在500℃左右时活性最大.
②选择合成氨压强为20MPa~50MPa的原因:压强增大时,既能提高合成氨的反应速率,又能使平衡向合成氨的方向移动,但压强大时,对设备的要求和技术操作的要求就高,消耗的动力也大.
(6)在合成氨生产中同时采取的措施:
①将生成的氨及时从平衡混合气体中分离出去,未反应的N2、H2重新送回合成塔中进行循环操作,使平衡向合成氨的方向移动,以提高N2和H2的转化率.
②不断向循环气体中补充N2、H2,以提高反应物的浓度.
③加入过量的N2,使成本较高的H2得以充分利用.

[合成氨工业]
(1)原料:空气、焦炭(或天然气、石油)、水.
(2)有关的化学反应:
C+H2O(g)CO+H2
CO+H2O(g)CO2+H2
N2(g)+3H2(g)2NH3(g)



(3)设备:氨合成塔、氨分离器.
(4)工艺流程:N2、H2的制取→N2、H2的净化→压缩机中压缩+合成塔中合成→氨分离器中分离液氨(同时将未反应的N2、H2重新送回合成塔中)
[化学反应速率和化学平衡图像题的解答关键]
(1)弄清曲线的起点是否是从“0”点开始;弄清转折点和终点的位置.先出现转折点的曲线表示反应速率大、先达到平衡,该曲线对应的温度高或压强大;后出现转折点的曲线则表示反应速率小、后达到平衡,该曲线所对应的温度低或压强小;
(2)弄清曲线的变化是呈上升趋势还是下降趋势;
(3)弄清横坐标、纵坐标所代表的意义.




高中化学知识点规律大全
——电离平衡
1.电离平衡
[强电解质和弱电解质]
强电解质弱电解质概念在水溶液里全部电离为离子的电解质在水溶液里仅部分电离为离子的电解质化合物类型含有离子键的离子化合物和某些具有极性键的共价化合物某些具有极性键的共价化合物所含物质强酸、强碱、盐等水、弱酸、弱碱电离情况完全电离,不存在电离平衡(电离不可逆)不完全电离(部分电离),存在电离平衡联系都属于电解质
说明离子化合物在熔融或溶于水时离子键被破坏,电离产生了自由移动的离子而导电;共价化合物只有在溶于水时才能导电.因此,可通过使一个化合物处于熔融状态时能否导电的实验来判定该化合物是共价化合物还是离子化合物.
[弱电解质的电离平衡]
(1)电离平衡的概念:在一定条件(如温度、压强)下,当电解质分子电离成离子的速率与离子重新结合成分子的速率相等时,电离过程就达到了平衡状态,这叫做电离平衡.
(2)弱电解质的电离平衡的特点:
电离平衡遵循勒夏特列原理,可根据此原理分析电离平衡的移动情况.
①电离平衡是动态平衡.电离方程式中用可逆符号“”表示.例如:
CH3COOHCH3COO-+H+
NH3·H2ONH4++OH-
②将弱电解质溶液加水稀释时,电离平衡向弱电解质电离的方向移动.此时,溶液中的离子数目增多,但电解质的分子数减少,离子浓度减小,溶液的导电性降低.
③由于电离过程是吸热过程,因此,升高温度,可使电离平衡向弱电解质电离的方向移动.此时,溶液中离子的数目增多,离子浓度增大,溶液的导电性增强.
④在弱电解质溶液中,加入与弱电解质电离出相同的离子的强电解质时,使弱电解质的电离平衡向逆反应方向移动.例如,在0.1mol·L-1”滴有氨水的溶液(显浅红色)中,存在电离平衡NH3·H2ONH4++OH-.当向其中加入少量下列物质时:
a.NH4Cl固体.由于增大了c(NH4+),使NH3·H2O的电离平衡逆向移动,c(OH-)减小,溶液红色变浅.
b.NaOH固体.NaOH溶于水时电离产生的OH-抑制了NH3·H2O的电离,从而使平衡逆向移动.
[电离平衡常数]在一定温度下,当弱电解质的电离达到平衡状态时,溶液中电离产生的各种离子浓度的乘积与溶液中未电离的弱电解质分子浓度的比值是一个常数,这个常数叫做电离平衡常数,简称电离常数.弱酸的电离常数用Ka表示,弱碱的电离常数用Kb表示.
(1)电离平衡常数的表达式.
①一元弱酸、一元弱碱的电离常数表达式:
例如,一定温度下CH3COOH的电离常数为:
CH3COOHCH3COO-+H+

一定温度下NH3·H2O的电离常数为:
NH3·H2ONH4++OH-

②多元弱酸的电离特点及电离常数表达式:
a.分步电离.是几元酸就分几步电离.每步电离只能产生一个H+,每一步电离都有其相应的电离常数.
b.电离程度逐渐减小,且K1》K2》K3,故多元弱酸溶液中平衡时的H+主要来源于第一步.所以,在比较多元弱酸的酸性强弱时,只需比较其K1即可.例如25℃时,H3PO4的电离;
H3PO4H2PO4-+H+
H2PO4-HPO42-+H+
HPO42-PO43-+H+

注意a.电离常数表达式中各组分的浓度均为平衡浓度.
b.多元弱酸溶液中的c(H+)是各步电离产生的c(H+)的总和,在每步的电离常数表达式中的c(H+)是指溶液中H+的总浓度而不是该步电离产生的c(H+).
(2)电离常数的特征.同一弱电解质的稀溶液的电离常数的大小与溶液的浓度无关,只随温度的变化而变化.温度不变,K值不变;温度不同,K值也不同.但由于电离常数随温度的变化不大,在室温时,可不考虑温度对电离常数的影响.
(3)电离常数的意义:
①表明弱电解质电离的难易程度.K值越大,离子浓度越大,该电解质越易电离;反之,电解质越难电离.
②比较弱酸或弱碱相对强弱.例如在25℃时,HNO2的K=4.6×10-4,CH3COOH的K=1.8×10-5,因此HNO2的酸性比CH3COOH的酸性强.
6.水的电离和溶液的pH
[水的电离]
(1)水的电离方程式.
水是一种极弱的电解质,它能像酸一样电离出极少量的H+,又能像碱一样电离出少量的OH-(这叫做水的自偶电离).水的电离方程式可表示为:
H2O+H2OH3O++OH-
简写为:H2OH++OH-
(2)水的离子积KW.
一定温度下,水的电离常数为:
即c(H+)·c(OH-)=K·c(H2O)
设水的密度为1g·cm3,则1LH2O=1000mLH2O=1000gH20=55.6mol,即H2O的起始浓度为55.6mol·L-1.由于水是极弱的电解质,它电离时消耗的水与电离前相比,可忽略不计.例如,25℃时,1LH2O中已电离的H2O为10-7mol,所以c(H2O)≈55.6mol·L-1,即K·c(H2O)为一常数,这个新的常数叫做水的离子积常数,简称水的离子积,表示为:
c(H+)·c(OH-)=KW
说明①一定温度下,由于KW为一常数,故通常不写单位,如25℃时KW=1×10-14.
②KW只与温度有关,与溶液的酸碱性无关.温度不变,KW不变;温度变化,KW也发生变化.
③由于水的电离过程是吸热过程,因此温度升高时,纯水中的c(H+)、c(OH-)同时增大,KW也随着增大.例如:
25℃时,c(H’)=(OH-)=1×10-7mol·L-1,KW=1×10-14
100℃时,c(H’)=(OH-)=1×10-6mol·L-1,KW=1×10-12
但由于c(H+)与c(OH-)始终保持相等,故仍显中性.
④在任何以水为溶剂的溶液中都存在H+和OH-,它们既相互依存,又相互制约.当溶液中的c(H+)增大时,c(OH-)将减小;反之,当溶液中的c(OH-)增大时,c(H+)则必然减小.但无论在中性、酸性还是碱性溶液中,在一定温度下,c(H+)与c(OH-)的乘积(即KW)仍是不变的,也就是说,KW不仅适用于纯水,也适用于任何酸、碱、盐的稀溶液.只要温度相同,不论是在纯水中,还是在酸、碱、盐的水溶液中,KW都是相同的.
⑤一定温度下,不论是纯水中,还是在酸、碱、盐的水溶液中,由H2O电离产生的c(H+)与c(OH-)总是相等的.如25℃时,0.1mol·L-1的盐酸中,c水(H+)=c(OH-)==1×10-13mol·L-1.
⑥水的电离平衡遵循勒夏特列原理.例如,向纯水中加入酸或碱,均使水的电离平衡逆向移动(即酸或碱抑制水的电离);向水中投入活泼金属如钠等,由于金属与水电离产生的H+直接作用而促进水的电离.
[溶液的酸碱性的实质]任何水溶液中都存在水的电离,因此都含有H+和OH-.一种溶液是显酸性、中性还是碱性,是由该溶液中的c(H+)与c(OH-)的相对大小来决定的.
酸性溶液:c(H+)>c(OH-)
中性溶液:c(H+)=c(OH-)
碱性溶液:c(H+)<c(OH-)
例如:25℃时,因为KW=1×10-14,所以:
中性溶液:c(H+)=c(OH-)=1×10-7mol·L-1
酸性溶液:c(H+)>1×10-7mol·L-1,c(OH-)<1×10-7mol·L-1
碱性溶液:c(H+)<1×10-7mol·L-1,c(OH-)>1×10-7mol·L-1
100℃时,因为KW=1×10-12,所以:
中性溶液:c(H+)=c(OH-)=1×10-6mol·L-1
酸性溶液:c(H+)>1×10-6mol·L-1,c(OH-)<1×10-6mol·L-1
碱性溶液:c(H+)<1×10-6mol·L-1,c(OH-)>1×10-6mol·L-1

[溶液的pH]
(1)溶液的pH的概念:在c(H+)≤1mol·L-1的水溶液中,采用c(H+)的负对数来表示溶液酸碱性的强弱.
(2)数学表达式:pH=-1g[c(H+)]
若c(H+)=10-nmol·L-1,则pH=n.
若c(H+)=m×10-nmol·L-1,则pH=n-lgm.
(3)溶液酸碱性的强弱与pH的关系.
①常温(25℃)时:
pH=7,溶液呈中性,c(H+)=c(OH-)=1×10-7mol·L-1.
Ph<7,溶液呈酸性,pH小(大)c(H+)大(小)溶液的酸性强(弱).
PH>7,溶液呈碱性,pH大(小)c(OH-)大(小)溶液的碱性强(弱).
②pH范围为0~14之间.pH=0的溶液中并非无H+,而是c(H+)=1mol·L-1;pH=14的溶液中并非没有OH-,而是c(OH-)=1mol·L-1.pH减小(增大)n倍,则c(H+)增大为原来的10n倍(减小为原来的1/10n倍),相应的c(OH-)减小为原来1/10n倍(增大为原来的10n倍).
③当溶液中的c(H+)>1mol·L-1时,pH<0;c(OH-)>1mol·L-1时,pH>14.因此,当溶液中的c(H+)或c(OH-)大于mol·L-1时,一般不用pH来表示溶液的酸碱性,而是直接用c(H+)或c(OH-)来表示.所以,pH只适用于c(H+)或c(OH-)≤1mol·L-1的稀溶液.
④也可以用pOH来表示溶液的酸碱性.pOH是OH-离子浓度的负对数,即pOH=一lg[c(OH-)].因为25℃时,c(H+)·c(OH-)=1×10-14,所以:pH+pOH=14.
[溶液中pH的计算]
(1)基本关系式:
①pH=-1g[c(H+)]
②c(H+)=10-pHmol·L-1
③任何水溶液中,由水电离产生
的c(H+)与c(OH-)总是相等的,即:c水(H+)=c水(OH-).
④常温(25℃)时,c(H+)·c(OH-)=1×10-14
⑤n元强酸溶液中c(H+)=n·c酸;n元强碱溶液中c(OH-)=n·c碱·
(2)强酸与弱酸、强碱与弱碱溶液加水稀释后pH的计算.
①强酸与弱酸分别加水稀释相同倍数时,由于弱酸中原来未电离的弱酸分子进一步电离出离子,故弱酸的pH变化小.设稀释10n倍,则:
强酸:pH稀=pH原+n
弱酸:pH稀<pH原+n
当加水稀释至由溶质酸电离产生的c酸(H+)<10-6mol·L-1时,则必须考虑水的电离.如pH=5的盐酸稀释1000倍时,pH稀=6.98,而不是等于8.因此,酸溶液无论如何稀释,溶液的pH都不会大于7.
②强碱与弱碱分别加水稀释相同倍数时,弱碱的pH变化小.设均稀释10n倍,则:
强碱:pH稀=pH原—n
弱碱:pH稀>pH原—n
当加水稀释至由溶质碱电离产生的c(OH-)<10-6mol·L-1时,则必须考虑水的电离.如pH=9的NaOH溶液稀释1000倍时,pH稀≈7,而不是等于6.因此,碱溶液无论如何稀释,溶液的pH都不会小于7.
(3)两强酸或两强碱溶液混合后pH的计算.
①两强酸溶液混合.先求出:
再求;pH混=-1g[c混(H+)]
注:V1、V2的单位可为L或mL,但必须一致.
②两强碱溶液混合.求算两强碱溶液混合后溶液的pH时,不能直接根据题中给出的碱的pH求算混合液的pH,而必须先分别求出两强碱溶液中的c(OH-),再依下式求算c混(OH-):

然后求出c混(H+)、pH混.
例如:将pH=8的Ba(OH)2溶液与pH=10的NaOH溶液等体积混合后,溶液中的c(H+)应为2×10-10mol·L-1,而不是(10-10+10-8)/2mol·L-1.
(4)强酸与强碱溶液混合后pH的计算.
解题步骤:分别求出酸中的n(H+)、碱中的n(OH-)→依H++OH-=H2O比较出n(H+)与n(OH-)的大小.
①n(H+)=n(OH-)时,恰好中和,混合液显中性;pH=7.[反之,若混合液的pH=7,则必有n(H+)=n(OH-)]
②n(H+)>n(OH-)时,酸过量,则:
再求出pH混(求得的pH混必小于7).
注:若已知pH混<7,则必须利用上式进行相关计算.
⑧n(H+)<n(OH-)时,碱过量.则:
然后求出c混(H+)、pH混.
注:若已知pH混>7,则必须利用上式进行相关计算.
(5)强酸与强碱混合反应后溶液呈中性时,强酸的pH酸、强碱的pH碱与强酸溶液体积V酸、强碱溶液体积V碱之间的关系:
当溶液呈中性时:n(H+)=n(OH-)
即:c(H+)·V酸=c(OH-)·V碱
25℃时,有c酸(H+)·V酸=1×10-14/c碱(H+)·V碱,整理得:
c酸(H+)·c碱(H+)=1×10-14V碱/V酸,两边取负对数得:
{-1g[c酸(H+)]}+{-lg[c碱(OH-)]}={-lg(1×10-14)}+{-lg(V碱/V酸)}
故pH酸+pH碱=14+lg(V酸/V碱)
①若pH酸+pH碱=14,则V酸∶V碱=1∶1,即强酸与强碱等体积混合.
②若pH酸+pH碱>14,则:V酸∶V碱=∶1
③若pH酸+pH碱<14,则:V酸∶V碱=1∶

7.盐类的水解
[盐类的水解]
(1)盐类水解的概念:在溶液中盐电离出来的离子跟水电离产生出来的H+或OH-结合生成弱电解质的反应,叫做盐类的水解.
说明盐类的水解反应与中和反应互为可逆过程:
盐+水酸+碱-热量
(2)盐类水解的实质:盐溶于水时电离产生的弱碱阳离子(如NH4+、A13+、Fe3+等)或者弱酸阴离子(如CH3COO-、CO32-、S2-等)与水电离产生的OH-或H+结合生成了难电离的弱碱、弱酸(弱电解质),使水的电离平衡发生移动,从而引起水电离产生的c(H+)与c(OH-)的大小发生变化.
(3)各种类型的盐的水解情况比较:
盐的类型强酸强碱盐强酸弱碱盐弱酸强碱盐弱酸弱碱盐水解情况不水解水解水解水解参与水解的离子弱碱阳离子弱酸阴离子弱酸阴离子和弱碱阳离子溶液的酸碱性正盐显中性;酸式盐因电离产生H’而显酸性酸性
[弱碱阳离子与H2O电离产生的OH-结合而使得c(H+)>c(OH-)]碱性
[弱酸阴离子与H2O电离产生的OH-结合而使得c(H+)<c(OH-)]依组成盐对应的酸、碱的电离常数尺的相对大小而定K酸>K碱:溶液呈酸性K酸<K碱:溶液呈碱性实例正盐:KCl、Na2SO4、NaNO3、KNO3等
酸式盐:NaHSO4等CuCl2、NH4C1、FeCl3、A12(SO4)3CH3COONa、NaClO、NaF、K2S、K2CO3CH3COONH4、NH4F、(NH4)2CO3说明①盐类的水解程度很小,水解后生成的难溶物的微粒数、易挥发性物质的微粒数都很少,没有沉淀、气体产生,因此不能用“↑”、“↓”符号表示②发生水解的盐都是使水的电离平衡正向移动而促进水的电离(而酸或碱则总是抑制水的电离)
①判断某盐是否水解的简易口诀:
不溶不水解,无弱不水解,谁弱谁水解,都弱都水解.
②判断盐溶液酸碱性的简易口诀:
谁强显谁性,都强显中性,都弱具体定(比较等温时K酸与K碱的大小).
(4)盐类水解离子方程式的书写方法
书写原则:方程式左边的水写化学式“H2O”,中间符号用“”,右边不写“↓”、“↑”符号.整个方程式中电荷、质量要守恒.
①强酸弱碱盐:
弱碱阳离子:
Mn++nH2OM(OH)n+nH+
如CuSO4水解的离子方程式为:Cu2++2H2OCu(OH)2+2H+
说明溶液中离子浓度大小的顺序为:c(SO42-)>c(Cu2+)>c(H+)>c(OH-)
②弱酸强碱盐:
a.一元弱酸对应的盐.如
CH3COONa水解的离子方程式为:CH3COO-+H2OCH3COOH+OH-
说明溶液中离子浓度大小的顺序为:c(Na+)>c(CH3COO-)>c(OH-)>c(H+)
根据“任何电解质溶液中阴、阳离子电荷守恒”可知:
c(Na+)+c(H+)=c(CH3COO-)+c(OH-)
b.多元弱酸对应的盐.多元弱酸对应的盐发生水解时,是几元酸就分几步水解,且每步水解只与1个H2O分子结合,生成1个OH-离子.多元弱酸盐的水解程度是逐渐减弱的,因此,多元弱酸盐溶液的酸碱性主要由第一步水解决定.
例如K2CO3的水解是分两步进行的:
第一步:CO32-+H2OHCO3-+OH-
第二步:HCO3-+H2OH2CO3+OH-
水解程度:第一步>第二步.所以K2CO3溶液中各微粒浓度大小的顺序为:
c(K+)>c(CO32-)>c(OH-)>c(HCO3-)>c(H2CO3)>c(H+)
根据“任何电解质溶液中电荷守恒”可知:
c(K+)+c(H+)=2×c(CO32-)+c(OH-)+c(HCO3-)
⑧弱酸弱碱盐:
如CH3COONH4水解的离子方程式为:
CH3COO-+NH4++H2OCH3COOH+NH3·H2O
因为K(CH3COOH)=K(NH3·H2O)=1.8×10-5,所以CH3COONH4溶液呈中性.
[影响盐类水解程度的因素]
(1)盐本身的组成决定盐是否水解及水解程度的大小.
对于强碱弱酸盐来说,组成盐的阴离子对应的酸越弱(强),则盐的水解程度越大(小),溶液中的c(OH-)越大(小),pH也越大(小).例如:相同温度下,等物质的量浓度的CH3COONa溶液与NaClO溶液相比,由于酸性CH3COOH>HClO,故pH较大<碱性较强)的是NaClO溶液.又如:相同温度下,等物质的量浓度的NaA、NaB、NaC三种溶液的pH的大小顺序为:NaA>NaB>NaC,则三种酸HA、HB、HC的酸性强弱顺序为:HA<HB<HC.
(2)盐类的水解平衡遵循勒夏特列原理.
①温度.因为盐水解时吸热,所以升温,盐的水解程度增大,盐溶液的酸性或碱性增强.
②浓度.盐溶液越稀,水解程度越大,故加水稀释能促进盐的水解.但因为溶液体积增大得更多,所以盐溶液中的c(H+)或c(OH-)反而减小(即酸性或碱性减弱).
③向能水解的盐溶液中加入与水解产物相同的离子,水解被抑制;若将水解产物反应掉,则促进盐的水解.例如,在FeCl3溶液中存在水解平衡:Fe3++3H2OFe(OH)3+3H+.若加入少量的NaOH溶液,则水解平衡向右移动,促进了Fe3+的水解;若加入少量盐酸,则水解平衡向左移动,Fe3+的水解受到抑制.
[盐类水解的应用]
(1)判断盐溶液的酸碱性(或pH范围).如A12(SO4)3。溶液的pH<7,显酸性.
(2)判断酸碱完全中和(恰好反应)时溶液的酸碱性.例如,等体积、等物质的量浓度的氨水跟盐酸混合后,因为完全反应生成了强酸弱碱盐NH4C1,故pH<7,溶液显酸性.
(3)比较盐溶液中离子浓度的大小或离子数目的多少.例如:在碳酸钠晶体中,n(Na+)=2n(CO32-),但在Na2CO3溶液中,由于CO32-的水解而有c(Na+)>2c(CO32-).
(4)配制盐溶液.配制强酸弱碱盐(如含Fe3+、A13+、Cu2+、、Sn2+、Fe2+盐等)的溶液时,加入少量对应的酸以防止水解.如配制FeCl3溶液的步骤是;先将FeCl3固体溶于较浓的盐酸中,再用蒸馏水稀释到所需的浓度.
配制弱酸强碱盐时,加入少量对应的碱以防止水解.如配制Na2S溶液时,需加入少量的NaOH固体,以抑制S2-的水解.
(5)利用升温促进盐水解的原理,使某些弱碱阳离子水解生成氢氧化物沉淀而将其除去.例如,KNO3中含有Fe(NO3)3时,先将其溶于蒸馏水中,再加热,使Fe3+水解生成Fe(OH)3沉淀后过滤除去.
(6)Mg、Zn等较活泼金属溶于某些强酸弱碱盐(如NH4C1、A1C13、FeCl3等)的溶液中,产生H2.例如,将Mg条投入浓NH4Cl溶液中,有H2、NH3两种气体产生.有关离子方程式为:
NH4++H2ONH3·H2O+H+
Mg+2H+=Mg2++H2↑
NH3·H2O=NH3↑+H2O
(7)用铁盐、铝盐等作净水剂.
(8)挥发性酸对应的盐(如AlCl3、FeCl3等)加热蒸干、灼烧.例如,将FeCl3溶液加热蒸干、灼烧,最后的固体残留物为Fe2O3,原因是:FeCl3+3H2OFe(OH)3+3HCl,升温促进了FeCl3的水解,同时加热使生成的HCl从溶液中逸出而产生大量的Fe(OH)3,蒸干后灼烧,则:
2Fe(OH)3Fe2O3+3H2O
(9)水解显酸性的溶液与水解显碱性的溶液混合——双水解反应.例如,将A12(SO4)3溶液与NaHCO3溶液混合,发生反应:A13++3HCO3-=Al(OH)3↓+3CO2↑(泡沫灭火器的灭火原理).·
此外,还有盐溶液的鉴别、化肥的混施等也需要考虑盐类的水解.
[电解质溶液中的电荷守恒和物料守恒]
(1)电荷守恒:在任何一种电解质溶液中,所有阳离子所带的正电荷总数等于所有阴离子所带的负电荷总数.即溶液呈电中性.
例如,在A12(SO4)3溶液中存在的电荷守恒关系为:2×c(A13+)+c(H+)=3×c(SO42-)+c(OH-).
(2)物料守恒:电解质溶液中,某一组分的原始浓度等于该组分在溶液中以各种形式存在的浓度之和.例如,在Na2CO3溶液中,由于CO32-离子的水解,碳元素以CO32-、HCO3-、H2CO3三种形式存在.
因为c(Na+)=2×c原始(CO32-),而c原始(CO32-)=c(CO32-)+c(HCO3-)+c(H2CO3).
又因为c(Na+)+c(H+)=2×c(CO32-)+c(HCO3-)+c(OH-),所以,在Na2CO3溶液中存在下列关系:c(HCO3-)+2×c(H2CO3)+c(H+)=c(OH-)
8.酸碱中和滴定
[酸碱中和滴定]
(1)酸碱中和的实质:H++OH-=H2O,即1molH+恰好与1molOH-中和生成水.
说明:酸与碱在发生中和反应时,是按有关化学方程式中酸与碱的化学计量数之比进行的.
(2)酸碱中和滴定的概念:用已知物质的量浓度的酸(或碱)来测定未知物质的量浓度的碱(或酸)的方法,叫做酸碱中和滴定.
(3)酸碱中和滴定原理:酸碱发生中和反应时的物质的量之比等于它们的化学计量数之比.即:

当参与中和滴定的酸碱为一元酸和一元碱时,由于,则:
c(A)·V(A)=c(B)·V(B)
上式中的c(A)、V(A)、(A)分别表示酸的物质的量浓度、酸溶液的体积和发生中和反应时酸的化学计量数;c(B)、V(B)、(B)分别表示碱的物质的量浓度、碱溶液的体积和发生中和反应时碱的化学计量数.
(4)所需主要仪器:①滴定管(精确到0.1mL).滴定管有酸式滴定管和碱式滴定管两种,其中,酸式滴定管带有玻璃活塞,碱式滴定管是橡皮管连接玻璃尖嘴.②锥形瓶(用于盛装待测液).
(5)所需药品:指示剂(用来准确判断中和反应是否恰好进行完全),标准液,待测液.
(6)主要操作步骤:润洗滴定管一调整滴定管内液面在“0”或“0”以下并读数→在锥形瓶中注入待测液和指示剂→滴定(重复2~3次)→计算.
⑺酸碱中和滴定误差分析:若用一元强酸滴定一元强碱,则:

因为c(A)、V(B)均为定值,所以c(B)的大小取决于V(A)的大小.在测定待测液的物质的量浓度时,若消耗标准液的体积过多,则结果偏高;若消耗标准液的体积过少,则结果偏低.
(8)应注意的问题:
①滴定管的零(“0”)刻度在上方,最大标称容量在下方.在滴定管下端还有一段空间没有刻度线,滴定时不能滴至刻度线以下.
②酸式滴定管不能盛放碱性溶液(碱性物质与玻璃活塞作用生成硅酸盐,导致活塞黏结而失灵);碱式滴定管不能盛放酸性溶液、氯水、溴水及强氧化性物质的溶液[如KMnO4、K2CrO4、Ca(C1O)2等),它们会腐蚀橡胶管.
③滴定管在使用之前应检查玻璃活塞转动是否灵活,挤压玻璃球是否灵活,有无漏液及阻塞情况.
④洗净的滴定管在注入溶液时,先用少许所盛的溶液润洗2~3次,以保证所盛溶液不被稀释.
⑤用蒸馏水洗净后的锥形瓶不能再用待测液润洗,也无需干燥.根据实验需要,在滴定过程中,可向锥形瓶中注入蒸馏水.
[混合液的酸碱性的确定方法]
(1)若酸、碱的量按有关化学计量数之比恰好反应,则反应后溶液的酸碱性由生成的盐的性质决定.
(2)若酸、碱混合反应后,有一种过量,则混合液的酸碱性由过量的酸或碱决定.



高中化学知识点规律大全
——几种重要的金属
1.金属的物理性质
(1)状态:在常温下,除汞(Hg)外,其余金属都是固体.
(2)颜色:大多数金属呈银白色,而金、铜、铋具有特殊颜色.金属都是不透明的,整块金属具有金属光泽,但当金属处于粉末状时,常显不同颜色.
(3)密度:金属的密度相差很大,常见金属如钾,钠、钙、镁、铝均为轻金属(密度小于4.5g·cm-3),密度最大的金属是铂,高达21.45g·cm-3.
(4)硬度:金属的硬度差别很大,如钠、钾的硬度很小,可用小刀切割;最硬的金属是铬.
(5)熔点:金属的熔点差别很大,如熔点最高的金属为钨,其熔点为3410℃,而熔点最低的金属为汞,其熔点为-38.9℃,比冰的熔点还低.
(6)大多数金属都具有延展性,可以被抽成丝或压成薄片.其中延展性最好的是金.
⑺金属都是电和热的良导体.其中银和铜的传热、导电性能最好.
2.镁和铝
[镁和铝]
元素镁(12Mg)铝(13Al)在元素周期表中的位置第二周期ⅡA族第三周期ⅢA族单质物理性质颜色和状态银白色固体银白色固体硬度镁(很软)<铝(较硬)密度g·cm-3镁(1.738)<铝(2.70)熔点/℃镁(645)<铝(660.4)沸点/℃沸点(1090)<铝(2467)自然界存在形式均以化合态形式存在用途用于制造合金用于制作导线、电缆;铝箔用于食品、饮料的包装;用于制造合金[镁与铝元素的原子结构及单质化学性质的比较]
元素镁(Mg)铝(A1)原子结构最外层电子数2个(较少)3个(较多)原子半径r(Mg)>r(A1)失电子能力、还原性及金属性Mg>A1












质与O2的反应常温Mg、Al均能与空气中的O2反应,生成一层坚固而致密的氧化物保护膜.所以,金属镁和铝都有抗腐蚀性能点燃2Mg+O2(空气)2MgO4Al+3O2(纯)2A12O3与S、X2等非金属的反应Mg+SMgS
Mg+C12MgCl22Al+3SA12S3
2Al+3Cl22AlCl3与酸的反应非氧化性酸例Mg+2H+=Mg2++H2↑例2A1+6H+=2A13++3H2↑氧化性酸例4Mg+10HNO3(极稀)=4Mg(NO3)2+N2O↑+5H2O铝在冷的浓HNO3、浓H2SO4中因发生钝化而难溶与碱的反应不反应2A1+2NaOH+2H2O=2NaAlO2+3H2↑与氧化物的反应2Mg+CO22MgO+C
(金属镁能在CO2气体中燃烧)2A1+Fe2O32Fe+A12O3
[铝热反应]
说明铝与比铝不活泼的金属氧化物(如CuO等)都可以发生铝热反应[铝的重要化合物]
氧化铝(A12O3)氢氧化铝[A1(OH)3]硫酸铝钾[KAl(SO4)2]物理性质白色固体,熔点高,难溶于水不溶于水的白色胶状固体;能凝聚水中的悬浮物,有吸附色素的性能硫酸铝钾晶体[KAl(SO4)2·12H2O]俗称明矾.明矾是无色晶体,易溶于水所属类别两性氧化物两性氢氧化物复盐(由两种不同金属离子和一种酸根离子组成)电离方程式在水中不能电离A13++3OH-A1(OH)3AlO2-+H++H2OKAl(SO4)2=K++A13++2SO42-化学性质既能与酸反应生成铝盐,又能与碱反应生成偏铝酸盐:Al2O3+6H+=2A13++3H2O,Al2O3+2OH-=2AlO2-+H2O①既能溶于酸,又能溶于强碱中:A1(OH)3+3H+=A13++3H2O,A1(OH)3+OH-=2AlO2-+2H2O
②受热分解:
2A1(OH)3Al2O3+3H2O①同时兼有K+、A13+、SO42-三种离子的性质②水溶液因A13+水解而显酸性:
A13++3H2OA1(OH)3+3H+
制法2A1(OH)3Al2O3+3H2O可溶性铝盐与氨水反应:A13++3NH3·H2OA1(OH)3↓+3NH4+用途①作冶炼铝的原料②用于制耐火坩埚、耐火管、耐高温仪器制取氧化铝作净水剂[合金]
(1)合金的概念:由两种或两种以上的金属(或金属跟非金属)熔合在一起而成的具有金属特性的物质.
(2)合金的性质:①合金的硬度比它的各成分金属的硬度大;②合金的熔点比它的各成分金属的熔点低.
[硬水及其软化]
(1)基本概念.
①硬水和软水:
硬水:含有较多的Ca2+和Mg2+的水.
软水:不含或只含少量Ca2+和Mg2+的水.
②暂时硬度和永久硬度:
暂时硬度:由碳酸氢钙或碳酸氢镁所引起的水的硬度.
永久硬度:由钙和镁的硫酸盐或氯化物等引起的水的硬度.
③暂时硬水和永久硬水:
暂时硬水:含有暂时硬度的水.
永久硬水:含有永久硬度的水.
(2)硬水的软化方法:
①煮沸法.这种方法只适用于除去暂时硬度,有关反应的化学方程式为:
Ca(HCO3)2CaCO3↓+CO2↑+H2O
Mg(HCO3)2MgCO3↓+CO2↑+H2O
MgCO3+H2OMg(OH)2↓+CO2↑
②离子交换法.这种方法可同时除去暂时硬度和永久硬度.
③药剂软化法.常用的药剂法有石灰——纯碱法和磷酸钠法.
(3)天然水的硬度:天然水同时有暂时硬度和永久硬度,一般所说的硬度是指两种硬度之和.
(4)硬水的危害:
①长期饮用硬度过高或过低的水,均不利于身体健康.
②用硬水洗涤衣物,浪费肥皂,也不易洗净.
③锅炉用水硬度过高,易形成锅垢[注:锅垢的主要成分为CaCO3和Mg(OH)2],不仅浪费燃料,还会引起爆炸事故.
3.铁和铁的化合物
[铁]
(1)铁在地壳中的含量:铁在地壳中的含量居第四位,仅次于氧、硅和铝.
(2)铁元素的原子结构:铁的原子序数为26,位于元素周期表第四周期Ⅶ族,属过渡元素.铁原子的最外层电子数为2个,可失去2个或3个电子而显+2价或+3价,但+3价的化合物较稳定.
(3)铁的化学性质:
①与非金属反应:
3Fe+2O2Fe3O4
2Fe+3C122FeCl3
说明铁丝在氯气中燃烧时,生成棕黄色的烟,加水振荡后,溶液显黄色.
Fe+SFeS
说明铁跟氯气、硫反应时,分别生成+2价和+3价的铁,说明氧化性:氯气>硫.
②与水反应:
a.在常温下,在水和空气中的O2、CO2等的共同作用下,Fe易被腐蚀(铁生锈).
b.在高温下,铁能与水蒸气反应生成H2:3Fe+4H2O(g)Fe3O4+4H2
③与酸反应:
a.与非氧化性酸(如稀盐酸、稀H2SO4等)的反应.例如:Fe+2H+=Fe2++H2↑
b.铁遇到冷的浓H2SO4、浓HNO3时,产生钝化现象,因此金属铁难溶于冷的浓H2SO4或浓HNO3中.
④与比铁的活动性弱的金属的盐溶液发生置换反应.例如:Fe+Cu2+=Fe2++Cu
归纳:铁的化学性质及在反应后的生成物中显+2价或+3价的规律如下;


[铁的氧化物的比较]
铁的氧化物氧化亚铁氧化铁四氧化三铁俗称铁红磁性氧化铁化学式FeOFe2O3Fe3O4铁的价态+2价+3价+2价和+3价颜色、状态黑色粉末红棕色粉末黑色晶体水溶性都不溶于水化学性质①在空气中加热时,被迅速氧化;6FeO+O22Fe3O4②与盐酸等反应:FeO+2H+=Fe2++H2O①与盐酸等反应:Fe2O3+6H+=2Fe3++3H2O②在高温时,被CO、C、A1等还原:Fe2O3+3CO2Fe+3CO2兼有FeO和Fe2O3的性质,如Fe3O4+8H+=2Fe3++Fe2++4H2O[氢氧化亚铁和氢氧化铁的比较]
Fe(OH)2Fe(OH)3颜色、状态在水中为白色絮状沉淀在水中为红褐色絮状沉淀水溶性难溶于水难溶于水制法可溶性亚铁盐与强碱溶液或氨水反应:
注:制取时,为防止Fe2+被氧化,应将装有NaOH溶液的滴管插入FeSO4溶液的液面下
可溶性铁盐与强碱溶液、氨水反应:化学性质①极易被氧化:
沉淀颜色变化:白色→灰绿色→红褐色
②与非氧化性酸如盐酸等中和:
①受热分解;
固体颜色变化:红褐色→红棕色
②与酸发生中和反应:

[Fe3+和Fe2+的相互转化]
例如:2Fe3++Fe=3Fe2+
应用:①除去亚铁盐(含Fe2+)溶液中混有的Fe3+;②亚铁盐很容易被空气中的O2氧化成铁盐,为防止氧化,可向亚铁盐溶液中加入一定量的铁屑.
例如:2Fe2++Cl2=2Fe3++2Cl-
应用:氯化铁溶液中混有氯化亚铁时,可向溶液中通入足量氯气或滴加新制的氯水,除去Fe2+离子.
Fe2+Fe3+

[Fe2+、Fe3+的检验]
(1)Fe2+的检验方法:
①含有Fe2+的溶液呈浅绿色;
②向待检液中滴加NaOH溶液或氨水,产生白色絮状沉淀,露置在空气中一段时间后,沉淀变为灰绿色,最后变为红褐色,说明含Fe2+.
③向待检液中先滴加KSCN溶液,无变化,再滴加新制的氯水,溶液显红色,说明含Fe2+.有关的离子方程式为:
2Fe2++Cl2=2Fe3++2Cl-Fe3++3SCN-=Fe(SCN)3
(2)Fe3+的检验方法:
①含有Fe3+的溶液呈黄色;
②向待检液中滴加NaOH溶液或氨水,产生红褐色沉淀,说明含Fe3+.
③向待检液中滴加KSCN溶液,溶液呈血红色,说明含Fe3+.
进行铁及其化合物的计算时应注意的事项:
(1)铁元素有变价特点,要正确判断产物;
(2)铁及其化合物可能参加多个反应,要正确选择反应物及反应的化学方程式;
(3)反应中生成的铁化合物又可能与过量的铁反应,因此要仔细分析铁及其化合物在反应中是过量、适量,还是不足量;
(4)当根据化学方程式或离子方程式计算时,找出已知量与未知量的关系,列出方程式或方程式组;
(5)经常用到差量法、守恒法.

4.金属的冶炼
[金属的冶炼]
(1)从矿石中提取金属的一般步骤有三步:①矿石的富集.除去杂质,提高矿石中有用成分的含量;②冶炼.利用氧化还原反应原理,在一定条件下,用还原剂将金属矿石中的金属离子还原成金属单质;⑧精炼.采用一定的方法,提炼纯金属.
(2)冶炼金属的实质:用还原的方法,使金属化合物中的金属离子得到电子变成金属原子.
(3)金属冶炼的一般方法:
①加热法.适用于冶炼在金属活动顺序表中,位于氢之后的金属(如Hg、Ag等).例如:
2HgO2Hg+O2↑HgS+O2Hg+SO2↑
2Ag2O4Ag+O2↑2AgNO32Ag+2NO2↑+O2↑
②热还原法.适用于冶炼金属活动顺序表中Zn、Fe、Sn、Pb等中等活泼的金属.常用的还原剂有C、CO、H2、Al等.例如:
Fe2O3+3CO2Fe+3CO2(炼铁)ZnO+CZn+CO↑(伴生CO2)
WO3+3H2W+3H2OCr2O3+2Al2Cr+A12O3(制高熔点的金属)
⑧熔融电解法.适用于冶炼活动性强的金属如K、Ca、Na、Mg、A1等活泼的金属,通过电解其熔融盐或氧化物的方法来制得.例如:
2A12O34Al+3O2↑2NaCl2Na+C12↑
④湿法冶金(又叫水法冶金).利用在溶液中发生的化学反应(如置换、氧化还原、中和、水解等),对原料中的金属进行提取和分离的冶金过程.湿法冶金可用于提取Zn、U(铀)及稀土金属等.
[金属的回收]地球上的金属矿产资源是有限的,而且是不能再生的.随着人们的不断开发利用,矿产资源将会日渐减少.金属制品在使用过程中会被腐蚀或损坏,同时由于生产的发展,新的产品要不断替代旧的产品,因而每年就有大量废旧金属产生.废
旧金属是一种固体废弃物,会污染环境.要解决以上两个问题,最好的方法是把废旧金属作为一种资源,加以回收利用.这样做,既减少了垃圾量,防止污染环境,又缓解了资源短缺的矛盾.回收的废旧金属,大部分可以重新制成金属或它们的化合物再用.
[金属陶瓷和超导材料]
(1)金属陶瓷.金属陶瓷是由陶瓷和粘结金属组成的非均质的复合材料.陶瓷主要是Al2O3、ZrO2等耐高温氧化物等,粘结金属主要是Cr、Mo、W、Ti等高熔点金属.将陶瓷和粘结金属研磨,混合均匀,成型后在不活泼气氛中烧结,就可制得金属陶瓷.
金属陶瓷兼有金属和陶瓷的优点,其密度小,硬度大,耐磨,导热性好,不会因为骤冷或骤热而脆裂.另外,在金属表面涂一层气密性好、熔点高、传热性很差的陶瓷涂层,能够防止金属或合金在高温下被氧化或腐蚀.
金属陶瓷广泛地应用于火箭、导弹、超音速飞机的外壳、燃烧室的火焰喷口等处.
(2)超导材料.当电流通过金属(或合金)时,金属会发热,这是由于金属内部存在电阻,它阻碍电流通过.用金属导线输送电流时,由于有电阻存在,会白白消耗大量电能.金属材料的电阻通常随温度的降低而减小.
科学研究发现,当汞冷却到低于4.2K时,电阻突然消失,导电性几乎是无限大的,当外加磁场接近固态汞随之又撤去后,电磁感应产生的电流会在金属汞内部长久地流动而不会衰减,这种现象称为超导现象.具有超导性质的物质称为超导体.超导体电阻突然消失的温度称为临界温度(Tc).在临界温度以下时,超导体的电阻为0,也就是电流在超导体中通过时没有任何损失.
超导材料大致分为纯金属、合金和化合物三类.具有最高临界温度的纯金属是镧,Tc=12.5K.合金型目前主要有铌—钛合金,Tc=9.5K.化合物型主要有铌三锡(Nb3Sn),Tc=18.3K;钒三镓(V3Ga),Tc=16.5K等.
超导材料可制成大功率发电机、磁流发电机、超导储能器、超导电缆、超导磁悬浮列车等.用超导材料制成的装置,具有体积小、使用性能高、成本低等优点.
5.原电池的原理及其应用
[原电池]
(1)原电池的概念:把化学能转变为电能的装置叫做原电池.
(2)构成原电池的条件:
①有相互连接或,接触的两个电极.在两个电极中,其中一个电极的材料为较活泼的金属;另一个电极的材料为较不活泼的金属或金属氧化物导体或石墨.
②两个电极要同时与电解质溶液相接触并形成回路.
③作负极的较活泼金属能与电解质溶液发生氧化还原反应,而较不活泼的金属不能与电解质溶液反应.
(3)原电池原理:
较活泼金属:作负极电子流出发生氧化反应(电极本身失电子后而溶解)
较不活泼金属、金属氧化物或石墨:作正极电子流入发生还原反应(溶液中的阳离子得电子后析出)
电流方向:正极导线负极
(4)原电池原理的应用:制作各种电池,如干电池、蓄电池、充电电池、高能电池等.

[化学电源]
(1)实用电源一般应具有的特点:能产生稳定而具有较高电压的电流;安全、耐用且便于携带;能够适用于特殊用途;便于回收处理,不污染环境或对环境产生影响较小.
(2)几种常见的电池和新型电池:
构造性能主要用途







池锌—锰干电池插在电池中央的石墨作正极,顶端有一铜帽;在石墨棒的周围填满二氧化锰和炭黑的混合物,并用离子可以通过的长纤维作隔膜;隔膜外是调成糊状的氯化铵,作为电解质溶液;最外面是由锌筒制成的干电池外壳,作为负极;电池顶部用蜡和火漆封口电量小,在放电过程中容易发生气涨或漏液手电筒中用作照明碱性锌—锰电池电解液由原来的中性变为离子导电性更好的碱性,负极由锌片改为锌粉反应面积成倍增长.容量和放电时间比普通锌—锰电池增加几倍蓄



池铅蓄电池用含锑5%~8%的铅锑合金铸成格板,在格板上分别填充PbO2和Pb作正极和负极,二者交替排列而成.在电极之间充有密度为1.25g·cm-3~1.28g·cm-3的H2SO4溶液电压稳定,使用方便,安全、可靠,可循环使用用于汽车、摩托车等的动力镍—镉可充电电池用镉(Cd)为电池的负极,NiO(OH)为电池正极,碱性溶液为电解液广泛用于电话机、收录机等银—锌蓄电池用锌为负极,氧化银(Ag2O)为正极体积小、质量轻用于人造地球卫星,宇宙火箭、空间电视转播站等新型燃料电池氢氧燃料电池氢气、氧气、甲烷、煤气、空气、氯气等均可作为燃料电池的原料能量转化率高、可持续使用;燃烧产物为水,不污染环境铝—空气燃料电池用铝为电池负极,以氯化钠等盐溶液为电解液,靠空气中的氧气使铝不断氧化而产生电流体积小,能量大,使用方便,耗能少代替汽油作为汽车的动力,用于收音机、照明电源、野营炊具、野外作业工具等锂电池用密度最小的金属锂作电池的负极质量轻、工作效率高、贮存寿命长用于电脑、照相机、手表、心脏起搏器,以及作为火箭、导弹等的动力

[金属的电化学腐蚀]
(1)金属腐蚀的概念:金属腐蚀是指金属或合金与周围接触到的气体或液体进行化学反应而腐蚀损耗的过程.
(2)金属腐蚀的本质:金属原子失去电子变成阳离子的过程.也就是说,金属在腐蚀过程中,发生了氧化还原反应.
(3)两种金属腐蚀的比较:
化学腐蚀电化学腐蚀产生原因金属跟接触到的物质(如O2、Cl2、SO2等)直接发生化学反应不纯金属或合金与电解质溶液接触特点无电流产生.为原子之间的氧化还原反应形成无数微小的原电池,有微弱电流产生.为原子与离子之间的氧化还原反应结果金属失去电子被氧化而腐蚀较活泼金属失去电子被氧化而腐蚀举例铁跟氯气直接反应而腐蚀;钢管被原油中的含硫化合物腐蚀钢铁的电化学腐蚀:
负极(Fe):2Fe-4e-=2Fe2+
正极(C):2H2O+O2+4e-=4OH-.说明在化学腐蚀和电化学腐蚀中,电化学腐蚀是造成钢铁腐蚀的主要原因
(4)金属的防护方法:
①选用不同的金属或非金属制成合金(如不锈钢).
②采用喷漆、涂油脂、电镀、喷镀或表面钝化等方法使金属与介质隔离.
③电化学保护法.
高中化学知识点规律大全
——烃
1.烃的分类

2.基本概念
[有机物]含碳元素的化合物称为有机化合物,简称有机物.
说明有机物一定是含有碳元素的化合物(此外,还含有H、O、N、S、P等),但含有碳元素的化合物却不一定是有机物,如CO、CO2、H2CO3、碳酸盐、CaC2等少数物质,它们的组成和性质跟无机物很相近,一般把它们作为无机物.
有机物种类繁多的原因是碳原子最外层有4个电子,不仅可与其他原子形成四个共价键,而且碳原子与碳原子之间也能以共价键(碳碳单键、碳碳双键、碳碳叁键)形成含碳原子数不同、分子结构不同的碳链或环状化合物.
[烃]又称为碳氢化合物,指仅由碳和氢两种元素组成的一大类化合物.根据结构的不同,烃可分为烷烃、烯烃、炔烃、芳香烃等.
[结构式]用一根短线代表一对共用电子对,并将分子中各原子用短线连接起来,以表示分子中各原子的连接次序和方式的式子.如甲烷的结构式为:
乙烯的结构式为:

H-C-HHHH-C=C-H

[结构简式]将有机物分子的结构式中的“C—C”键和“C—H”键省略不写所得的一种简式.如丙烷的结构简式为CH3CH2CH3,乙烯的结构简式
为CH2=CH2,苯的结构简式为等.
[烷烃]又称为饱和链烃.指分子中碳原子与碳原子之间都以C—C单键(即1个共用电子对)结合成链状,且碳原子剩余的价键全部跟氢原子相结合的一类烃.“烷”即饱和的意思.CH4、CH3CH3、CH3CH2CH3……等都属于烷烃.烷烃中最简单的是甲烷.
[同系物]结构相似,在分子组成上相差一个或若干个CH2原子团的有机物,互称同系物.
说明判断有机物互为同系物的两个要点;①必须结构相似,即必须是同一类物质.例如,碳原子数不同的所有的烷烃(或单烯烃、炔烃、苯的同系物)均互为同系物.由于同系物必须是同一类物质,则同系物一定具有相同的分子式通式,但分子式通式相同的有机物不一定是同系物.由于同系物的结构相似,因此它们的化学性质也相似.②在分子组成上相差一个或若干个CH2原子团.由于同系物在分子组成上相差CH2原子团的倍数,因此同系物的分子式不同.
由同系物构成的一系列物质叫做同系列(类似数学上的数列),烷烃、烯烃、炔烃、苯的同系物等各自为一个同系列.在同系列中,分子式呈一定规律变化,可以用一个通式表示.
[取代反应]有机物分子里的原子或原子团被其他原子或原子团所代替的反应,叫做取代反应.根据有机物分子里的原子或原子团被不同的原子或原子团[如-X(卤原子)、-NO2(硝基),-SO3H(磺酸基),等等]所代替,取代反应又分为卤代反应、硝化反应、磺化反应,等等.
①卤代反应.如:
CH4+C12→CH3C1+HCl(反应连续进行,可进一步生成CH2C12、CHCl3、CCl4)
(一NO2叫硝基)
②硝化反应.如:
③磺化反应.如:(一SO3H叫磺酸基)
[同分异构现象与同分异构体]
化合物具有相同的分子式,但具有不同的结构式的现象,叫做同分异构现象.具有同分异构现象的化合物互为同分异构体.
说明同分异构体的特点:①分子式相同,相对分子质量相同,分子式的通式相同.但相对分子质量相同的化合物不一定是同分异构体,因为相对分子质量相同时分子式不一定相同.同分异构体的最简式相同,但最简式相同的化合物不一定是同分异构体,因为最简式相同时分子式不一定相同.②结构不同,即分子中原子的连接方式不同.同分异构体可以是同一类物质,也可以是不同类物质.当为同一类物质时,化学性质相似,而物理性质不同;当为不同类物质时,化学性质不同,物理性质也不同.
[烃基]烃分子失去一个或几个氢原子后剩余的部分.烃基的通式用“R-”表示.例如:-CH3(甲基)、-CH2CH3(乙基)、-CH=CH2(乙烯基)、-C6H5或f今胃(苯基)等.烷基是烷烃分子失去一个氢原子后剩余的原子团,其通式为-CnH2n+1.烃基是含有未成对电子的原子团,例如,
-CH3的电子式为
1mol-CH3中含有9mol电子.
[不饱和烃]分子里含有碳碳双键(C=C)或碳碳叁键(C≡C)的烃,双键碳原子或叁键碳原子所结合的氢原子数少于烷烃分子中的氢原子数,还可再结合其他的原子或原子团.不饱和烃包括烯烃、炔烃等.
[加成反应]有机物分子里的双键或叁键两端的碳原子与其他原子或原子团直接结合生成新的化合物的反应,叫做加成反应.
说明加成反应是具有不饱和键的物质的特征反应.不饱和键上的两个碳原子称为不饱和碳原子,加成反应总是发生在两个不饱和碳原子上.加成反应能使有机分子中的不饱和碳原子变成饱和碳原子.烯烃、炔烃、苯及其同系物均可发生加成反应,例如:
(1,2-二溴乙烷)
(1,2-二溴乙烯)
(1,1,2,2-四溴乙烷)
[聚合反应]聚合反应又叫做加聚反应.是由相对分子质量小的化合物分子(即单体)互相结合成相对分子质量大的高分子(即高分子化合物)的反应.
说明加聚反应是合成高分子化合物的重要反应之一.能发生加聚反应的物质一定要有不饱和键.加聚反应的原理是不饱和键打开后相互连接成很长的链.例如:
(聚乙烯)
(聚氯乙烯)


[烯烃]分子中含有碳碳双键(C=C键)的一类不饱和烃.根据烃分子中所含碳碳双键数的不同,烯烃又可分为单烯烃(含一个C=C键)、二烯烃(含两个C=C键)等.烯烃中最简单的是乙烯.
[炔烃]分子中含有碳碳叁键(C≡C键)的一类不饱和烃.炔烃中最简单的是乙炔.
[芳香烃]分子中含有一个或多个苯环的碳氢化合物,叫做芳香烃,简称芳烃.苯是最简单、最基本的芳烃.
[石油的分馏]是指用蒸发和冷凝的方法把石油分成不同沸点范围的蒸馏产物的过程.
说明①石油的分馏是物理变化;②石油的分馏分为常压分馏和减压分馏两种.常压分馏是指在常压(1.0l×l05Pa)时进行的分馏,主要原料是原油,主要产品有溶剂油、汽油、煤油、柴油和重油.减压分馏是利用“压强越小,物质的沸点越低”的原理,使重油在低于常压下的沸点就可以沸腾,而对其进一步进行分馏.
[石油的裂化和裂解]裂化是在一定条件下,将相对分子质量较大、沸点较高的烃断裂为相对分子质量较小、沸点较低的烃的过程.在催化剂作用下的裂化,又叫做催化裂化.例如:
C16H34C8H18+C8H16
裂解是采用比裂化更高的温度,使石油分馏产品中的长链烃断裂成乙烯、丙烯等短链烃的加工过程.裂解是一种深度裂化,裂解气的主要产品是乙烯.
[煤的干馏]又叫做煤的焦化.是将煤隔绝空气加强热使其分解的过程.
说明①煤的干馏是化学变化;
②煤干馏的主要产品有焦炭、煤焦油、焦炉气(主要成分为氢气、甲烷等)、粗氨水和粗苯.
[煤的气化和液化]
(1)煤的气化.
①概念:把煤中的有机物转化为可燃性气体的过程.
②主要化学反应:C(s)+O2(g)CO2(g)
⑧煤气的成分、热值和用途比较:
煤气种类低热值气中热值气高热值气(合成天然气)生成条件碳在空气中燃烧碳在氧气中燃烧CO+3H2CH4+H2O成分CO、H2、相当量的N2CO、H2、少量CH4主要是CH4特点和用途热值较低.用作冶金、机械工业的燃料气热值较高,可短距离输送.可用作居民使用的煤气,也可用作合成氨、甲醇的原料等热值很高,可远距离输送
(2)煤的液化.
①概念:把煤转化成液体燃料的过程.
②煤的液化的途径:
a.直接液化:把煤与适当的溶剂混合后,在高温、高压下(有时还使用催化剂),使煤与氢气作用生成液体燃料.
b.间接液化:如图3—11—1所示.


3.烷烃、烯烃的命名
[烷烃的命名]
①习惯命名法.当烷烃分子中所含碳原子数不多时,可用习惯命名法.其命名步骤要点如下:a.数出烷烃分子中碳原子的总数.碳原子总数在10以内的,从1~10依次用甲、乙、丙、丁、戊、己、庚、辛、壬、癸来表示.b.当烷烃分子中无支链时,用“正”表示,如:CH3CH2CH2CH3叫正丁烷;当烷烃分子中含“CHa--CH--”结构时,用

②系统命名法.
步骤:a.选主链.选择支链最多且含碳原子数最多的碳链作主链,并称“某烷”;b.定起点.选择离最简单的支链(即含碳原子数最少)最近的一端作为主链的起点,并使取代基的编号数之和最小;c.取代基,写在前,注位置,短线连;d.相同取代基要合并.不同取代基,不论其位次大小如何,简单在前,复杂在后.
[烯烃的命名]在给烯烃命名时,要始终注意到C=C键所在的位置:①选择含有C=C在内的最长碳链作主链(注:此时主链上含碳原子数不一定最多);②从离C=C键最近的一端开始给主链碳原子编号;⑧在“某烯”字样前用较小的阿拉伯数字“1、2…”给烯烃编号.其余与烷烃的命名方法相同.例如:
CH3--CHz--''<3--<3H2--K3H3
,l
CHc
其名称为2—乙基—l—丁烯.

4.同分异构体的有关知识
[同分异构体的熔点、沸点高低的规律]
①当为脂肪烃的同分异构体时,支链越多(少),沸点越低(高);②当为含两个侧链的苯的同系物时,侧链相隔越远(近),沸点越高(低).
[同分异构体的种类]
①有机物类别异构,???如烷烃与烯烃为两类不同的有机物;②碳链异构(苯环上有邻、间、对位三种异构);③官能团位置异构(在“烃的衍生物”中将学习到).
[同分异构体的书写规律]
①同分异构体的书写规律:要准确、完全地写出同分异构体,一般按以下顺序规律进行书写:类别异构+碳链异构一位置异构.
②碳链异构(烷烃的同分异构体)的书写技巧:a.先写出不含支链的最长碳链;b.然后写出少1个碳原子的主链,将余下的1个碳原子作支链加在主链上,并依次变动支链位置;c.再写出少2个碳原子的主链,将余下的2个碳原子作为一个乙基或两个甲基加在主链上,并依次变动其位置(注意不要重复);d.以此类推,最后分别在每个碳原子上加上氢原子,使每个碳原子有4个共价键.
说明a.从上所述可归纳为:从头摘、挂中间,往端移、不到边,先甲基、后乙基,先集中、后分散,变换位、不能同.b.在书写烯烃或炔烃的同分异构体时,只要在碳链异构的基础上依次变动碳碳双键或碳碳叁键位置即可.
[烃的同分异构体种数的确定方法]
①等效氢法.烃分子中同一种类的氢原子称为等效氢原子.有机分子中有几种不等效氢原子,其氢原子被一种原子或原子团取代后的一取代物就有几种同分异构体.
等效氢原子的一般判断原则:a.位于同一碳原子上的H原子为等效H原子.如CH4中的4个H原子为等效H原子.b.位于同一C原子上的甲基上的H原子为等效H原子.如新戊烷(CH3)4C上的12个H原子为等效H原子.c.同一分子中处于对称位置或镜面对称位置上的H原子为等效H原子.对于含苯环结构的分子中等效H原子的种数的判断,应首先考虑苯环所在平面上是否有对称轴,若没有,则还应考虑是否有垂直于苯环平面的对称轴存在,然后根据对称轴来确定等效H原子的种数.
②换元法.换元法是要找出隐含在题目中的等量关系,并将所求对象进行恰当地转换.例如,已知正丁烷的二氯代物有6种同分异构体,则其八氯代物的同分异构体有多少种?正丁烷C4H10。的二氯代物的分子式为C4H8Cl2,八氯代物的分子式为C4H2Cl8,变换为C4Cl8H2,很显然,两者的同分异构体数是相同的,均为6种.
[同分异构体与同位素、同素异形体、同系物的比较]
同位素同素异形体同系物同分异构体适用对象原子单质有机物有机物判断依据①原子之间②质子数相同,中子数不同①单质之间②属于同一种元素①结构相似的同一类物质②符合同一通式③相对分子质量不同(相差14n)①分子式相同②结构不同③不一定是同类物质性质化学性质相同;物理性质有差异化学性质相同;物理性质不同化学性质相似;物理性质不同(熔点、沸点、密度呈规律性变化)化学性质可能相似,也可能不同;物理性质不同实例H、T、D红磷与白磷;金刚石与石墨甲烷与乙烷;乙烯与丙烯戊烷有正、异、新戊烷三种5.甲烷、乙烯、乙炔及苯的比较
烃的种类甲烷乙烯乙炔苯分子式CH4C2H4C2H2C6H6结构简式CH2=CH2CH≡CH分子结构特点正四面体,键角为109°28′,由极性键形成的非极性分子.与C原子共平面的H原子最多只有2个平面结构,键角为120°,分子中所有的原子均处于同一平面内.分子中含C—H极性键和C—C非极性键.是非极性分子直线形,键角为180°,分子中所有的原子均处于同一直线上(也必处于同一平面内).分子中含C—H极性键和C—C非极性键平面正六边形,键角为120°,分子中6个碳原于完全相同(6个碳键的键长、键能、键角相同).12个原子均处于同一平面上物理性质无色、无味的气体,极难溶于水,密度比空气小无色、稍有气味的气体,难溶于水,密度比空气略小纯乙炔是五色、无味的气体,密度比空气小,微溶于水无色、有特殊气味的液体,有毒,不溶于水,密度比水小,熔点、沸点低.用冰冷却苯,苯凝结为无色晶体含碳的质
量分数%7585.79292燃烧现象火焰不明亮火焰较明亮,带黑烟火焰明亮,带浓烟火焰明亮,带浓烟化学性质①性质稳定,不能与强酸、强碱、酸性KMnO4溶液反应;②与纯X2发生一系列取代反应,生成CH3X、CH2X2、CHX3、CX4的混合物;③热分解:9u高温—(隔绝空气)—C+2H2(注:X为卤素)化学性质活泼①加成反应:与X2、HX、H2、H2O等加成,能使溴水褪色②氧化反应:能使酸性KMnO4溶液褪色③加聚反应:
nCH2=CH2催化剂化学性质活泼①加成反应:与X2、HX、H2、H2O等加成,能使溴水褪色.如:
②氧化反应:能使酸性KMnO4溶液褪色兼有烷烃和烯烃的性质:①取代反应.与X2发生卤代反应,与浓HNO3发生硝化反应,与浓H2SO4发生磺化反应;②加成反应.例如在催化剂Ni和加热的条件下,苯与H2加成得到环己烷:③苯不能使酸性KMnO4溶液褪色工业制法煤的干馏石油裂解煤的干馏主要用途气体燃料,制炭黑、氯仿等合成酒精,制聚乙烯等氧炔焰,制氯乙烯等合成纤维、橡胶、染料等
6.烷烃、烯烃、炔烃及苯的同系物的比较
烃的类别烷烃烯烃炔烃苯的同系物分子式通式CnH2n+2
(n≥1)CnH2n
(n≥2)CnH2n-2
(n≥2)CnH2n-6
(n≥6)分子结构特点分子中C原子间均以C-C单键连接成链状;碳链为锯齿形;C-C键可旋转分子中含C=C键,其中的一个键键能较低,易断裂;C=C键不能旋转分子中含C≡C键,其中有两个键键能较低,易断裂,C≡C键不能旋转分子中只含一个苯环,苯环的侧链是烷基(CnH2n-),苯环与侧链相互影响主要化学反应①取代反应
②裂化反应①加成反应
②加聚反应
③氧化反应①加成反应
②氧化反应①取代反应
②加成反应
③氧化反应碳碳键的键长比较C-C>苯环中的碳碳键>C=C>C≡C物理性质的规律①常温时,烃分子中碳原子数≤4个时为气体;②烃不溶于水,气态或液态烃的密度比水小(浮在水面上),③各类烃中,随分子中碳原子数增多,熔点、沸点升高,密度增大
7.烃的基本实验
[甲烷与氯气的取代反应]
①反应原理:
(一氯甲烷)
(二氯甲烷)
(氯仿)
(四氯化碳)
②实验现象及解释:
a.量筒内壁中出现油状液体(生成的CH2Cl2、CHCl3、CCl4为不溶于水的液体);
b.量筒内水面上升(反应后气体总体积减小且生成的HCl气体易溶于水);
c.水槽中有晶体析出(生成的HCl气体溶于水后使NaCl溶液过饱和).
③应注意点:a.不要将混合气体放在日光直射的地方,以免引起爆炸;b.反应产物是两种气体(HCl、CH3Cl)和三种液体(CH2Cl2、CHCl3、CCl4)的混合物.
[乙烯的实验室制法]
①反应原理:
CH3CH2OHCH=CH2++H2O
②所需主要仪器和用品:酒精灯,圆底烧瓶,温度计,双孔橡胶塞,碎瓷片.
③发生装置:液+液二气体型装置.与制C12、HCl气体的发生装置相似,只需将制C12、HCl气体装置中的分液漏斗改为温度计即可.
④收集方法:排水法(不能用排空气法,因为乙烯与空气的密度很接近).
⑤反应液中无水酒精与浓H2SO4的体积比为1∶3.应首先向烧瓶中加入酒精,再慢慢地注入浓H2SO4(类似于浓H2SO4加水稀释)。使用过量浓H2SO4,可提高乙烯的产率,增加乙烯的产量.
⑥浓H2SO4的作用:催化剂和脱水剂.
⑦温度计水银球放置位置:必须插入反应液中(以准确测定反应液的温度).
⑧发生的副反应:
2CH3CH2OHC2H5OC2H5+H2O
(乙醚)
因此,在实验室加热制乙烯时,应迅速使温度上升到170℃,以减少乙醚的生成,提高乙烯的产量。
C2H5OH+4H2SO4(浓)=4SO2↑+CO2↑+C↓+7H2O
在加热过程中,反应液的颜色由无色变为棕色,甚至变为黑褐色.这是因为浓H2SO4具有强氧化性,将部分乙醇氧化为炭.由于有上述两个副反应发生,所以在制得的乙烯中会混有CO2、SO2等杂质气体,其中SO2也能使酸性KMnO4溶液或溴水褪色,因此,在做乙烯的性质实验之前,应首先将气体通过碱石灰或碱液以除去SO2.
⑨在圆底烧瓶中加入碎瓷片的目的:防止液体受热时产生暴沸.

[乙炔的实验室制法]
①反应原理:CaC2+2H2O→Ca(OH)2↓+CH≡CH↑
②装置:固+液→气体型装置,与制H2、CO2等气体的发生装置相同.用排水集气法收集乙炔.
③所需主要仪器;分液漏斗,平底烧瓶(或大试管、广口瓶、锥形瓶等),双孔橡胶塞.
④不能用启普发生器的原因:a.碳化钙与水的反应较剧烈,使用启普发生器难于控制反应速率;b.反应过程中放出大量热,易使启普发生器炸裂;c.反应生成的Ca(OH)2为浆状物,易堵塞导管.
⑤注意事项:a.为减缓反应速率,得到平稳的乙炔气流,可用饱和NaCl溶液代替水,用块状电石而不用粉末状的电石.b.为防止反应产生的泡沫堵塞导管,应在导气管口附近塞上少量棉花.c.电石中混有CaS、Ca3P2等杂质,它们也跟水反应生成H2S、
PH3等气体,因此,用电石制得的乙炔(俗称电石气)有特殊臭味.把混有上述混合气体的乙炔气通过盛有CuSO4溶液的洗气瓶,可除去H2S、PH3等杂质气体.
[石油的分馏]
①原理:根据石油中所含各种烃的沸点不同,通过加热和冷凝的方法,将石油分为不同沸点范围的蒸馏产物.
②使用的玻璃仪器:酒精灯,蒸馏烧瓶(其中有防止石油暴沸的碎瓷片),温度计,冷凝管,尾接管,锥形瓶.
③温度计水银球位置:蒸馏烧瓶支管口(用以测定蒸气的温度).
④冷凝管中水流方向:由下往上(原因:水能充满冷凝管,水流与蒸气流发生对流,起到充分冷凝的效果).
⑤注意点:a.加热前应先检查装置的气密性.b.石油的分馏是物理变化.c.石油的馏出物叫馏分,馏分仍然是含有多种烃的混合物.

8.有关烃的计算类型
[烃的分子式的确定方法]
①先求烃的最简式和相对分子质量,再依;(最简式的相对分子质量)n=相对分子质量,求得分子式.
说明a.已知C、H元素的质量比(或C、H元素的质量分数,或燃烧产物的量),均可求出该烃的最简式.
b.求有机物相对分子质量的常见公式:
▲有机物的摩尔质量=m/n

▲气态有机物的相对分子质量=标准状况下该气体密度×22.4
有机物混合气体的平均相对分子质量=W总/n总
……
▲通过相对密度求算:M未知=D·M已知,即ρA/ρB=MA/MB.
注:①也可先求出相对分子质量,再根据各元素的质量分数和相对分子质量直接求得分子式.
②依各类烃的通式和相对分子质量(或分子中所含电子的总数)求算.
③商余法:烃的相对分子质量/12→商为C原子数,余数为H原子数.
注意一个C原子的质量等于12个H原子的质量.
例某烃的相对分子质量为128,则该烃的分子式为或.
④平均值法:平均值法适用于混合烃的有关计算,它是根据各组分的某种平均值来推断烃分子式的解题方法.平均值法特别适用于缺少数据而不能直接求解的计算.平均值法有:平均摩尔质量法、平均碳原子法、平均氢原子法和平均分子式法等.

[烃的燃烧计算]
①烃燃烧的通式.
a.完全燃烧时(O2充足):+(+/4)O2→CO2+/2H2O
b.不完全燃烧时(O2不充足):
+()O2→CO2+()CO+/2H2O
②不同烃完全燃烧时耗O2量的比较.
a.物质的量相同时:()的值愈大,耗O2量愈多.
b,质量相同时:
▲将CxHy变换为则值越大(小),耗O2量越多(少);值相同,耗O2量相同.
▲最简式相同,耗O2量相同.最简式相同的有:(CH)n——C2H2与C6H6等;(CH2)n——烯烃与环烷烃.
c.最简式相同的烃,不论以何种比例混合,只要混合物的总质量一定,则耗O2量一定.
③烃完全燃烧时,烃分子中H原子数与反应前后气体的物质的量(或压强或体积)的关系.
a.t≥100℃时(水为气体):
(g)+(+/4)O2→CO2(g)+/2H2O(g)
(+/4)/2
∵V前=1++/4V后=+/2∴V前-V后=1-/4
当V前=V后时,=4;
当V前>V后时,<4;
当V前<V后时,>4;
由此可见,烃完全燃烧前后气体体积的变化只与烃分子中的H原子数有关,而与C原子数无关(因此,在计算烃完全燃烧时,要验算耗O2量).
规律:
▲若燃烧前后气体的体积不变,
则=4.具体的烃有CH4、C2H4、C3H4及其混合物.
▲若燃烧后气体的体积减小,则<4.只有C2H2符合这一情况.
▲若燃烧后气体的体积增大,则>4.用体积增量法来求算具体是哪一种烃.
b.t<100℃时(水为液体):
反应后气体的体积较反应前恒减小,用体积减量法确定具体的:
(g)+(+/4)O2→CO2(g)+/2H2O(aq)气体体积减少
(+/4)1+/4

















高中化学知识点规律大全
——烃的衍生物

1.烃的衍生物
[烃的衍生物的比较]
类别官能团分子结构特点分类主要化学性质卤

烃卤原子(-X)碳-卤键(C-X)有极性,易断裂①氟烃、氯烃、溴烃;②一卤烃和多卤烃;③饱和卤烃、不炮和卤烃和芳香卤烃①取代反应(水解反应):
R-X+H2O
R-OH+HX
②消去反应:
R-CH2-CH2X+NaOH
RCH=H2+NaX+H2O醇均为羟基
(-OH)-OH在非苯环碳原子上①脂肪醇(包括饱和醇、不饱和醇);②脂环醇(如环己醇)③芳香醇(如苯甲醇),④一元醇与多元醇(如乙二醇、丙三醇)①取代反应:
a.与Na等活泼金属反应;b.与HX反应,c.分子间脱水;d.酯化反应
②氧化反应:
2R-CH2OH+O2
2R-CHO+2H2O
③消去反应,
CH3CH2OH
CH2=H2↑+H2O酚-OH直接连在苯环碳原上.酚类中均含苯的结构一元酚、二元酚、三元酚等①易被空气氧化而变质;②具有弱酸性③取代反应

④显色反应醛醛基
(-CHO)分子中含有醛基的有机物①脂肪醛(饱和醛和不饱和醛);②芳香醛;③一元醛与多元醛①加成反应(与H2加成又叫做还原反应):R-CHO+H2R-CH2OH
②氧化反应:a.银镜反应;b.红色沉淀反应:c.在一定条件下,被空气氧化羧酸羧基
(-COOH)分子中含有羧基的有机物①脂肪酸与芳香酸;②一元酸与多元酸;③饱和羧酸与不饱和羧酸;④低级脂肪酸与高级脂肪酸①具有酸的通性;②酯化反应羧

酯


酯基




(R为烃基或H
原子,R′只能为烃基)①饱和一元酯:
CnH2n+lCOOCmH2m+1
②高级脂肪酸甘油酯③聚酯④环酯水解反应:
RCOOR′+H2O
RCOOH+R''OH
RCOOR′+NaOH
RCOONa+R''OH
(酯在碱性条件下水解较完全)
2.有机反应的主要类型
反应类型定义举例(反应的化学方程式)消去反应有机物在一定条件下,从一个分子中脱去一个小分子(如H2O、HBr等)而生成不饱和(含双键或叁键)化合物的反应C2H5OHCH2=H2↑+H2O苯酚的显色反应苯酚与含Fe3+的溶液作用,使溶液呈现紫色的反应还原反应有机物分子得到氢原子或失去氧原子的反应CH≡CH+H2CH2=H2
CH2=H2+H2CH3CH3
R—CHO+H2R-CH2OH氧化反应燃烧或被空气中的O2氧化有机物分子得到氧原子或失去氢原子的反应2CH3CH2OH+O22CH3CHO+2H2O
2CH3CHO+O22CH3COOH银镜反应CH3CHO+2Ag(NH3)2OH
CH3COONH4+2Ag↓+3NH3↑+H2O红色沉淀反应CH3CHO+2Cu(OH)2CH3COOH+Cu2O↓+2H2O取代反应卤代烃的
水解反应在NaOH水溶液的条件下,卤代烃与水作用,生成醇和卤化氢的反应R-CH2X+H2ORCH2OH+HX酯化反应酸(无机含氧酸或羧酸)与醇作用,生成酯和水的反应RCOOH+R''CH2OH
RCOOCH2R′+H2O酯的水解反应在酸或碱存在的条件下,酯与水作用生成醇与酸的反应RCOOR′+H2ORCOOH+R''OH
RCOOR′+NaOH→RCOONa+R''OH
3.有机物的分离和提纯方法
(1)有机物的分离与提纯的原则:分离是把混合物各组分经过化学变化而设法分开,得到混合前的物质.提纯是除去物质中混有的少量杂质.
①加入试剂时,不容易引入新的杂质;
②所用试剂最好只与杂质起反应,而不与所需提纯的物质起反应;
③反应后的其他生成物必须和所需提纯的物质易分离;
④有机物的分离与提纯不能用合成转化的方法.
(2)常见有机物的分离、提纯方法:
①洗气法.将气体混合物中的杂质气体用溶液吸收除去.例如,除去气态烷烃中混有的气态烯烃(或炔烃),可将混合气体通过盛有溴水的洗气瓶.
②分液法.根据有机物在水中的溶解性、酸碱性等性质上的差异,把两种相互混溶的有机物中的一种转变为可溶于水的物质,另一种仍不溶于水,从而达到分离与提纯的目的.a.若杂质易溶于水而被提纯物不溶于水,则直接加入水后用力振荡,使杂质转入水层中,用分液漏斗分离.b.若杂质与被提纯物都不溶于水,则先使杂质与某种试剂反应,使其转化为易溶于水的物质后再分离.
③蒸馏(分馏)法.
a.对沸点差别大的有机物,可直接进行蒸馏提纯与分离;
b.混合物中各组分的沸点相差不大时,则加入某种物质,使其中一种组分转化为高沸点、难挥发性物质后再进行蒸馏.例如,分离乙醇与乙酸的混合液时,先向其中加入固体NaOH,使乙酸转化生成高沸点的CH3COONa,蒸馏出乙醇后,再加入浓H2SO4,使CH3COONa转化为CH3COOH,再经蒸馏得到乙酸.
4.有机物的燃烧规律
[烃的含氧衍生物燃烧的通式]
①完全燃烧时(O2充足):
+(+/4)O2→CO2+/2H2O
②不完全燃烧时(O2不充足):
+()O2→CO2+()CO+/2H2O
[不同有机物完全燃烧时耗O2量的比较]
(1)物质的量相同时,等物质的量的烃(通式为)、烃的衍生物(通式为)完全燃烧时,耗O2量的比较.
方法一:直接根据“1mol烃消耗(+/4)molO2,1mol烃的衍生物消耗()molO2”相比较.
方法二(较简便):根据“1个C耗1个O2,2个H耗1个O”的原理,先将改写为。或当为偶数时改写为的形式较好,再与烃完全燃烧耗O2量相比较.

具体有:a.含碳原子数相同的烯烃、环烷烃、饱和一元醇等完全燃烧时耗O2量相同;b.含相同碳原子数的炔烃、二烯烃、饱和一元醛、饱和二元醇等完全燃烧时耗O2量相同Ic.含相同碳原子数的饱和一元羧酸、酯、饱和三元醇完全燃烧时耗O2量相同.

(2)质量相同时,最简式相同,耗02量相同.最简式相同的有:CHC2H2与C,H‘等;CH2——烯烃与环烷烃;CH20——甲醛、乙酸、甲酸甲酯、葡萄糖等;CHO——饱和一元
醛、饱和一元羧酸、饱和一元酯等.
(3)烃、烃的含氧衍生物组成的混合物,当总量(总质量或总物质的量)不变,而其中各组分的比例变化时,完全燃烧后,要使生成的C02量或H20量或耗02量不变,各组分必须满足的
条件是:
①混合物总质量一定时,若完全燃烧后生成的C02(或H20)为一恒量,则要求各组分含C的质量分数(或H的质量分数)相等,而无论其最简式是否相同.如CzH:与C6H,;CH:与
C~OH802;等等.若完全燃烧时耗O:量为一恒量,则要求各组分最简式相同.如C2H402和CH20等.
②混合物总物质的量一定时,若完全燃烧后生成的CO:(或H20)为一
恒量,则要求各组分分子中含C原子(或H原子)的数目相等.如CzH+与C2H40等.若完全燃烧时耗O。量为一恒量,则要求各组分耗O:量相等.如C2H:与C2H~O等.
5.求算烃的衍生物分-S-式的基本75法
(1)依据相对分子质量求算.
规律;C~HyO。=(M—zXl6)/12,所得的商为J,余数为y.
注意1个CH:原子团的相对分子质量=1个O原子的相对原子质量=16.
(2)依各类烃衍生物分子式的通式求算.
(3)依据相对分子质量和最简式求算。
(4)由燃烧产物求算.
6.有机物的推断
(1)有机物推断题的主要类型.有机物的推断一般有以下几种题型:①由结构推断有机物;②由性质推断有机物;③由实验推断有机物;④由计算推断有机物等.
(2)有机物推断题的解题思路和
方法:
①顺推法:抓住有机物的结构、性质和实验现象这条主线,顺着题意正向思维,由已知逐步推向未知,最后作出正确的推断.②逆推法:抓住有机物的结构、性质和实验现象这条主线,逆向思维,从未知逐步推向已知,抓住突破口,把题中各种物质联系起来进行反推,从而得到正确的推断.⑧剥离法:先根据已知条件把明显的未知因素首先剥离出来,然后根据已知将已剥离出来的未知因素当做已知,逐个求解那些潜在的未知因素.④分层推理法:先根据题意进行分层推理,得出

每一层的结构,然后再将每一层结构进行综合推理,最后得出正确的推断
结论.上述几种方法往往交替结合使用,使之快速简便.
7.有机物的合成
(1)有机合成途径和路线选择的基本要求.有机合成往往要经过多步反应才能完成,因此确定有机合成的途径和路线时就要进行合理选择,其选择的基本要求是:原料价廉,原理正
确,路线简捷,便于操作,条件适宜,易于分离,产率高,成本低.
(2)有机合成题的解题思路和途径.解答有机合成题时,首先要正确判断合成的有机物属于何种有机物,它带有什么官能团,它和哪些知识和信息有关,它所在的位置的特点等.其
次,根据现有原料、信息和有关反应规律,尽可能合理地把目标有机物解剖
成若干片断,或寻找官能团的引入、转换、保护方法,或设法将各片断(小分子化合物)拼接衍变,尽快找出合成目标有机物的关键和突破点.最后将正向思维和逆向思维、纵向思维和横向思维相结合,选择出最佳合成方案.
(3)有机合成题的解题方法.解答有机合成题的方法较多,其基本方法有:
①顺合成法.此法是采用正向思维方法,从已知原料人手,找出合成所需要的直接或间接的中间产物,逐步推向待合成的有机物.其思维程序是:原料一中间产物一产品.
②逆合成法.此法是采用逆向思维方法,从产品的组成、结构、性质人手,找出合成所需要的直接或间接的中间产物,逐步推向已知原料.其思维程序是:产品一中间产物一原料.
(3)综合比较法.此法是采用综合思维的方法,将正向或逆向推导出的几种合成途径进行比较,从而得出最佳的合成路线.
8.烃及其重要衍生物之间的相互转化关











高中化学知识点规律大全
——糖类油脂蛋白质
1.糖类
[糖类的结构和组成]
(1)糖类的结构:分子中含有多个羟基、醛基的多羟基醛,以及水解后能生成多羟基醛的由C、H、O组成的有机物.糖类根据其能否水解以及水解产物的多少,可分为单糖、二糖和多糖等.
(2)糖类的组成:糖类的通式为Cn(H2O)m,对此通式,要注意掌握以下两点:①该通式只能说明糖类是由C、H、O三种元素组成的,并不能反映糖类的结构;②少数属于糖类的物质不一定符合此通式,如鼠李糖的分子式为C6H12O5;反之,符合这一通式的有机物不一定属于糖类,如甲醛CH2O、乙酸C2H4O2等.
[单糖——葡萄糖]
(1)自然界中的存在:葡萄和其他带甜味的水果中,以及蜂蜜和人的血液里.
(2)结构:分子式为C6H12O6(与甲醛、乙酸、乙酸乙酯等的最简式相同,均为CH2O),其结构简式为:CH2OH-(CHOH)4-CHO,是一种多羟基醛.
(3)化学性质:兼有醇和醛的化学性质.
①能发生银镜反应.
②与新制的Cu(OH)2碱性悬浊液共热生成红色沉淀.
③能被H2还原:
CH2OH-(CHOH)4-CHO+H2CH2OH-(CHOH)4-CH2OH(己六醇)
④酯化反应:
CH2OH-(CHOH)4-CHO+5CH3COOHCH2-(CH):--CHO(五乙酸葡萄糖酯)
OOCCH3
(4)用途:①是一种重要的营养物质,它在人体组织中进行氧化反应,放出热量,以供维持人体生命活动所需要的能量;②用于制镜业、糖果制造业;③用于医药工业.体弱多病和血糖过低的患者可通过静脉注射葡萄糖溶液的方式来迅速补充营养.

[二糖——蔗糖和麦芽糖]
蔗糖(C12H22O11)麦芽糖(C12H22O11)分子结构特征分子中不含-CHO分子中含有-CHO物理性质无色晶体,溶于水,比葡萄糖甜白色晶体,易溶于水,不如蔗糖甜化学性质①没有还原性,不能发生银镜反应,也不能与新制的Cu(OH)2悬浊液反应
②能水解:
C12H22011+H20→C6H1206
(蔗糖)(葡萄糖)
~C6H1206
(果糖)①有还原性,能发生银镜反应,能与新制的Cu(OH)2悬浊液反应
②能水解:
C12H22011+H20→
(麦芽糖)
2C6H1206
(葡萄糖)存在或制法存在于甘蔗、甜菜中2(C6Hl005)。+nH2O→
(淀粉)
nCl2H22011
(麦芽糖)相互联系①都属于二糖,分子式都是C12H22O11,互为同分异构体
②蔗糖为非还原糖,而麦芽糖为还原糖
③水解产物都能发生银镜反应,都能还原新制的Cu(OH)2悬浊液
[食品添加剂]
功能品种食用色素调节食品色泽,改善食品外观胡萝卜素(橙红色)、番茄红素(红色)、胭脂红酸(红色)、苋菜红(紫红色)、靛蓝(蓝色)、姜黄色素(黄色)、叶绿素(绿色)、柠檬黄(黄色)食用香料赋予食品香味,引人愉悦花椒、茴香、桂皮、丁香油、柠檬油、水果香精甜味剂赋予食品甜味,改善口感糖精(其甜味是蔗糖的300倍~500
倍)、木糖醇(可供糖尿病患者食用)鲜味剂使食品呈现鲜味,引起食欲味精(谷氨酸钠)防腐剂阻抑细菌繁殖,防止食物腐败苯甲酸及其钠盐、山梨酸及其盐、丙酸钙抗氧化剂抗氧化,阻止空气中的氧气使食物氧化变质抗坏血酸(维生素C)、维生素E、丁基羟基茴香醚营养强化剂补充食物中缺乏的营养物质或微量元素食盐加碘,粮食制品中加赖氨酸,食品中加维生素或硒、锗等微量元素
[多糖——淀粉和纤维素]
(1)多糖:由许多个单糖分子按照一定的方式,通过分子间脱水缩聚而成的高分子化合物.淀粉和纤维素是最重要的多糖.
(2)高分子化合物;即相对分子质量很大的化合物.从结构上来说,高分子化合物通过加聚或缩聚而成.判断是否为高分子化合物的方法是看其化学式中是否有n值(叫做聚合度),如聚乙烯卡CH:一CH2头、淀粉(C6H10O5)n等都是高分子化合物.通过人工合成的高分子化合物属于合成高分子化合物,而淀粉、纤维素等则属于天然高分子化合物.
(3)淀粉和纤维素的比较.
淀粉[(C6H10O5)n]纤维素[(C6H10O5)n]结构特征由葡萄糖单元构成的天然高分子化合物.n值小于纤维素由葡萄糖单元构成的天然高分子化合物.每个葡萄糖单元中含三个-OH物理性质白色粉末,不溶于冷水,在热水中部分溶解白色、无味的固体,不溶于水和有机溶剂化学性质①无还原性,为非还原糖
②水解的最终产物为葡萄糖:
(C6H10O5)n+nH2O→nC6H1206
(淀粉)(葡萄糖)

③遇淀粉变蓝色①无还原性,为非还原糖
②能水解,但比淀粉难‘
(C6H10O5)n+nH2O→nC6H1206
(纤维素)(葡萄糖)

③能发生酯化反应:与HNO,、乙酸反应分别生成硝酸酯、乙酸酯存在植物种子、块根、谷类中棉花、木材中用途制造葡萄糖和酒精:
造纸,制造硝酸纤维(火棉、胶棉)、醋酸纤维、人造丝、人造棉、炸药等注意点淀粉、纤维素的分子式都是C6H10O5)n。,但两者的n值不同,所以不是同分异构体
(4)判断淀粉水解程度的实验方法.
实验内容结论加入碘水银镜反应实验变蓝色无银镜生成尚未水解变蓝色有银镜生成部分水解不变蓝色有银镜生成已完全水解说明在用稀H2SO4作催化剂使蔗糖、淀粉或纤维素水解而进行银镜反应实验前,必须加入适量的NaOH溶液中和稀H2SO4,使溶液呈碱性,才能再加入银氨溶液并水浴加热.

2.油脂
[油脂]
(1)油脂的组成和结构:油脂属于酯类,是脂肪和油的统称.油脂是由多种高级脂肪酸(如硬脂酸、软脂酸等)与甘油生成的甘油酯.它的结构式表示如下:
在结构式中,R1、R2、R3代表饱和烃基或不饱和烃基.若Rl=R2=R3,叫单甘油酯;若R1、R2、R3不相同,则称为混甘油酯.天然油脂大多数是混甘油酯.
(2)油脂的物理性质:
①状态:由不饱和的油酸形成的甘油酯(油酸甘油酯)熔点较低,常温下呈液态,称为油;而由饱和的软脂酸或硬脂酸生成的甘油酯(软脂酸甘油酯、硬脂酸甘油酯)熔点较高,常温下呈固态,称为脂肪.油脂是油和脂肪的混合物.
②溶解性:不溶于水,易溶于有机溶剂(工业上根据这一性质,常用有机溶剂来提取植物种子里的油).
(3)油脂的化学性质:
①油脂的氢化(又叫做油脂的硬化).油酸甘油酯分子中含C=C键,具有烯烃的性质.例如,油脂与H2发生加成反应,生成脂肪:
油酸甘油酯(油)硬脂酸甘油酯(脂肪)

说明工业上常利用油脂的氢化反应把多种植物油转变成硬化油(人造脂肪).硬化油性质稳定,不易变质,便于运输,可用作制造肥皂、脂肪酸、甘油、人造奶油等的原料.
②油脂的水解.油脂属于酯类的一种,具有酯的通性.
a.在无机酸做催化剂的条件下,油脂能水解生成甘油和高级脂肪酸(工业制取高级脂肪酸和甘油的原理).例如:
(C17H35COO)3C3H5+3H2O3C17H35COOH+C3H5(OH)3
硬脂酸甘油酯
b.皂化反应.在碱性条件下,油脂水解彻底,发生皂化反应,生成甘油和高级脂肪酸盐(肥皂的有效成分).例如:
(C17H35COO)3C3H5+3NaOH—→3C17H35COONa+C3H5(OH)3
硬脂酸甘油酯硬脂酸钠甘油


[肥皂和合成洗涤剂]
(1)肥皂的生产流程:动物脂肪或植物油+NaOH溶液
高级脂肪酸盐、甘油和水·盐析(上层:高级脂肪酸钠;下层:甘油、水的混合液):
高级脂肪酸钠·肥皂
(2)肥皂与合成洗涤剂的比较.
物质肥皂合成洗涤剂主要成分高级脂肪酸钠烷基苯磺酸钠或烷基磺酸钠结构分子中含有能溶于水的亲水基(极性基团-COONa或-COO-)和不溶于水、但亲油的憎水基(非极性基团链烃基R-)分子中有能溶于水的亲水基(极性基团-SO3Na)和不溶于水的憎水基[非极性基团CH3(CH2)nC6H4-或烷基R-]生产所需的主要原料油脂石油产品去污原理在洗涤过程中,污垢中的油脂跟肥皂接触后,高级脂肪酸钠分子的烃基就插入油污内,而易溶于水的羧基部分则在油污外面,插入水中,这样油污被包围起来.再经摩擦、振动,有的分子便分散成小的油污,最后脱离被洗的纤维织品而分散到水中形成乳浊液,从而达到洗涤的目的同肥皂去油原理相似性能比较①肥皂不适合在硬水中使用,而合成洗涤剂的使用不受水质限制
②合成洗涤剂去污能力更强,并且适合洗衣机使用
③合成洗涤剂的原料价廉易得
④合成洗涤剂的大量使用会造成水体污染,水质变坏
3.蛋白质
[蛋白质]
(1)存在:蛋白质广泛存在于生物体内,是组成细胞的基础物质.动物的肌肉、皮肤、发、毛、蹄、角等的主要成分都是蛋白质.植物的种子、茎中含有丰富的蛋白质.酶、激素、细菌、抵抗疾病的抗体等,都含有蛋白质.
(2)组成元素:C、H、O、N、S等.蛋白质是由不同的氨基酸通过发生缩聚反应而成的天然高分子化合物.
(3)性质:
①水解.在酸、碱或酶的作用下,能发生水解,水解的最终产物是氨基酸.
②盐析.向蛋白质溶液中加入某些浓的无机盐(如铵盐、钠盐等)溶液,可使蛋白质的溶解度降低而从溶液中析出.
说明a.蛋白质的盐析是物理变化.b.蛋白质发生盐析后,性质不改变,析出的蛋白质加水后又可重新溶解.因此,盐析是可逆的.例如,向鸡蛋白溶液中加入(NH4)2SO4的饱和溶液,有沉淀生成,再加入水,生成的沉淀又溶解.c.利用蛋白质的盐析,可分离、提纯蛋白质.
③变性.在热、酸、碱、重金属盐、紫外线、有机溶剂的作用下,蛋白质的性质发生改变而凝结.
说明蛋白质的变性是化学变化.蛋白质变性后,不仅丧失了原有的可溶性,同时也失去了生理活性.因此,蛋白质的变性是不可逆的,经变性析出的蛋白质,加水后不能再重新溶解.
④颜色反应.含苯环的蛋白质与浓HNO3作用后,呈黄色.例如,在使用浓HNO3时,不慎将浓HNO3溅到皮肤上而使皮肤呈现黄色.
⑤灼烧蛋白质时,有烧焦羽毛的味.利用此性质,可用来鉴别蛋白质与纤维素(纤维素燃烧后,产生的是无味的CO2和H2O).

[酶催化作用的特点]
(1)条件温和,不需加热.在接近体温和接近中性的条件下,酶就可以起作用.在30℃~50C之间酶的活性最强,超过适宜的温度时,酶将失去活性.
(2)具有高度的专一性.如蛋白酶只能催化蛋白质的水解反应;淀粉酶只对淀粉起催化作用;等等.
(3)具有高效催化作用.酶催化的化学反应速率,比普通催化剂高107~1013倍.



高中化学知识点规律大全
——合成材料

1.有机高分子化合物简介
[有机高分子化合物]
(1)高分子化合物的组成:相对分子质量很大的有机化合物称为高分子化合物,简称高分子,又叫聚合物或高聚物.
①单体:形成高分子化合物的小分子.如聚乙烯的单体是乙烯.
②链节:高分子化合物中重复出现的单元称为链节.例如,聚乙烯的链节是-CH2-CH2-.链节是以单体为基础的.
③聚合度:每个高分子中链节重复的次数.聚合度常用n表示,n值越大,相对分子质量越大.对于单个的高分子而言,n值为某一个整数,所以其相对分子质量是确定的.但对于一块高分子材料来说,它是由许多n值相同或不同的高分子聚集起来的,因此,高聚物是一种混合物.
(2)高分子化合物的结构特点;有线型结构和体形(网状)结构.
①线型结构是长链状的,通过C-C键或C-C键和C-O键相连接.线型结构的高分子,可以不带支链,也可以带支链.如聚乙烯、聚氯乙烯、淀粉、纤维素等均为线型高分子化合物.
②高分子链上若还有能起反应的官能团,当它跟其他单体发生反应时,高分子链间能形成化学键,产生交联时形成体型结构的高分子化合物.
(3)高分子化合物的基本性质:
①溶解性.线型有机高分子能溶解在某些有机溶剂中,但溶解缓慢;体型有机高分子不能溶解,只有一定程度的胀大.
②热塑性和热固性.
a.线型高分子的热塑性:线型高分子受热至一定温度范围时,开始熔化为流动的液体,冷却后变为固体,加热后又熔化,如此循环.b.体型高分子的热固性:体型高分子加工成型后受热不会再熔化.
③强度.某些高分子材料的强度比金属还大.
④具有电绝缘性.
⑤具有耐化学腐蚀、耐热、耐磨、耐油、不透水的性能.但也有不耐高温、易燃烧、易老化、废弃后不易分解等缺点.

2.合成材料
[塑料、合成纤维和合成橡胶的比较]
合成材料塑料合成纤维合成橡胶类型热塑性塑料、热固性塑料纤维有天然纤维、人造纤维和合成纤维.合成纤维和人造纤维统称化学纤维橡胶有天然橡胶和合成橡胶举例聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、有机玻璃、酚醛塑料、聚四氟乙烯,具有特殊用途的工程塑料、增强塑料、改性塑料等涤纶、锦纶、腈纶、丙纶、维纶、氯纶,具有特殊性能的芳纶纤维、碳纤维、耐辐射纤维、防火纤维等丁苯橡胶、顺丁橡胶、氯丁橡胶等通用橡胶,聚硫橡胶、耐高温和耐严寒的硅橡胶等主要原料石油产品等石油、天然气、煤和浓副产品等石油、天然气等主要性能电绝缘性好,质轻,耐化学腐蚀,防水,耐油性差,易老化强度高,弹性好,耐磨,耐化学腐蚀,不发霉,不怕虫蛀,不缩水高弹性,绝缘性好,气密性好,耐油,耐高温或低温用途不同的塑料有不同的用途.如日常生活中使用的食品袋、包装袋大多是由聚乙烯、聚氯乙烯制成的,有机玻璃可用于制汽车、飞机用玻璃以及光学仪器、医疗器械,等等除了供人类穿着外,在生产和国防上也有很多用途.例如,锦纶可制衣料织品、降落伞绳、轮胎帘子线、缆绳和渔网等是制造飞机、军舰、汽车、拖拉机、收割机、水利排灌器具、医疗器械等所必须的材料
3.新型有机高分子材料
新型有机高分子材料有:高分子膜,具有光、电、磁等特殊功能的高分子材料,生物高分子材料,医用高分子材料,隐身材料和液晶高分子材料等.
(1)功能高分子材料:是指既有传统高分子材料的机械性能又有某些特殊功能的高分子材料.
(2)复合材料:是指由两种或两种以上材料组合而成的一种新型材料,其中一种作为基体,另外一种作为增强剂.复合材料一般具有强度高、质量轻、耐高温、耐腐蚀等优异性能.

















高中化学知识点规律大全
——胶体的性质及其应用
胶体
[分散系、分散质和分散剂]
一种(或几种)物质的微粒分散到另一种物质里形成的混合物,叫做分散系.如NaCl溶解在水中形成的NaCl溶液就是一种分散系.在分散系中,分散成微粒的物质,叫做分散质.如NaCl溶液中的NaCl为分散质.分散质分散在其中的物质,叫做分散剂.如NaCl溶液中的水为分散剂.

[胶体]分散质微粒的直径大小在1nm~100nm之间的分散系,叫做胶体.
说明①胶体是以分散质粒子的大小为特征的,它只是物质的一种存在形式.如NaCl溶于水中形成溶液,但如果分散到酒精中则可形成胶体.②根据分散剂所处状态的不同,胶体可分为三种:a.液溶胶(溶胶):分散剂是液体,如Fe(OH)3胶体、AgI胶体、淀粉胶体和蛋白质胶体等.b.气溶胶;分散剂是气体,如雾、云、烟等.c.固溶胶,如烟水晶、有色玻璃等.

[渗析]把混有离子或分子杂质的胶体装入半透膜袋,并浸入溶剂(一般是水)中,从而使离子或分子从胶体中分离出去的操作,叫做渗析.
说明通过渗析可用于分离胶体与溶液或净化、精制胶体.

[溶液、胶体和浊液(悬浊液或乳浊液)的区别与联系]
分散系溶液胶体悬(乳)浊液分散系的微粒组成单个分子或离子若干分子的集合体或单个的大分子大量分子集合而成的固体小颗粒(或小液滴)分散系的微粒直径<1nm1nm~100nm>100nm外观均一、透明、稳定均一、透明、稳定不均一、浑浊、不稳定,静置后易沉淀(或分层)能否透过半透膜能不能不能能否透过滤纸能能不能是否有丁达尔效应没有有颗粒直径接近100nm的溶液也有丁达尔效应实例食盐水、碘酒Fe(OH)3胶体、AgI胶体、淀粉溶胶泥浆水、油水、牛奶联系都是分散质分散到分散剂中形成的混合体系



3.胶体的性质及其应用
解释说明应用性



质丁达尔效应强光束通过胶体时,从侧面可看到一条光亮的“通路”的现象胶体的丁达尔现象是由于胶体微粒使光线散射而产生的.溶液中的溶质微粒太小,没有这种现象用于鉴别胶体和溶液布朗运动在胶体中,胶体微粒(简称胶粒)不停地作无规则的运动胶体作布朗运动的原因是因为水(分散剂)分子从各方面撞击胶粒,而每一瞬间胶粒在不同方向受到的力是不同的,所以胶粒运动方向随时都在改变,因而形成布朗运动证明物质是不断运动的,是使胶体保持稳定的原因之一电泳在外加电场的作用下,胶粒在分散剂里向电性相反的电极(阴极或阳极)作定向移动的现象①胶粒带电的原因:胶粒直径小一表面积大一吸附能力强一胶粒表面吸附溶液中的阴离子或阳离子②同种胶粒在同一溶液中只吸附同一种离子而带相同电荷.一般来说,金属氢氧化物、金属氧化物的胶粒吸附阳离子,带正电荷,在外加电场的作用下,向阴极移动;非金属氧化物、金属硫化物的胶粒吸附阴离子,在外加电场的作用下,向阳极移动证明胶体微粒带有电荷及所带电荷的种类.例如,用Fe(OH)3胶体做电泳实验时,发现阴极附近颜色变深,而阳极附近颜色变浅,说明Fe(OH)3胶体带正电荷聚沉胶体的微粒在一定条件下,聚集成较大的颗粒而形成沉淀,从分散剂中析出要使胶体聚沉,则必须减弱或中和胶粒所带的同种电荷,以减弱或消除胶粒之间的相互排斥力,使胶粒聚集成较大颗粒(直径>100nm)而形成沉淀胶体聚沉的方法有:①加入电解质;②加热;③加入带相反电荷的电解质




高中化学知识点规律大全
——电解原理及其应用
1.电解原理
[电解、电解池(槽)]使电流通过电解质溶液而在阴、阳两极引起氧化还原反应的过程叫做电解.借助于电流引起氧化还原反应的装置,也就是把电能转变为化学能的装置,叫做电解池或电解槽.
构成电解池(电解槽)的条件:
(1)有外加直流电源.
(2)有电解质溶液或熔融的离子化合物.
(3)有两个电极(材料为金属或石墨,两极材料可相同或不同):
阴极:与直流电源的负极直接相连的一极.
阳极:与直流电源的正极直接相连的一极.
(4)两个电极要与电解质溶液接触并形成回路.
注意电解池的阴、阳极完全由外加直流电源的负、正极确定,与电极材料本身的性质无关.而原电池的正、负极则由构成电极材料本身的性质决定.
[惰性电极和活性电极]在电解时,根据电极本身是否参与氧化还原反应,可把电极分为惰性电极和活性电极两类:
(1)惰性电极(C、Pt等):只起导电作用,不参与反应;
(2)活性电极(除Pt、Au外的其余金属):当作阳极时,除起导电作用外,还失去电子变成金属阳离子进入溶液中.
[电解原理]
阴极:阴极→发生还原反应→溶液中的金属阳离子或H+得电子→电极的质量增加或放出H2→电极本身一定不参加反应.
阳极:阳极→发生氧化反应→活性电极溶解或惰性电极时溶液中的阴离子(或OH-)失去电子→电极的质量减轻或放出O2或析出非金属单质.
电子流向:外接电源(+)→外接电源(一)→电解池阴极→溶液中离子定向移动→电解池阳极→外接电源(+).
电流方向:与电子流向相反.
[离子的放电顺序]
(1)在阴极上.在阴极上发生的是得电子反应,因此,电极本身只起导电作用而不能发生氧化还原反应,发生反应的是溶液中的阳离子,它们得电子的能力顺序为:
Ag+、Fe3+、Cu2+、H+、Pb2+、Fe2+、Zn2+、(H+)、Al3+、Mg2+、Na+、Ca2+、K+
得电子能力由易到难
说明上列顺序中H+有两个位置:在酸溶液中,H+得电子能力在Cu2+与Pb2+之间;若在盐溶液中,则H+位于Zn2+与Ag+之间.
(2)在阳极上.首先应考虑电极是活性电极还是惰性电极,若为活性电极,则是阳极本身失去电子被氧化成阳离子进入溶液中,即:,此时不能考虑溶液中阴离子的失电子情况;若为惰性电极,溶液中的阴离子失电子的能力顺序为:
NO3-或SO42-等含氧酸根、OH-、Cl-、Br-、I-、S2-
失电子能力由弱到强
[电离与电解的区别和联系]
电离电解发生条件电解质受热或受水分子的作用(无须通电)受直流电的作用特征阴、阳离子作不规则的运动,无明显化学变化阴、阳离子作定向移动,在两极上有物质析出说明电解质电离时,发生了物理变化和化学变化①电解质溶液的导电过程,就是该溶液的电解过程②温度升高,电解质溶液的导电能力增强,电解速度加快(但金属的导电性随温度升高而减弱)实例CuCl2=Cu2++2Cl-CuCl2Cu2++Cl2↑相互关系电解质只有在电离后才能电解
[原电池与电解池]
电极电极反应电子转移方向能量
转变举例原电池正、负极由电极材料决定:相对活泼的金属作负极;较不活泼的金属作正极负极:电极本身失去电子,发生氧化反应
正极:溶液中的阳离子得到电子,发生还原反应电子由负极流出,经外电路回正极化学能转变为电能铜锌原电池
负极:
Zn-2e-=Zn2+
正极:
2H++2e-=H2↑电解池阴、阳极完全由外加直流电源的负、正极决定:与直流电源正极相连的是阳极;与直流电源负极相连的是阴极阴极:较易获得电子的阳离子优先得到电子,发生还原反应阳极,金属或较易失去电子的阴离子优先失去电子,发生氧化反应电子由直流电源的负极流出,经导线到达电解池的阴极,然后通过电解液中的离子放电,电子再从阳极经导线回到直流电流的正极电能转变为化学能以石墨为电极电解CuCl2溶液
阳极:
2C1--2e-=C12↑
阴极:
Cu2++2e-=Cu↓







[用惰性电极作阳极电解酸、碱、盐水溶液的规律]
物质代表物参加电解
的物质阴极(区)
产物阳极(区)
产物溶液pH
的变化酸含氧酸H2SO4、HNO3H2OH2O2减小无氧酸
(除HF)HClHClH2C12增大碱强碱NaOH、KOHH2OH2O2增大盐不活泼金属的无氧酸盐CuCl2CuCl2CuC12增大(若考虑C12的溶解,则pH减小)活泼金属的
无氧酸盐NaClNaCl、H2OH2、NaOHC12减小不活泼金属的含氧酸盐CuSO4、AgNO3CuSO4、H2O
AgNO3、H2OCu;AgO2、H2SO4
O2、HNO3增大活泼金属的
含氧酸盐K2SO4、NaNO3
KNO3、Na2SO4H2OH2O2不变
归纳:(1)电解含氧酸、强碱和活泼金属含氧酸盐的水溶液,实际上都是电解水,即:
2H2O2H2↑+O2↑
(2)电解无氧酸(HF除外)、不活泼金属无氧酸的水溶液,就是电解溶质本身.例如:
2HClH2↑+Cl2↑CuCl2Cu+C12↑
(3)电解活泼金属无氧酸盐溶液时,电解的总化学方程式的通式可表示为:
溶质+H2OH2↑+碱+卤素单质X2(或S)
(4)电解不活泼金属含氧酸盐的溶液时,电解的总化学方程式的通式可表示为:
溶质+H2OO2↑+酸+金属单质
(5)电解时,若只生成H2,pH增大.若只生成O2,则pH减小.若同时生成H2和O2,则分为三种情况:电解酸的溶液,pH减小;电解碱的溶液,pH增大;电解盐的溶液,pH不变.
2.电解原理的应用
[铜的电解精炼、电镀铜]



项目铜的电解精炼电镀铜含义利用电解原理将粗铜中的杂质(如锌、铁、镍、银、金等)除去,以获得电解铜(含Cu的质量分数达99.95%~99.98%)的过程利用电解原理在某些金属的表面镀上一薄层其他金属(铜)或合金的过程目的制得电解铜,以增强铜的导电性使金属更加美观耐用,增强防锈抗腐能力电解液CuSO4溶液(加入一定量的硫酸)含有镀层金属离子(Cu2+)的电解质溶液作电镀液(如CuSO4溶液)阳极材料粗铜镀层金属(Cu)阴极材料纯铜待镀金属制品电极反应式阴极Cu2++2e-=CuCu2++2e-=Cu阳极Cu-2e-=Cu2+
Zn-2e-=Zn2+
Ni-2e-=Ni2+Cu-2e-=Cu2+特点①阳极反应为粗铜中的Cu及杂质失去电子而溶解
②溶液中CuSO4的浓度基本不变①阳极本身失去电子而溶解
②溶液中金属阳离子的浓度保持不变
③溶液的pH保持不变说明当阳极上的Cu失去电子变成Cu2+溶解后,银、金等金属杂质以单质的形式沉积于电解槽底,形成阳极泥①铜镀层通常主要用于电镀其他金属之前的预镀层,以使镀层更加牢固和光亮
②电镀工业的废水中常含剧毒物质如氰化物、重金属等.因此必须经过处理才能排放
[氯碱工业]
(1)电解饱和食盐水溶液的反应原理.
阳极电极反应式(Fe棒):2H++2e-=H2↑
(H+得电子产生H2后,阴极区OH-浓度增大而显碱性)
阳极电极反应式(石墨):2C1――2e-=Cl2↑
电解的总化学方程式:2NaCl+H2O2NaOH+H2↑+Cl2↑
(2)设备:离子交换膜电解槽.离子交换膜电解槽主要由阳极、阴极、离子交换膜、电解槽框和导电铜棒等组成,每台电解槽由若干个单元槽串联或并联组成.电解槽的阳极用金属钛制成;阴极由碳钢网制成.
(3)阳离子交换膜的作用:①把电解槽隔为阴极室和阳极室;②只允许Na+通过,而Cl-、OH-和气体则不能通过.这样,既能防止生成的H2和Cl2相混合而发生爆炸,又能避免C12进入阴极区与NaOH溶液作用生成NaClO而影响烧碱的质量.
(4)离子交换膜法电解制烧碱的主要生产流程








说明为除去粗盐中的Ca2+、Mg2+、Fe3+、SO42-等杂质离子,需依次加入过量的BaCl2溶液(除去SO42-)、NaOH溶液(除去Mg2+、Fe3+)和Na2CO3溶液(除去Ca2+和剩余的Ba2+),最后加入盐酸中和NaOH以及将剩余的Na2CO3转化为NaCl.






高中化学知识点规律大全
——硫酸工业
[接触法制硫酸]
生产阶段典型
设备反应的化学方程式说明燃烧硫
或煅烧
硫铁矿制取SO2及净化沸腾炉S+02===S02
4FeS2十1102====2Fe20+8S02用煅烧黄铁矿制得的炉气因含水蒸气、砷、硒等的化合物和矿尘,会使催化剂中毒,故必须经过除尘、洗涤、干燥等净化处理接触氧化接触室在常压和400C~500℃时,反应速率和SO2的平衡转化率都比较理想三氧化硫的吸收吸收塔3SO3+H2O=H2SO4①直接用水或稀H2SO4吸收SO3易形成酸雾且吸收速率小,故工业上通常采用98.3%的H2SO4作吸收剂;②从吸收塔出来的SO2可进行第二次氧化[硫酸工业的综合经济效益]
(1)环境保护与原料的综合利用.化工生产必须保护环境,严格治理“三废”(废气、废水、废渣),并尽可能把“三废”变为有用的副产品,实现原料的综合利用.
①尾气吸收.尾气中含有的SO2气体可用氨水吸收:
SO2+2NH3+H2O=(NH4)2SO3
(NH4)2SO3+H2SO4=(NH4)2SO4+SO2↑+H2O
经反应得到的SO2气体可再进入硫酸厂循环利用,(NH4)2SO4可作肥料.
②污水处理.生产过程中的污水里含有的H2SO4等杂质,可用石灰乳中和处理:
Ca(OH)2+H2SO4=CaSO4+H2O
③废渣的利用.黄铁矿矿渣可作为制造水泥原料或用于制砖;含铁品位高的矿渣,经处理后可炼铁.
(2)能量的充分利用.硫酸生产过程中的化学反应都是放热反应,可充分利用这些反应放出的热能(称之为“废热”)来降低生产成本.例如,在沸腾炉旁设置“废热”锅炉,产生蒸汽来发电;在接触室中设热交换装置,利用SO2氧化为SO3时放出的热量来预热即将参加反应的SO2和O2使其达到适宜的反应温度.因此,在生产中充分利用“废热”,不仅不需要由外界向硫酸厂供给能量,而且还可以由硫酸厂向外界输出大量的能量.
(3)生产规模和厂址选择.一般来说,现代化工生产要求有较大的生产规模.化工厂厂址的选择,涉及原料、水源、能源、土地供应、市场需求、交通运输和环境保护等诸多因素,应对这些因素综合考虑,权衡利弊,才能作出合理的选择.
由于硫酸是腐蚀性液体,不便贮存和运输,因此要求把硫酸厂建在靠近硫酸消费中心的地区.工厂规模的大小,主要由硫酸用量的多少来决定.
硫酸厂选址应避开人口稠密的居民区和环境保护要求高的地区.

高中化学知识点规律大全
——化学实验方案的设计

[制备实验方案的设计]
物质的制备是在一定的实验条件和过程中进行的.实验条件不同,所生成的物质的状态、性质也常会各不相同.因此,在设计物质制备的实验方案时,要使实验过程达到和保持某种状态,发生某种特定变化并得到理想的结果,就必须对实验条件进行严格、有效的控制.
有机物的制备要通过有机反应来实现.各类有机物的结构和性质,就是有机物制备的基础.一种有机物的性质,往往是另一种有机物的制备方法.尽管有机物数量庞大,但是各类有机物之间一般存在着确定的相互转化的衍生关系.理解和掌握这种关系,可以为寻找有机物制备的合理途径、正确地进行有机物的制备提供科学的依据.因此,在设计有机物的制备实验方案时,要充分利用这种衍生关系.
设计制备实验方案的一般思路是:①列出可能的几种制备方法和途径;②从方法是否可行、装置和操作是否简单、经济与安全等方面进行分析和比较;③从中选取最佳的实验方法.在制定具体的实验方案时,还应注意对实验条件进行严格、有效的控制.
[性质实验方案的设计]
物质在不同条件下表现出来的各种性质都与它的结构有关,因而该物质的性质反过来也能在一定程度上反映其结构,并决定它的用途和制法.因此,在进行性质实验方案的设计时,要抓住物质的本质特征进行整体思考,学会分析、比较、综合、概括.将元素及其化合物的有关知识系统化,应用元素周期律来分析元素及其化合物的有关知识,使有关元素的存在、性质和制法的知识条理化.
设计性质实验方案的思路是,①充分了解物质结构与性质之间的关系;②根据物质的结构特点,设计实验方案来探索或验证物质所具有的一些性质.
[化学实验方案设计的基本要求]
(1)一个完整的化学实验方案包括的内容:
①实验名称;
②实验目的;
③实验原理;
④实验用品(仪器、药品及规格);
⑤实验步骤(包括实验仪器装配和操作);
⑥实验现象记录及结果处理;
⑦问题和讨论.
(2)设计一个实验的思路和过程:
①根据实验目的,阐明实验原理,选择合适的仪器和药品;
②根据实验特点,设计实验装置,画出装置图;
③根据实验的要求,设计可行的操作步骤和观察重点,分析实验中应注意的事项;
④实验结束后,应写出完整的实验报告.
在设计实验时,应在各种设计方案中,通过对比和归纳,选择出具有安全性好、药品易得、操作简便、装置简单而现象明显的最佳方案.
(3)进行化学实验方案设计时应遵循的基本要求:
①科学性:科学性是化学实验方案设计的首要原则.所谓科学性是指实验原理、实验操作程序和方法必须正确.在操作程序的设计上,只能先取少量固体溶解;再取少量配成的溶液加入试剂进行实验,而不能将样品全部溶解或在溶解后的全部溶液中加入试剂.
②安全性:实验设计时,应尽量避免使用有毒药品和进行具有一定危险性的实验操作.如果必须使用,应在所设计的化学实验方案中详细写明注意事项,以防造成环境污染和人身伤害.
③可行性:实验设计应切实可行,所选用的化学药品、仪器、设备和方法等在中学现有条件下能够满足.
④简约性:实验设计应尽可能简单易行,应采取简单的实验装置,用较少的实验步骤和实验药品,并能在较短的时间内完成实验.
对同一个化学实验,可以设计出多种实验方案,并对它们进行选择.所采用的实验设计方案,应具有效果明显、操作安全、装置简单、用药少、步骤少、时间短等优点.

物质的检验
[物质检验的一般要求]
(1)检验时所发生的反应要有明显的外部特征,如溶液颜色的变化、沉淀的生成和溶解、生成的沉淀的颜色、气体的产生以及产生的气体的气味等.此外,反应速率要大且反应完全.
(2)检验时所发生的反应要在适宜的酸碱度、浓度和温度下进行.
(3)要排除干扰物质的影响.
(4)检验时所发生的反应要有良好的选择性.要注意选用选择性高或特征反应来进行物质的检验.
[物质检验的基本思路和步骤]
(1)对试样进行外观观察.对试样进行外观观察的主要目的是利用被检验物质的颜色和状态,对可能含有的某些组分进行推断,进而排除某些组分存在的可能性.如果试样是无色或白色晶体,则可排除有色物质的离子如Cu2+、Fe3+、Fe2+、MnO4-等;如果试样有颜色,也可初步判断可能由哪种离子构成.
(2)试样的准备.不论是固体试样还是液体试样,都只能取少量用于配制溶液或用于检验,要留有一定量的试样备用.
由于有些阴离子在酸性溶液中会生成气体而逸出,或发生氧化还原反应而改变价态,或与H+发生中和反应.因此,用于检验阴离子的试样通常要配成碱性溶液,而且不能加入氧化剂或还原剂.
由于NH4+可以与OH-反应生成气体,还有一些阳离子在碱性溶液中会发生水解.因此,用于检验阳离子的试样通常要配成弱酸性.
(3)检验.在进行检验时,除了要考虑各离子的特征反应外,最重要的是要选取适当的措施排除离子之间可能存在的干扰.只要排除干扰的方法得当,就可以设计出正确的实验方案.
①除少数几种阴离子(如SO42-、Cl-等)外,阴离子检验时的干扰一般比较少,有可能进行分别检验,在检验同一试样中共存的阳离子时,相互干扰则比较多,因此,在进行阳离子检验时,必须首先排除干扰,然后才能进行检验.
②由于各种阴离子之间往往会发生相互反应,因此,在同一试样中的阴离子种类一般不会多.但因为阳离子之间相互反应的可能性较小,所以在同一试样中的阳离子种类就会多些.
③在阴离子的检验中,可利用某些阴离子能与酸反应生成气体的性质,首先在固体试样上滴加稀盐酸或稀硫酸,然后根据气体的气味初步判断含有的阴离子;也可利用某些阴离子可与试剂生成沉淀时的反应条件和沉淀颜色初步判断可能存在的阴离子.在阳离子检验中,利用某些阳离子带有颜色,或能发生水解,或与碱反应生成沉淀,或具有两性等特点,初步判断试样中可能存在的阳离子,从而排除某些阳离子存在的可能性.
④焰色反应.对于像K+、Na+等阳离子,可利用焰色反应进行检验.
[物质检验的操作方法]
(1)若为固体物质,应先取少量样品用蒸馏水溶解.
(2)检验的目的是为了以后的使用,若用原瓶直接进行操作,就会污染原来的整瓶试剂.因此.应取少许样品试液在试管中进行实验,而绝不可在原试剂瓶中进行检验.
(3)在同时检验多种物质时,应将各样品进行编号,以免混淆.
(4)在答题时,不许“指名道姓”,叙述时不可出现“取某某物质加入某某试剂…”的字样.叙述方法为:各取少许样品→加蒸馏水溶解→加入所需试剂→描述实验现象→得出结论→原理.
[常见离子的检验方法]
(1)常见阳离子的特征反应和检验方法.
阳离子检验试剂实验现象离子方程式H+①紫色石蕊试液
②橙色甲基橙试液
③锌片(或铁片)①石蕊试液变红色
②甲基橙试液变红色
③有能燃烧的气体产生Zn+2H+=Zn2++H2↑K+焰色反应紫色(透过蓝色钴玻璃)Na+焰色反应黄色NH4+NaOH溶液(浓)加热,产生有刺激性气味、使湿润红色石蕊试纸变蓝色的气体NH4++OH-=NH3↑+H2OFe2+①NaOH溶液
②新制的氯水+KSCN溶液①生成白色沉淀,迅速变为灰绿色,最后变成红褐色
②滴加新制的氯水,溶液由浅绿色变为黄色,再滴加KSCN溶液,溶液呈红色①Fc2++2OH-=Fe(OH)2↓
4Fe(OH)2+O2+2H2O=4Fe(OH)3
②2Fe2++C12=2Fe3++2Cl-
Fe3++3SCN-=Fe(SCN)3Fe3+①NaOH溶液
②KSCN溶液①生成红褐色沉淀
②生成红色溶液①Fc3++3OH-=Fe(OH)3↓
②Fe3++3SCN-=Fe(SCN)3Cu2+①NaOH溶液
②浓氨水①生成蓝色絮状沉淀,加热后变成黑色
②生成的蓝色沉淀,溶于过量浓氨水中,呈深蓝色溶液①Cu2++2OH-=Cu(OH)2↓
Cu(OH)2CuO+H2O
②Cu2++2NH3·H2O=
Cu(OH)2↓+2NH4+
Cu(OH)2+4NH3·H2O=
[Cu(NH3)4]2++2OH-
+4H2OAg+①盐酸或氯化物+稀HNO3
②NaOH溶液
③氨水①生成白色沉淀,白色沉淀不溶于稀HNO3
②生成白色沉淀,并迅速变为棕黑色
③生成白色沉淀,过量的氨水使沉淀溶解①Ag++C1-=AgCl↓
②Ag++OH-=AgOH↓
2AgOH=Ag2O+H2O
③Ag++2NH3·H2O=
AgOH↓+2NH4+
AgOH+2NH3·H2O=
[Ag(NH3)2]++2H2OAl3+①氨水
②NaOH溶液①产生白色沉淀
②产生白色胶状沉淀,过量的NaOH溶液使沉淀溶解①A13++3NH3·H2O=
Al(OH)3↓+3NH4+
②A13++3OH-=Al(OH)3↓
A1(OH)3+OH-=A1O2-+2H2OMg2+NaOH溶液产生白色絮状沉淀,过量的NaOH溶液不能使沉淀溶解Mg2++2OH-=Mg(OH)2↓Ca2+Na2CO3溶液+稀盐酸产生白色沉淀,沉淀溶于稀盐酸中Ca2++CO32-=CaCO3↓
CaCO3+2H+=Ca2++CO2↑+H2O
(2)常见阴离子的特征反应和检验方法.
阴离子检验试剂实验现象离子方程式OH-①无色酚酞试液
②紫色石蕊试液
③甲基橙试液①酚酞试液变红色
②紫色石蕊试液变蓝色
③橙色甲基橙试液变黄色CO32-稀盐酸(或硫酸、硝酸)、澄清石灰水加入酸后,有无色、无味的气体产生,该气体能使澄清石灰水变浑浊CO32-+2H+=CO2↑+H2O
CO2+Ca(OH)2=CaCO3↓+H2OSO42-BaCl2[或Ba(NO3)2溶液]、稀HNO3生成白色沉淀,该沉淀不溶于稀HNO3Ba2++SO42-=BaSO4↓Cl-AgNO3溶液、
稀HNO3生成白色沉淀,此沉淀不溶于稀HNO3Ag++Cl-=AgCl↓Br-①AgNO3溶液、
稀HNO3
②新制的氯水、四氯化碳①生成浅黄色沉淀,此沉淀不溶于稀HNO3
②溶液由无色变为橙色,加CCl4振荡后,CCl4层变为橙红色①Ag++Br-=AgBr↓
②2Br-+Cl2=Br2+2C1-I-①AgNO3溶液、
稀HNO3
②新制的氯水、四氯化碳
③新制的氯水、淀粉溶液①生成黄色沉淀,此沉淀不溶于稀HNO3
②溶液由无色变为黄色,加CCl4振荡后,CCl4层显紫红色
③溶液显蓝色①Ag++I-=AgI↓
②2I-+Cl2=I2+2C1-
③2I-+Cl2=I2+2C1-NO3-被检物的浓溶液(或晶体)+H2SO4(浓)+Cu并共热有红棕色气体产生Cu+4H++2NO3-=Cu2+
+2NO2↑+2H2OSO32-稀盐酸或稀硫酸放出无色有刺激性气味、能使品红试液褪色的气体SO32-+2H+=SO2↑+H2O
献花(0)
+1
(本文系赵井蛟的图...首藏)