配色: 字号:
2014年中考数学解析试卷分类总汇:圆的有关性质
2014-12-28 | 阅:  转:  |  分享 
  
圆的有关性质

一、选择题

1.(2014?珠海,第5题3分)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()



A. 160° B. 150° C. 140° D. 120°

考点: 圆周角定理;垂径定理. 分析: 利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案. 解答: 解:∵线段AB是⊙O的直径,弦CD丄AB,

∴=,

∵∠CAB=20°,

∴∠BOD=40°,

∴∠AOD=140°.

故选:C. 点评: 此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.

2.(2014?广西贺州,第11题3分)如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则弧BD的长是()



A. B. C. D.

考点: 垂径定理;勾股定理;勾股定理的逆定理;弧长的计算. 分析: 连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论. 解答: 解:连接OC,

∵△ACE中,AC=2,AE=,CE=1,

∴AE2+CE2=AC2,

∴△ACE是直角三角形,即AE⊥CD,

∵sinA==,

∴∠A=30°,

∴∠COE=60°,

∴=sin∠COE,即=,解得OC=,

∵AE⊥CD,

∴=,

∴===.

故选B.

点评: 本题考查的是垂径定理,涉及到直角三角形的性质、弧长公式等知识,难度适中.

3.(2014?温州,第8题4分)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()



A. 2∠C B. 4∠B C. 4∠A D. ∠B+∠C

考点: 圆周角定理. 分析: 根据圆周角定理,可得∠AOB=2∠C. 解答: 解:如图,由圆周角定理可得:∠AOB=2∠C.

故选A. 点评: 此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.

4.(2014?毕节地区,第5题3分)下列叙述正确的是()

A. 方差越大,说明数据就越稳定 B. 在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变 C. 不在同一直线上的三点确定一个圆 D. 两边及其一边的对角对应相等的两个三角形全等

考点: 方差;不等式的性质;全等三角形的判定;确定圆的条件 分析: 利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项. 解答: 解:A、方差越大,越不稳定,故选项错误;

B、在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;

C、正确;

D、两边及其夹角对应相等的两个三角形全等,故选项错误.

故选C. 点评: 本题考查了方差的意义、不等号的性质、全等三角形的判定及确定圆的条件,属于基本定理的应用,较为简单.

5.(2014?毕节地区,第6题3分)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()



A. 6 B. 5 C. 4 D. 3

考点: 垂径定理;勾股定理 分析: 过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可. 解答: 解:过O作OC⊥AB于C,

∵OC过O,

∴AC=BC=AB=12,

在Rt△AOC中,由勾股定理得:OC==5.

故选:B.

点评: 本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.

6.(2014?毕节地区,第15题3分)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()



A. 1 B. C. 3 D.

考点: 圆周角定理;解直角三角形 分析: 由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD=,BC=4,即可求得答案. 解答: 解:∵AB为直径,

∴∠ACB=90°,

∴∠ACD+∠BCD=90°,

∵CD⊥AB,

∴∠BCD+∠B=90°,

∴∠B=∠ACD,

∵cos∠ACD=,

∴cos∠B=,

∴tan∠B=,

∵BC=4,

∴tan∠B===,

∴AC=.

故选D. 点评: 此题考查了圆周角定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想的应用.

7.(2014?武汉,第10题3分)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()



A. B. C. D.

考点: 切线的性质;相似三角形的判定与性质;锐角三角函数的定义 分析: (1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可. 解答: 解:连接OA、OB、OP,延长BO交PA的延长线于点F.



∵PA,PB切⊙O于A、B两点,CD切⊙O于点E

∴∠OAP=∠OBP=90°,CA=CE,DB=DE,PA=PB,

∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,

∴PA=PB=.

在Rt△BFP和Rt△OAF中,



∴Rt△BFP∽RT△OAF.

∴===,

∴AF=FB,

在Rt△FBP中,

∵PF2﹣PB2=FB2

∴(PA+AF)2﹣PB2=FB2

∴(r+BF)2﹣()2=BF2,

解得BF=r,

∴tan∠APB===,

故选:B. 点评: 本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系. 8.(2014·台湾,第10题3分)如图,有一圆通过△ABC的三个顶点,且的中垂线与相交于D点.若∠B=74°,∠C=46°,则的度数为何?()



A.23 B.28 C.30 D.37

分析:由有一圆通过△ABC的三个顶点,且的中垂线与相交于D点.若∠B=74°,∠C=46°,可求得与的度数,继而求得答案.

解:∵有一圆通过△ABC的三个顶点,且的中垂线与相交于D点,

∴=2×∠C=2×46°═92°,=2×∠B=2×74°=148°=+=+=++,

∴=(148﹣92)=28°.

故选B.

点评:此题考查了圆周角定理以及弧与圆心角的关系.此题难度不大,注意掌握数形结合思想的应用.

9.(2014·台湾,第21题3分)如图,G为△ABC的重心.若圆G分别与AC、BC相切,且与AB相交于两点,则关于△ABC三边长的大小关系,下列何者正确?()



A.BC<AC B.BC>AC C.AB<AC D.AB>AC

分析:G为△ABC的重心,则△ABG面积=△BCG面积=△ACG面积,根据三角形的面积公式即可判断.

解:∵G为△ABC的重心,

∴△ABG面积=△BCG面积=△ACG面积,

又∵GHa=GHb>GHc,

∴BC=AC<AB.

故选D.



点评:本题考查了三角形的重心的性质以及三角形的面积公式,理解重心的性质是关键.

10.(2014?浙江湖州,第4题3分)如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()

A.35° B. 45° C. 55° D. 65°

分析:由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠C=90°,又由∠A=35°,即可求得∠B的度数.

解:∵AB是△ABC外接圆的直径,∴∠C=90°,

∵∠A=35°,∴∠B=90°﹣∠A=55°.故选C.

点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.



11.(2014?孝感,第10题3分)如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:

①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.

其中正确结论的序号是()



A. ①③ B. ①②③④ C. ②③④ D. ①③④

考点: 垂径定理;菱形的判定;圆周角定理;解直角三角形. 分析: 分别根据垂径定理、菱形的判定定理、锐角三角函数的定义对各选项进行逐一判断即可. 解答: 解:∵点A是劣弧的中点,OA过圆心,

∴OA⊥BC,故①正确;

∵∠D=30°,

∴∠ABC=∠D=30°,

∴∠AOB=60°,

∵点A是点A是劣弧的中点,

∴BC=2CE,

∵OA=OB,

∴OB=OB=AB=6cm,

∴BE=AB?cos30°=6×=3cm,

∴BC=2BE=6cm,故B正确;

∵∠AOB=60°,

∴sin∠AOB=sin60°=,

故③正确;

∵∠AOB=60°,

∴AB=OB,

∵点A是劣弧的中点,

∴AC=OC,

∴AB=BO=OC=CA,

∴四边形ABOC是菱形,

故④正确.

故选B.

点评: 本题考查了垂径定理、菱形的判定、圆周角定理、解直角三角形,综合性较强,是一道好题. 12.(2014?呼和浩特,第6题3分)已知⊙O的面积为2π,则其内接正三角形的面积为()

A. 3 B. 3 C. D.

考点: 垂径定理;等边三角形的性质. 分析: 先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可. 解答: 解:如图所示,

连接OB、OC,过O作OD⊥BC于D,

∵⊙O的面积为2π

∴⊙O的半径为

∵△ABC为正三角形,

∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,

∴BD=OB?sin∠BOD==,

∴BC=2BD=,

∴OD=OB?cos∠BOD=?cos60°=,

∴△BOC的面积=?BC?OD=××=,

∴△ABC的面积=3S△BOC=3×=.

故选C.

点评: 本题考查的是三角形的外接圆与外心,根据题意画出图形,利用数形结合求解是解答此题的关键. 二.填空题

1.(2014?舟山,第16题4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为2;③当AD=2时,EF与半圆相切;④若点F恰好落在上,则AD=2;⑤当点D从点A运动到点B时,线段EF扫过的面积是16.其中正确结论的序号是①③⑤.

考点: 圆的综合题;垂线段最短;平行线的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;切线的判定;轴对称的性质;相似三角形的判定与性质. 专题: 推理填空题. 分析: (1)由点E与点D关于AC对称可得CE=CD,再根据DF⊥DE即可证到CE=CF.

(2)根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.

(3)连接OC,易证△AOC是等边三角形,AD=OD,根据等腰三角形的“三线合一”可求出∠ACD,进而可求出∠ECO=90°,从而得到EF与半圆相切.

(4)利用相似三角形的判定与性质可证到△DBF是等边三角形,只需求出BF就可求出DB,进而求出AD长.

(5)首先根据对称性确定线段EF扫过的图形,然后探究出该图形与△ABC的关系,就可求出线段EF扫过的面积. 解答: 解:①连接CD,如图1所示.

∵点E与点D关于AC对称,

∴CE=CD.

∴∠E=∠CDE.

∵DF⊥DE,

∴∠EDF=90°.

∴∠E+∠F=90°,∠CDE+∠CDF=90°.

∴∠F=∠CDF.

∴CD=CF.

∴CE=CD=CF.

∴结论“CE=CF”正确.

②当CD⊥AB时,如图2所示.

∵AB是半圆的直径,

∴∠ACB=90°.

∵AB=8,∠CBA=30°,

∴∠CAB=60°,AC=4,BC=4.

∵CD⊥AB,∠CBA=30°,

∴CD=BC=2.

根据“点到直线之间,垂线段最短”可得:

点D在线段AB上运动时,CD的最小值为2.

∵CE=CD=CF,

∴EF=2CD.

∴线段EF的最小值为4.

∴结论“线段EF的最小值为2”错误.

(3)当AD=2时,连接OC,如图3所示.

∵OA=OC,∠CAB=60°,

∴△OAC是等边三角形.

∴CA=CO,∠ACO=60°.

∵AO=4,AD=2,

∴DO=2.

∴AD=DO.

∴∠ACD=∠OCD=30°.

∵点E与点D关于AC对称,

∴∠ECA=∠DCA.

∴∠ECA=30°.

∴∠ECO=90°.

∴OC⊥EF.

∵EF经过半径OC的外端,且OC⊥EF,

∴EF与半圆相切.

∴结论“EF与半圆相切”正确.

④当点F恰好落在上时,连接FB、AF,如图4所示.

∵点E与点D关于AC对称,

∴ED⊥AC.

∴∠AGD=90°.

∴∠AGD=∠ACB.

∴ED∥BC.

∴△FHC∽△FDE.

∴=.

∵FC=EF,

∴FH=FD.

∴FH=DH.

∵DE∥BC,

∴∠FHC=∠FDE=90°.

∴BF=BD.

∴∠FBH=∠DBH=30°.

∴∠FBD=60°.

∵AB是半圆的直径,

∴∠AFB=90°.

∴∠FAB=30°.

∴FB=AB=4.

∴DB=4.

∴AD=AB﹣DB=4.

∴结论“AD=2”错误.

⑤∵点D与点E关于AC对称,

点D与点F关于BC对称,

∴当点D从点A运动到点B时,

点E的运动路径AM与AB关于AC对称,

点F的运动路径NB与AB关于BC对称.

∴EF扫过的图形就是图5中阴影部分.

∴S阴影=2S△ABC

=2×AC?BC

=AC?BC

=4×4

=16.

∴EF扫过的面积为16.

∴结论“EF扫过的面积为16”正确.

故答案为:①、③、⑤.



点评: 本题考查了等边三角形的判定与性质、平行线的判定与性质、相似三角形的判定与性质、切线的判定、轴对称的性质、含30°角的直角三角形、垂线段最短等知识,综合性强,有一定的难度. 2.(2014?福建泉州,第17题4分)如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:

(1)AB的长为1米;

(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.

考点: 圆锥的计算;圆周角定理 专题: 计算题. 分析: (1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=,根据等腰直角三角形的性质得AB=1;

(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=,然后解方程即可. 解答: 解:(1)∵∠BAC=90°,

∴BC为⊙O的直径,即BC=,

∴AB=BC=1;(2)设所得圆锥的底面圆的半径为r,

根据题意得2πr=,

解得r=.

故答案为1,.

点评: 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.

3.(2014?广东,第14题4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为3.

考点: 垂径定理;勾股定理. 分析: 作OC⊥AB于C,连结OA,根据垂径定理得到AC=BC=AB=3,然后在Rt△AOC中利用勾股定理计算OC即可. 解答: 解:作OC⊥AB于C,连结OA,如图,

∵OC⊥AB,

∴AC=BC=AB=×8=4,

在Rt△AOC中,OA=5,

∴OC===3,

即圆心O到AB的距离为3.

故答案为:3.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.

4.(2014?四川自贡,第14题4分)一个边长为4cm的等边三角形ABC与⊙O等高,如图放置,⊙O与BC相切于点C,⊙O与AC相交于点E,则CE的长为3cm.

考点: 切线的性质;垂径定理;圆周角定理;弦切角定理 分析: 连接OC,并过点O作OF⊥CE于F,根据等边三角形的性质,等边三角形的高等于底边高的倍.题目中一个边长为4cm的等边三角形ABC与⊙O等高,说明⊙O的半径为,即OC=,

又∠ACB=60°,故有∠OCF=30°,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长. 解答: 解:连接OC,并过点O作OF⊥CE于F,

且△ABC为等边三角形,边长为4,

故高为2,即OC=,

又∠ACB=60°,故有∠OCF=30°,

在Rt△OFC中,可得FC=,

即CE=3.

故答案为:3.

点评: 本题主要考查了切线的性质和等边三角形的性质和解直角三角形的有关知识.题目不是太难,属于基础性题目. 5.(2014?株洲,第11题,3分)如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是28°.



(第1题图)考点: 圆周角定理. 分析: 根据圆周角定理即可推出∠AOB=2∠ACB,再代入∠AOB+∠ACB=84°通过计算即可得出结果. 解答: 解:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°

∴3∠ACB=84°

∴∠ACB=28°.

故答案为:28°. 点评: 此题主要考查圆周角定理,关键在于找出两个角之间的关系,利用代换的方法结论.

6.(2014年江苏南京,第13题,2分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=2cm,∠BCD=22°30′,则⊙O的半径为cm.



(第2题图)

考点:垂径定理、圆周角定理.

分析:先根据圆周角定理得到∠BOD=2∠BCD=45°,再根据垂径定理得到BE=AB=,且△BOE为等腰直角三角形,然后根据等腰直角三角形的性质求解.

解答:连结OB,如图,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵AB⊥CD,

∴BE=AE=AB=×2=,△BOE为等腰直角三角形,∴OB=BE=2(cm).故答案为2.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.



7.(2014?泰州,第15题,3分)如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为y=(x>0).



(第3题图)

考点: 相似三角形的判定与性质;等边三角形的性质;圆周角定理. 分析: 连接AE,DE,根据同弧所对的圆周角等于圆心角的一半,求得∠AED=120°,然后求得△ABE∽△ECD.根据相似三角形的对应边对应成比例即可表示出x与y的关系,从而不难求解. 解答: 解:连接AE,DE,



∵∠AOD=120°,

∴为240°,

∴∠AED=120°,

∵△BCE为等边三角形,

∴∠BEC=60°;

∴∠AEB+∠CED=60°;

又∵∠EAB+∠AEB=60°,

∴∠EAB=∠CED,

∵∠ABE=∠ECD=120°;

∴=,

即=,

∴y=(x>0). 点评: 此题主要考查学生圆周角定理以及对相似三角形的判定与性质及反比例函数的实际运用能力. 8.(2014?菏泽,第10题3分)如图,在△ABC中∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为50°.



考点: 圆心角、弧、弦的关系;直角三角形的性质. 分析: 连接CD,求出∠B=65°,再根据CB=CD,求出∠BCD的度数即可. 解答: 解:连接CD,

∵∠A=25°,

∴∠B=65°,

∵CB=CD,

∴∠B=∠CDB=65°,

∴∠BCD=50°,

∴的度数为50°.

故答案为:50°.

点评: 此题考查了圆心角、弧之间的关系,用到的知识点是三角形内角和定理、圆心角与弧的关系,关键是做出辅助线求出∠BCD的度数. 9.(2014年山东泰安,第23题4分)如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为.

分析:连结BC,根据圆周角定理由AB是半圆的直径得∠ACB=90°,在Rt△ABC中,根据勾股定理计算出BC=6,再根据垂径定理由OD⊥AC得到AE=CE=AC=4,然后在Rt△BCE中,根据勾股定理计算出BE=2,则可根据正弦的定义求解.

解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,

在Rt△ABC中,AC=8,AB=10,∴BC==6,

∵OD⊥AC,∴AE=CE=AC=4,

在Rt△BCE中,BE==2,

∴sinα===.故答案为.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和圆周角定理.



三.解答题

1.(2014?福建泉州,第26题14分)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).

(1)求该反比例函数的关系式;

(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;

①求△A′BC的周长和sin∠BA′C的值;

②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.

考点: 反比例函数综合题;待定系数法求反比例函数解析式;勾股定理;矩形的判定与性质;垂径定理;直线与圆的位置关系;锐角三角函数的定义 专题: 压轴题;探究型. 分析: (1)设反比例函数的关系式y=,然后把点P的坐标(2,1)代入即可.

(2)①先求出直线y=﹣x+3与x、y轴交点坐标,然后运用勾股定理即可求出△A′BC的周长;过点C作CD⊥AB,垂足为D,运用面积法可以求出CD长,从而求出sin∠BA′C的值.

②由于BC=2,sin∠BMC=,因此点M在以BC为弦,半径为m的⊙E上,因而点M应是⊙E与x轴的交点.然后对⊙E与x轴的位置关系进行讨论,只需运用矩形的判定与性质、勾股定理等知识就可求出满足要求的点M的坐标. 解答: 解:(1)设反比例函数的关系式y=.

∵点P(2,1)在反比例函数y=的图象上,

∴k=2×1=2.

∴反比例函数的关系式y=.(2)①过点C作CD⊥AB,垂足为D,如图1所示.

当x=0时,y=0+3=3,

则点B的坐标为(0,3).OB=3.

当y=0时,0=﹣x+3,解得x=3,

则点A的坐标为(3,0),OA=3.

∵点A关于y轴的对称点为A′,

∴OA′=OA=3.

∵PC⊥y轴,点P(2,1),

∴OC=1,PC=2.

∴BC=2.

∵∠AOB=90°,OA′=OB=3,OC=1,

∴A′B=3,A′C=.

∴△A′BC的周长为3++2.

∵S△ABC=BC?A′O=A′B?CD,

∴BC?A′O=A′B?CD.

∴2×3=3×CD.

∴CD=.

∵CD⊥A′B,

∴sin∠BA′C===.

∴△A′BC的周长为3++2,sin∠BA′C的值为.

②当1<m<2时,

作经过点B、C且半径为m的⊙E,

连接CE并延长,交⊙E于点P,连接BP,

过点E作EG⊥OB,垂足为G,

过点E作EH⊥x轴,垂足为H,如图2①所示.

∵CP是⊙E的直径,

∴∠PBC=90°.

∴sin∠BPC===.

∵sin∠BMC=,

∴∠BMC=∠BPC.

∴点M在⊙E上.

∵点M在x轴上

∴点M是⊙E与x轴的交点.

∵EG⊥BC,

∴BG=GC=1.

∴OG=2.

∵∠EHO=∠GOH=∠OGE=90°,

∴四边形OGEH是矩形.

∴EH=OG=2,EG=OH.

∵1<m<2,

∴EH>EC.

∴⊙E与x轴相离.

∴x轴上不存在点M,使得sin∠BMC=.

②当m=2时,EH=EC.

∴⊙E与x轴相切.

Ⅰ.切点在x轴的正半轴上时,如图2②所示.

∴点M与点H重合.

∵EG⊥OG,GC=1,EC=m,

∴EG==.

∴OM=OH=EG=.

∴点M的坐标为(,0).

Ⅱ.切点在x轴的负半轴上时,

同理可得:点M的坐标为(﹣,0).

③当m>2时,EH<EC.

∴⊙E与x轴相交.

Ⅰ.交点在x轴的正半轴上时,

设交点为M、M′,连接EM,如图2③所示.

∵∠EHM=90°,EM=m,EH=2,

∴MH===.

∵EH⊥MM′,

∴MH=M′H.

∴M′H═.

∵∠EGC=90°,GC=1,EC=m,

∴EG===.

∴OH=EG=.

∴OM=OH﹣MH=﹣,

∴OM′=OH+HM′=+,

∴M(﹣,0)、M′(+,0).

Ⅱ.交点在x轴的负半轴上时,

同理可得:M(﹣+,0)、M′(﹣﹣,0).

综上所述:当1<m<2时,满足要求的点M不存在;

当m=2时,满足要求的点M的坐标为(,0)和(﹣,0);

当m>2时,满足要求的点M的坐标为(﹣,0)、(+,0)、(﹣+,0)、(﹣﹣,0).







点评: 本题考查了用待定系数法求反比例函数的关系式、勾股定理、三角函数的定义、矩形的判定与性质、直线与圆的位置关系、垂径定理等知识,考查了用面积法求三角形的高,考查了通过构造辅助圆解决问题,综合性比较强,难度系数比较大.由BC=2,sin∠BMC=联想到点M在以BC为弦,半径为m的⊙E上是解决本题的关键.

2.(2014?安徽省,第19题10分)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.

考点: 垂径定理;勾股定理;圆周角定理;相似三角形的判定与性质.

专题: 计算题.

分析: 由OE⊥AB得到∠OEF=90°,再根据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相似比可计算出⊙O的半径OC=9;接着在Rt△OCF中,根据勾股定理可计算出C=3,由于OF⊥CD,根据垂径定理得CF=DF,所以CD=2CF=6.

解答: 解:∵OE⊥AB,

∴∠OEF=90°,

∵OC为小圆的直径,

∴∠OFC=90°,

而∠EOF=∠FOC,

∴Rt△OEF∽Rt△OFC,

∴OE:OF=OF:OC,即4:6=6:OC,

∴⊙O的半径OC=9;

在Rt△OCF中,OF=6,OC=9,

∴CF==3,

∵OF⊥CD,

∴CF=DF,

∴CD=2CF=6.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.



3.(2014年天津市,第21题10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.



(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;

(Ⅱ)如图②,若∠CAB=60°,求BD的长.



考点: 圆周角定理;等边三角形的判定与性质;勾股定理.

分析: (Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;

(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.

解答: 解:(Ⅰ)如图①,∵BC是⊙O的直径,

∴∠CAB=∠BDC=90°.

∵在直角△CAB中,BC=10,AB=6,

∴由勾股定理得到:AC===8.

∵AD平分∠CAB,

∴=,

∴CD=BD.

在直角△BDC中,BC=10,CD2+BD2=BC2,

∴易求BD=CD=5;



(Ⅱ)如图②,连接OB,OD.

∵AD平分∠CAB,且∠CAB=60°,

∴∠DAB=∠CAB=30°,

∴∠DOB=2∠DAB=60°.

又∵OB=OD,

∴△OBD是等边三角形,

∴BD=OB=OD.

∵⊙O的直径为10,则OB=5,

∴BD=5.



点评: 本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.

4.(2014?新疆,第21题10分)如图,AB是⊙O的直径,点F,C是⊙O上两点,且==,连接AC,AF,过点C作CD⊥AF交AF延长线于点D,垂足为D.

(1)求证:CD是⊙O的切线;

(2)若CD=2,求⊙O的半径.

考点: 切线的判定. 专题: 证明题. 分析: (1)连结OC,由=,根据圆周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,则∠FAC=∠OCA,可判断OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根据切线的判定定理得到CD是⊙O的切线;

(2)连结BC,由AB为直径得∠ACB=90°,由==得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=4,在Rt△ACB中,利用含30度的直角三角形三边的关系得BC=AC=4,AB=2BC=4,所以⊙O的半径为4. 解答: (1)证明:连结OC,如图,

∵=,

∴∠FAC=∠BAC,

∵OA=OC,

∴∠OAC=∠OCA,

∴∠FAC=∠OCA,

∴OC∥AF,

∵CD⊥AF,

∴OC⊥CD,

∴CD是⊙O的切线;(2)解:连结BC,如图,

∵AB为直径,

∴∠ACB=90°,

∵==,

∴∠BOC=×180°=60°,

∴∠BAC=30°,

∴∠DAC=30°,

在Rt△ADC中,CD=2,

∴AC=2CD=4,

在Rt△ACB中,BC=AC=×4=4,

∴AB=2BC=4,

∴⊙O的半径为4.

点评: 本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理和含30度的直角三角形三边的关系.

5.(2014年云南省,第23题9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.

(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);

(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;

(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.

考点: 圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.

专题: 综合题;存在型;分类讨论.

分析: (1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.

(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.

(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.

解答: 解:(1)过点P作PH∥OA,交OC于点H,如图1所示.

∵PH∥OA,

∴△CHP∽△COA.

∴==.

∵点P是AC中点,

∴CP=CA.

∴HP=OA,CH=CO.

∵A(3,0)、C(0,4),

∴OA=3,OC=4.

∴HP=,CH=2.

∴OH=2.

∵PH∥OA,∠COA=90°,

∴∠CHP=∠COA=90°.

∴点P的坐标为(,2).

设直线DP的解析式为y=kx+b,

∵D(0,﹣5),P(,2)在直线DP上,





∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,

∵△DOM∽△ABC,

∴=.

∵点B坐标为(3,4),点D的坐标为(0.﹣5),

∴BC=3,AB=4,OD=5.

∴=.

∴OM=.

∵点M在x轴的正半轴上,

∴点M的坐标为(,0)

②若△DOM∽△CBA,如图2(2)所示,

∵△DOM∽△CBA,

∴=.

∵BC=3,AB=4,OD=5,

∴=.

∴OM=.

∵点M在x轴的正半轴上,

∴点M的坐标为(,0).

综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,

∴AC=5.

∴PE=PF=AC=.

∵DE、DF都与⊙P相切,

∴DE=DF,∠DEP=∠DFP=90°.

∴S△PED=S△PFD.

∴S四边形DEPF=2S△PED

=2×PE?DE

=PE?DE

=DE.

∵∠DEP=90°,

∴DE2=DP2﹣PE2.

=DP2﹣.

根据“点到直线之间,垂线段最短”可得:

当DP⊥AC时,DP最短,

此时DE取到最小值,四边形DEPF的面积最小.

∵DP⊥AC,

∴∠DPC=90°.

∴∠AOC=∠DPC.

∵∠OCA=∠PCD,∠AOC=∠DPC,

∴△AOC∽△DPC.

∴=.

∵AO=3,AC=5,DC=4﹣(﹣5)=9,

∴=.

∴DP=.

∴DE2=DP2﹣

=()2﹣

=.

∴DE=,

∴S四边形DEPF=DE

=.

∴四边形DEPF面积的最小值为.









点评: 本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别.



6.(2014年广东汕尾,第20题11分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.

(1)求证:点E是边BC的中点;

(2)求证:BC2=BD?BA;

(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.



分析: (1)利用切线的性质及圆周角定理证明;(2)利用相似三角形证明;

(3)利用正方形的性质证明.

证明:(1)如图,连接OD.∵DE为切线,∴∠EDC+∠ODC=90°;

∵∠ACB=90°,∴∠ECD+∠OCD=90°.又∵OD=OC,∴∠ODC=∠OCD,

∴∠EDC=∠ECD,∴ED=EC;∵AC为直径,∴∠ADC=90°,

∴∠BDE+∠EDC=90°,∠B+∠ECD=90°,∴∠B=∠BDE,∴ED=DB.

∴EB=EC,即点E为边BC的中点;

(2)∵AC为直径,∴∠ADC=∠ACB=90°,又∵∠B=∠B

∴△ABC∽△CDB,∴,∴BC2=BD?BA;

(3)当四边形ODEC为正方形时,∠OCD=45°;∵AC为直径,

∴∠ADC=90°,∴∠CAD=∠ADC﹣∠OCD=90°﹣45°=45°

∴Rt△ABC为等腰直角三角形.

点评:本题是几何证明题,综合考查了切线性质、圆周角定理、相似三角形、正方形、等腰直角三角形等知识点.试题着重对基础知识的考查,难度不大.



7.(2014?毕节地区,第26题14分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.

(1)求证:∠A=∠BCD;

(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.

考点: 切线的判定 分析: (1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;

(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切. 解答: (1)证明:∵AC为直径,

∴∠ADC=90°,

∴∠A+∠DCA=90°,

∵∠ACB=90°,

∴∠DCB+∠ACD=90°,

∴∠DCB=∠A;

(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;

解:连接DO,

∵DO=CO,

∴∠1=∠2,

∵DM=CM,

∴∠4=∠3,

∵∠2+∠4=90°,

∴∠1+∠3=90°,

∴直线DM与⊙O相切.

点评: 此题主要考查了切线的判定,以及圆周角定理,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.

8.(2014?武汉2014?武汉,第22题8分)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.

(1)如图(1),若点P是的中点,求PA的长;

(2)如图(2),若点P是的中点,求PA的长.

考点: 相似三角形的判定与性质;勾股定理;等腰直角三角形;圆心角、弧、弦的关系;圆周角定理 分析: (1)根据圆周角的定理,∠APB=90°,p是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.

(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA. 解答: 解:(1)如图(1)所示,连接PB,



∵AB是⊙O的直径且P是的中点,

∴∠PAB=∠PBA=45°,∠APB=90°,

又∵在等腰三角形△ABC中有AB=13,

∴PA===.



(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,



∵P点为弧BC的中点,

∴OP⊥BC,∠OMB=90°,

又因为AB为直径

∴∠ACB=90°,

∴∠ACB=∠OMB,

∴OP∥AC,

∴∠CAB=∠POB,

又因为∠ACB=∠ONP=90°,

∴△ACB∽△0NP

∴=,

又∵AB=13AC=5OP=,

代入得ON=,

∴AN=OA+ON=9

∴在RT△OPN中,有NP2=0P2﹣ON2=36

在RT△ANP中有PA===3

∴PA=3. 点评: 本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.

9.(2014?襄阳,第25题10分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.

(1)求证:△ADP∽△BDA;

(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;

(3)若AD=2,PD=1,求线段BC的长.

考点: 圆的综合题 分析: (1)首先作⊙O的直径AE,连接PE,利用切线的性质以及圆周角定理得出∠PAD=∠PBA进而得出答案;

(2)首先在线段PC上截取PF=PB,连接BF,进而得出△BPA≌△BFC(AAS),即可得出PA+PB=PF+FC=PC;

(3)利用△ADP∽△BDA,得出==,求出BP的长,进而得出△ADP∽△CAP,则=,则AP2=CP?PD求出AP的长,即可得出答案. 解答: (1)证明:作⊙O的直径AE,连接PE,

∵AE是⊙O的直径,AD是⊙O的切线,

∴∠DAE=∠APE=90°,

∴∠PAD+∠PAE=∠PAE+∠E=90°,

∴∠PAD=∠E,

∵∠PBA=∠E,∴∠PAD=∠PBA,

∵∠PAD=∠PBA,∠ADP=∠BDA,

∴△ADP∽△BDA;(2)PA+PB=PC,

证明:在线段PC上截取PF=PB,连接BF,

∵PF=PB,∠BPC=60°,

∴△PBF是等边三角形,

∴PB=BF,∠BFP=60°,

∴∠BFC=180°﹣∠PFB=120°,

∵∠BPA=∠APC+∠BPC=120°,

∴∠BPA=∠BFC,

在△BPA和△BFC中,,

∴△BPA≌△BFC(AAS),

∴PA=FC,AB=BC,

∴PA+PB=PF+FC=PC;(3)解:∵△ADP∽△BDA,

∴==,

∵AD=2,PD=1

∴BD=4,AB=2AP,

∴BP=BD﹣DP=3,

∵∠APD=180°﹣∠BPA=60°,

∴∠APD=∠APC,

∵∠PAD=∠E,∠PCA=∠E,

∴PAD=∠PCA,

∴△ADP∽△CAP,

∴=,

∴AP2=CP?PD,

∴AP2=(3+AP)?1,

解得:AP=或AP=(舍去),

∴BC=AB=2AP=1+.

点评: 此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质和切线的判定与性质等知识,熟练利用相似三角形的判定与性质得出是解题关键.

10.(2014?孝感,第20题8分)如图,在Rt△ABC中,∠ACB=90°.

(1)先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);

(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.

考点: 作图—复杂作图;直线与圆的位置关系. 分析: (1)根据角平分线的作法求出角平分线BO;

(2)过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案. 解答: 解:(1)如图:



(2)AB与⊙O相切.

证明:作OD⊥AB于D,如图.

∵BO平分∠ABC,∠ACB=90°,OD⊥AB,

∴OD=OC,

∴AB与⊙O相切. 点评: 此题主要考查了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.

11.(2014?孝感,第24题10分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.

(1)求证:AC平分∠DAB;

(2)求证:△PCF是等腰三角形;

(3)若tan∠ABC=,BE=7,求线段PC的长.

考点: 切线的性质;等腰三角形的判定;勾股定理;相似三角形的判定与性质 分析: (1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;

(2)由AD⊥PD,AB为⊙O的直径,易证得CE平分∠ACB,继而可得∴∠PFC=∠PCF,即可证得PC=PF,即△PCF是等腰三角形;

(3)首先连接AE,易得AE=BE,即可求得AB的长,继而可证得△PAC∽△PCB,又由tan∠ABC=,BE=7,即可求得答案. 解答: 解:(1)∵PD切⊙O于点C,

∴OC⊥PD.(1分)

又∵AD⊥PD,

∴OC∥AD.

∴∠ACO=∠DAC.

又∵OC=OA,

∴∠ACO=∠CAO,

∴∠DAC=∠CAO,

即AC平分∠DAB.(3分)(2)∵AD⊥PD,

∴∠DAC+∠ACD=90°.

又∵AB为⊙O的直径,

∴∠ACB=90°.

∴∠PCB+∠ACD=90°,

∴∠DAC=∠PCB.

又∵∠DAC=∠CAO,

∴∠CAO=∠PCB.…(4分)

∵CE平分∠ACB,

∴∠ACF=∠BCF,

∴∠CAO+∠ACF=∠PCB+∠BCF,

∴∠PFC=∠PCF,…(5分)

∴PC=PF,

∴△PCF是等腰三角形.…(6分)(3)连接AE.

∵CE平分∠ACB,

∴=,

∴.

∵AB为⊙O的直径,

∴∠AEB=90°.

在Rt△ABE中,.(7分)

∵∠PAC=∠PCB,∠P=∠P,

∴△PAC∽△PCB,(8分)

∴.

又∵tan∠ABC=,

∴,

∴.

设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,

∵PC2+OC2=OP2,

∴(4k)2+72=(3k+7)2,

∴k=6(k=0不合题意,舍去).

∴PC=4k=4×6=24.(10分)

点评: 此题考查了切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 12.(2014?浙江湖州,第19题分)已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).

(1)求证:AC=BD;

(2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.





考点: 垂径定理;勾股定理.

分析: (1)过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;

(2)由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.

解答: (1)证明:作OE⊥AB,

∵AE=BE,CE=DE,

∴BE﹣DE=AE﹣CE,即AC=BD;

(2)∵由(1)可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,

∴CE===2,AE===8,

∴AC=AE﹣CE=8﹣2.

点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

13.(2014?湘潭,第25题)△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,

(1)求证:△BDF∽△CEF;

(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;

(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.

(第1题图)

考点: 相似形综合题;二次函数的最值;等边三角形的性质;圆周角定理;解直角三角形 分析: (1)只需找到两组对应角相等即可.

(2)四边形ADFE面积S可以看成△ADF与△AEF的面积之和,借助三角函数用m表示出AD、DF、AE、EF的长,进而可以用含m的代数式表示S,然后通过配方,转化为二次函数的最值问题,就可以解决问题.

(3)易知AF就是圆的直径,利用圆周角定理将∠EDF转化为∠EAF.在△AFC中,知道tan∠EAF、∠C、AC,通过解直角三角形就可求出AF长. 解答: 解:(1)∵DF⊥AB,EF⊥AC,

∴∠BDF=∠CEF=90°.

∵△ABC为等边三角形,

∴∠B=∠C=60°.

∵∠BDF=∠CEF,∠B=∠C,

∴△BDF∽△CEF.(2)∵∠BDF=90°,∠B=60°,

∴sin60°==,cos60°==.

∵BF=m,

∴DF=m,BD=.

∵AB=4,

∴AD=4﹣.

∴S△ADF=AD?DF

=×(4﹣)×m

=﹣m2+m.

同理:S△AEF=AE?EF

=×(4﹣)×(4﹣m)

=﹣m2+2.

∴S=S△ADF+S△AEF

=﹣m2+m+2

=﹣(m2﹣4m﹣8)

=﹣(m﹣2)2+3.其中0<m<4.

∵﹣<0,0<2<4,

∴当m=2时,S取最大值,最大值为3.

∴S与m之间的函数关系为:

S═﹣(m﹣2)2+3(其中0<m<4).

当m=2时,S取到最大值,最大值为3.(3)如图2,

∵A、D、F、E四点共圆,

∴∠EDF=∠EAF.

∵∠ADF=∠AEF=90°,

∴AF是此圆的直径.

∵tan∠EDF=,

∴tan∠EAF=.

∴=.

∵∠C=60°,

∴=tan60°=.

设EC=x,则EF=x,EA=2x.

∵AC=a,

∴2x+x=A.

∴x=.

∴EF=,AE=.

∵∠AEF=90°,

∴AF==.

∴此圆直径长为. 点评: 本题考查了相似三角形的判定、二次函数的最值、三角函数、解直角三角形、圆周角定理、等边三角形的性质等知识,综合性强.利用圆周角定理将条件中的圆周角转化到合适的位置是解决最后一小题的关键.

14.(2014年江苏南京,第26题)如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.

(1)求⊙O的半径;

(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为ts,若⊙P与⊙O相切,求t的值.















(第2题图)

考点:圆的性质、两圆的位置关系、解直角三角形

分析:(1)求圆的半径,因为相切,我们通常连接切点和圆心,设出半径,再利用圆的性质和直角三角形性质表示其中关系,得到方程,求解即得半径.

(2)考虑两圆相切,且一圆已固定,一般就有两种情形,外切与内切.所以我们要分别讨论,当外切时,圆心距等于两圆半径的和;当内切时,圆心距等于大圆与小圆半径的差.分别作垂线构造直角三角形,类似(1)通过表示边长之间的关系列方程,易得t的值.

解答:(1)如图1,设⊙O与AB、BC、CA的切点分别为D、E、F,连接OD、OE、OF,



则AD=AF,BD=BE,CE=CF.

∵⊙O为△ABC的内切圆,

∴OF⊥AC,OE⊥BC,即∠OFC=∠OEC=90°.

∵∠C=90°,

∴四边形CEOF是矩形,

∵OE=OF,

∴四边形CEOF是正方形.

设⊙O的半径为rcm,则FC=EC=OE=rcm,

在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,

∴AB==5cm.

∵AD=AF=AC﹣FC=4﹣r,BD=BE=BC﹣EC=3﹣r,

∴4﹣r+3﹣r=5,

解得r=1,即⊙O的半径为1cm.

(2)如图2,过点P作PG⊥BC,垂直为G.

∵∠PGB=∠C=90°,∴PG∥AC.

∴△PBG∽△ABC,∴.∵BP=t,

∴PG=,BG=.

若⊙P与⊙O相切,则可分为两种情况,⊙P与⊙O外切,⊙P与⊙O内切.

①当⊙P与⊙O外切时,

如图3,连接OP,则OP=1+t,过点P作PH⊥OE,垂足为H.

∵∠PHE=∠HEG=∠PGE=90°,

∴四边形PHEG是矩形,

∴HE=PG,PH=CE,

∴OH=OE﹣HE=1﹣,PH=GE=BC﹣EC﹣BG=3﹣1﹣=2﹣.

在Rt△OPH中,

由勾股定理,,

解得t=.

②当⊙P与⊙O内切时,

如图4,连接OP,则OP=t﹣1,过点O作OM⊥PG,垂足为M.

∵∠MGE=∠OEG=∠OMG=90°,

∴四边形OEGM是矩形,

∴MG=OE,OM=EG,

∴PM=PG﹣MG=,OM=EG=BC﹣EC﹣BG=3﹣1﹣=2﹣,

在Rt△OPM中,

由勾股定理,,解得t=2.

综上所述,⊙P与⊙O相切时,t=s或t=2s.

点评:本题考查了圆的性质、两圆相切及通过设边长,表示其他边长关系再利用直角三角形求解等常规考查点,总体题目难度不高,是一道非常值得练习的题目.

15.(2014?呼和浩特,第24题8分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.

(1)求证:∠ACM=∠ABC;

(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径.

考点: 切线的性质;相似三角形的判定与性质. 分析: (1)连接OC,由∠ABC+∠BAC=90°及CM是⊙O的切线得出∠ACM+∠ACO=90°,再利用∠BAC=∠AOC,得出结论,

(2)连接OC,得出△AEC是直角三角形,△AEC的外接圆的直径是AC,利用△ABC∽△CDE,求出AC, 解答: (1)证明:如图,连接OC



∵AB为⊙O的直径,

∴∠ACB=90°,

∴∠ABC+∠BAC=90°,

又∵CM是⊙O的切线,

∴OC⊥CM,

∴∠ACM+∠ACO=90°,

∵CO=AO,

∴∠BAC=∠AOC,

∴∠ACM=∠ABC;(2)解:∵BC=CD,

∴OC∥AD,

又∵OC⊥CE,

∴AD⊥CE,

∴△AEC是直角三角形,

∴△AEC的外接圆的直径是AC,

又∵∠ABC+∠BAC=90°,∠ACM+∠ECD=90°,

∴△ABC∽△CDE,

∴=,

⊙O的半径为3,

∴AB=6,

∴=,

∴BC2=12,

∴BC=2,

∴AC==2,

∴△AEC的外接圆的半径为. 点评: 本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.解题的关键是找准角的关系.

圆的有关性质

一、选择题

1.(2014?山东潍坊,第6题3分)如图,平行四边形ABCD的顶点A、B、D在⊙0上,顶点C在⊙O直径BE上,连接AE,∠E=36°,则∠ADC的度数是()



A,44°B.54°C.72°D.53°

考点:圆周角定理;平行四边形的性质.

分析:根据平行四边形的性质得到∠ABC=∠ADC,再根据圆周角定理的推论由BE为⊙O的直径得到∠BAE=90°,然后根据三角形内角和定理可计算出∠ABE的度数.

解答:∵BE为⊙O的直径,∴∠BAE=90°,∴∠ABC=90°-∠AEB=54°.

∵四边形ABCD为平行四边形,∴∠ADC=∠ABC=54°,

故选B.

点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了平行四边形的性质.

(2014年贵州黔东南6.(4分))如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB的长为()



A. 4cm B. 3cm C. 2cm D. 2cm



考点: 圆周角定理;等腰直角三角形;垂径定理.

专题: 计算题.

分析: 连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算.

解答: 解:连结OA,如图,

∵∠ACD=22.5°,

∴∠AOD=2∠ACD=45°,

∵⊙O的直径CD垂直于弦AB,

∴AE=BE,△OAE为等腰直角三角形,

∴AE=OA,

∵CD=6,

∴OA=3,

∴AE=,

∴AB=2AE=3(cm).

故选B.



点评: 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.

(2014?山东临沂)如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()



A. 25° B. 50° C. 60° D. 80°

考点: 圆周角定理;平行线的性质. 分析: 由AC∥OB,∠BAO=25°,可求得∠BAC=∠B=∠BAO=25°,又由圆周角定理,即可求得答案. 解答: 解:∵OA=OB,

∴∠B=∠BAO=25°,

∵AC∥OB,

∴∠BAC=∠B=25°,

∴∠BOC=2∠BAC=50°.

故选B. 点评: 此题考查了圆周角定理以及平行线的性质.此题难度不大,注意掌握数形结合思想的应用. .(2014?四川凉山州4分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()

A. cm B. cm C. cm或cm D. cm或cm

考点: 垂径定理;勾股定理. 专题: 分类讨论. 分析: 先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论. 解答: 解:连接AC,AO,

∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,

∴AM=AB=×8=4cm,OD=OC=5cm,

当C点位置如图1所示时,

∵OA=5cm,AM=4cm,CD⊥AB,

∴OM===3cm,

∴CM=OC+OM=5+3=8cm,

∴AC===4cm;

当C点位置如图2所示时,同理可得OM=3cm,

∵OC=5cm,

∴MC=5﹣3=2cm,

在Rt△AMC中,AC===2cm.

故选C.

点评: 本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键. .(2014?四川泸州分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()



A. 4 B. C. D.

解答: 解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,

∵⊙P的圆心坐标是(3,a),

∴OC=3,PC=a,

把x=3代入y=x得y=3,

∴D点坐标为(3,3),

∴CD=3,

∴△OCD为等腰直角三角形,

∴△PED也为等腰直角三角形,

∵PE⊥AB,

∴AE=BE=AB=×4=2,

在Rt△PBE中,PB=3,

∴PE=,

∴PD=PE=,

∴a=3+.

故选B.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质. (2014?四川分)O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()



A. B. 3 C. 2 D. 4

考点: 垂径定理;圆周角定理;解直角三角形. 分析: 如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2CD. 解答: 解:如图,设AO与BC交于点D.

∵∠AOB=60°,OB=OA,

∴△OAB是等边三角形,

∴∠BAO=60°,即∠BAD=60°.

又∵AB=AC,

∴=

∴AD⊥BC,

∴BD=CD,

∴在直角△ABD中,BD=AB?sin60°=2×=,

∴BC=2CD=2.

故选:C.

点评: 本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键. 7.(2014?)CD是⊙O的直径,弦AB⊥CD于E,连接BC、BD,下列结论中不一定正确的是()



A. AE=BE B. = C. OE=DE D. ∠DBC=90°

考点: 垂径定理;圆周角定理. 分析: 由于CD⊥AB,根据垂径定理有AE=BE,弧AD=弧BD,不能得出OE=DE,直径所对的圆周角等于90°. 解答: 解:∵CD⊥AB,

∴AE=BE,=,

∵CD是⊙O的直径,

∴∠DBC=90°,

不能得出OE=DE.

故选C. 点评: 本题考查了垂径定理.解题的关键是熟练掌握垂径定理的内容.



二、填空题

1.(2014?四川巴中,第17题3分)如图,已知A、B、C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC的度数是.



考点:圆周角定理.

分析:根据垂直的定义得到∠ADB=90°,再利用互余的定义计算出∠A=90°﹣∠B=35°,然后根据圆周角定理求解.

解答:∵AC⊥BO,∴∠ADB=90°,∴∠A=90°﹣∠B=90°﹣55°=35°,

∴∠BOC=2∠A=70°.故答案为70°.

点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

.(2014?)如图,AB、CD是半径为5的O的两条弦,AB=8,CD=6,MN是直径,ABMN于点E,CDMN于点F,P为EF上的任意一点,则PA+PC的最小值为.





考点: 垂径定理;等腰梯形的性质. 专题: 压轴题. 分析: A、B两点关于MN对称,因而PA+PC=PB+PC,即当B、C、P在一条直线上时,PA+PC的最小,即BC的值就是PA+PC的最小值 解答: 解:连接OA,OB,OC,作CH垂直于AB于H.

根据垂径定理,得到BE=AB=4,CF=CD=3,

OE===3,

OF===4,

CH=OE+OF=3+4=7,

BH=BE+EH=BE+CF=4+3=7,

在直角BCH中根据勾股定理得到BC=7,

则PA+PC的最小值为.

点评: 正确理解BC的长是PA+PC的最小值,是解决本题的关键. (2014?)ABC内接于⊙O,∠OAB=20°,则∠C的度数为.



解析:∵OA=OB,∴∠OBA=∠OAB=20°,∴∠AOB=140°,∴∠C=∠AOB=70°

4.(2014?年山东东营)在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是8cm.





考点: 轴对称-最短路线问题;勾股定理;垂径定理.

分析: 作点C关于AB的对称点C′,连接C′D与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出C′D为直径,从而得解.

解答: 解:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,

此时,点M为CM+DM的最小值时的位置,

由垂径定理,=,

∴=,

∵==,AB为直径,

∴C′D为直径,

∴CM+DM的最小值是8cm.

故答案为:8.



点评: 本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM的最小值等于圆的直径的长度是解题的关键..(2014?四川南充分)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是.(结果保留π)





分析:设AB于小圆切于点C,连接OC,OB,利用垂径定理即可求得BC的长,根据圆环(阴影)的面积=π?OB2﹣π?OC2=π(OB2﹣OC2),以及勾股定理即可求解.

解:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,

∴OC⊥AB,∴BC=AC=AB=×8=4cm.

∵圆环(阴影)的面积=π?OB2﹣π?OC2=π(OB2﹣OC2)

又∵直角△OBC中,OB2=OC2+BC2

∴圆环(阴影)的面积=π?OB2﹣π?OC2=π(OB2﹣OC2)=π?BC2=16πcm2.故答案是:16π.



点评:此题考查了垂径定理,切线的性质,以及勾股定理,解题的关键是正确作出辅助线,注意到圆环(阴影)的面积=π?OB2﹣π?OC2=π(OB2﹣OC2),利用勾股定理把圆的半径之间的关系转化为直角三角形的边的关系.

(2014?)ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于.





考点: 圆周角定理. 分析: 由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数,又由直径所对的圆周角是直角,即可求得∠ACB=90°,继而求得答案. 解答: 解:∵∠ABC与∠ADC是所对的圆周角,

∴∠ABC=∠ADC=54°,

∵AB为⊙O的直径,

∴∠ACB=90°,

∴∠BAC=90°﹣∠ABC=90°﹣54°=36°.

故答案为:36°. 点评: 此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等与直径所对的圆周角是直角定理的应用.













三、解答题

1.(2014?上海,第25题14分)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G.



(1)当圆C经过点A时,求CP的长;

(2)联结AP,当AP∥CG时,求弦EF的长;

(3)当△AGE是等腰三角形时,求圆C的半径长.



考点: 圆的综合题 分析: (1)当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,直接利用勾股定理求出AC进而得出答案;

(2)首先得出四边形APCE是菱形,进而得出CM的长,进而利用锐角三角函数关系得出CP以及EF的长;

(3)当∠AEG=∠B时,A、E、G重合,只能∠AGE=∠AEG,利用AD∥BC,得出△GAE∽△GBC,进而求出即可. 解答: 解:(1)如图1,设⊙O的半径为r,

当点A在⊙C上时,点E和点A重合,过点A作AH⊥BC于H,

∴BH=AB?cosB=4,

∴AH=3,CH=4,

∴AC==5,

∴此时CP=r=5;

(2)如图2,若AP∥CE,APCE为平行四边形,

∵CE=CP,

∴四边形APCE是菱形,

连接AC、EP,则AC⊥EP,

∴AM=CM=,

由(1)知,AB=AC,则∠ACB=∠B,

∴CP=CE==,

∴EF=2=;

(3)如图3:过点C作CN⊥AD于点N,

∵cosB=,

∴∠B<45°,

∵∠BCG<90°,

∴∠BGC>45°,

∵∠AEG=∠BCG≥∠ACB=∠B,

∴当∠AEG=∠B时,A、E、G重合,

∴只能∠AGE=∠AEG,

∵AD∥BC,

∴△GAE∽△GBC,

∴=,即=,

解得:AE=3,EN=AN﹣AE=1,

∴CE===.





点评: 此题主要考查了相似三角形的判定与性质以及勾股定理以及锐角三角函数关系等知识,利用分类讨论得出△AGE是等腰三角形时只能∠AGE=∠AEG进而求出是解题关键. 2.(2014?山东烟台,第24题8分)如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=α,∠POC=β.

求证:tanα?tan=.



考点:圆的基本性质,相似三角形的判定,锐角三角函数.

分析:连接AC先求出△PBD∽△PAC,再求出=,最后得到tanα?tan=.

解答:证明:连接AC,则∠A=∠POC=,

∵AB是⊙O的直径,∴∠ACB=90°,∴tanα=,BD∥AC,

∴∠BPD=∠A,∵∠P=∠P,∴△PBD∽△PAC,∴=,

∵PB=0B=OA,∴=,∴tana?tan=?==.

点评:本题主要考查了相似三角形的判定与性质及圆周角的知识,本题解题的关键是求出△PBD∽△PAC,再求出tanα?tan=.

(2014?遵义26.(12分))如图,直角梯形ABCD中,ABCD,DAB=90°,且ABC=60°,AB=BC,ACD的外接圆O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.

(1)求证:CF=DB;

(2)当AD=时,试求E点到CF的距离.





考点: 圆的综合题 专题: 综合题. 分析: (1)连结AE,由ABC=60°,AB=BC可判断ABC为等边三角形,由ABCD,DAB=90°得ADC=∠DAB=90°,则根据圆周角定理可得到AC为O的直径,则AEC=90°,即AEBC,根据等边三角形的性质得BE=CE,再证明DCE≌△FBE,得到DE=FE,于是可判断四边形BDCF为平行四边形,根据平行四边形的性质得CF=DB;

(2)作EHCF于H,由ABC为等边三角形得BAC=60°,则DAC=30°,在RtADC中,根据含30度的直角三角形三边的关系得DC=AD=1,AC=2CD=2,

则AB=AC=2,BF=CD=1,AF=3,然后利用勾股定理计算出BD=,DF=2,所以CF=BD=,EF=DF=,接着根据等边三角形的性质由AEBC得CAE=∠BAE=30°,根据圆周角定理得EDC=∠CAE=30°,而DCA=∠BAC=60°,得到DPC=90°,在RtDPC中,根据含30度的直角三角形三边的关系得PC=DC=,

再证明RtFHE∽Rt△FPC,利用相似比可计算出EH. 解答: (1)证明:连结AE,如图,

ABC=60°,AB=BC,

ABC为等边三角形,

AB∥CD,DAB=90°,

ADC=∠DAB=90°,

AC为O的直径,

AEC=90°,即AEBC,

BE=CE,

CDBF,

DCE=∠FBF,

在DCE和FBE中,



DCE≌△FBE(ASA),

DE=FE,

四边形BDCF为平行四边形,

CF=DB;



(2)解:作EHCF于H,如图,

ABC为等边三角形,

BAC=60°,

DAC=30°,

在RtADC中,AD=,

DC=AD=1,AC=2CD=2,

AB=AC=2,BF=CD=1,

AF=3,

在RtABD中,BD==,

在RtADF中,DF==2,

CF=BD=,EF=DF=,

AE⊥BC,

CAE=∠BAE=30°,

EDC=∠CAE=30°,

而DCA=∠BAC=60°,

DPC=90°,

在RtDPC中,DC=1,CDP=30°,

PC=DC=,

HFE=∠PFC,

Rt△FHE∽Rt△FPC,

=,即=,

EH=,

即E点到CF的距离为.

点评: 本题考查了圆的综合题:熟练掌握圆周角定理、等边三角形的性质和平行四边形的判定与性质;会运用三角形全等的知识解决线段相等的问题;会运用勾股定理和相似比进行几何计算. (2014年湖北咸宁13.(3分))如图,在扇形OAB中,∠AOB=90°,点C是上的一个动点(不与A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.若DE=1,则扇形OAB的面积为.





考点: 三角形中位线定理;垂径定理;扇形面积的计算.

分析: 连接AB,由OD垂直于BC,OE垂直于AC,利用垂径定理得到D、E分别为BC、AC的中点,即ED为三角形ABC的中位线,即可求出AB的长.利用勾股定理、OA=OB,且∠AOB=90°,可以求得该扇形的半径.

解答: 解:连接AB,

∵OD⊥BC,OE⊥AC,

∴D、E分别为BC、AC的中点,

∴DE为△ABC的中位线,

∴AB=2DE=2.

又∵在△OAB中,∠AOB=90°,OA=OB,

∴OA=OB=AB=,

∴扇形OAB的面积为:=.

故答案是:.



点评: 此题考查了垂径定理,勾股定理,扇形面积的计算以及三角形的中位线定理,熟练掌握定理是解本题的关键.

.(2014?四川南充分)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,

(1)求证:直线EP为⊙O的切线;

(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF?BO.试证明BG=PG;

(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.



分析:(1)连接OP,先由EP=EG,证出∠EPG=∠BGF,再由∠BFG=∠BGF+∠OBP=90°,推出∠EPG+∠OPB=90°来求证,

(2)连接OG,由BG2=BF?BO,得出△BFG∽△BGO,得出∠BGO=∠BFG=90°得出结论.

(3)连接AC、BC、OG,由sinB=,求出r,由(2)得出∠B=∠OGF,求出OF,再求出BF,FA,利用直角三角形来求斜边上的高,再乘以2得出CD长度.

(1)证明:连接OP,∵EP=EG,∴∠EPG=∠EGP,

又∵∠EPG=∠BGF,∴∠EPG=∠BGF,∵OP=OB,

∴∠OPB=∠OBP,∵CD⊥AB,∴∠BFG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,

∴直线EP为⊙O的切线;

(2)证明:如图,连接OG,

∵BG2=BF?BO,∴=,∴△BFG∽△BGO,

∴∠BGO=∠BFG=90°,∴BG=PG;

(3)解:如图,连接AC、BC、OG,

∵sinB=,∴=,∵OB=r=3,∴OG=,

由(2)得∠EPG+∠OPB=90°,

∠B+∠BGF=∠OGF+∠BGO=90°,∴∠B=∠OGF,

∴sin∠OGF==∴OF=1,

∴BF=BO﹣OF=3﹣1=2,FA=OF+OA=1+3=4,

在RT△BCA中,

CF2=BF?FA,∴CF===2.∴CD=2CF=4.

点评:本题主要考查了圆的综合题,解题的关键是通过作辅助线,找准角之间的关系,灵活运用直角三角形中的正弦值.

.(2014?分)

如图,在△ABC中,B=45°,ACB=60°,,点D为BA延长线上的一点,且D=∠ACB,O为△ABC的外接圆.

(1)求BC的长;

(2)求O的半径.



(1)(2).



(2)°,EC=,∴AC=.

∵∠D=∠ACB,=∠B,,即.





∴DM=4.

∴⊙O的半径.



考点:1.锐角三角函数定义;2.特殊角的三角函数值;3.相似三角形的判定和性质;4.圆周角定理;5.圆内接四边形的性质;6.含30度角直角三角形的性质;7.勾股定理.

7、(2014?)如图6,中,,.

(1)动手操作:利用尺规作以为直径的,并标出与的交点,与的交点

(保留作图痕迹,不写作法):

(2)综合应用:在你所作的圆中,

①求证:;

②求点到的距离.

【考点】(1)尺规作图;(2)①圆周角、圆心角定理;②勾股定理,等面积法

【分析】(1)先做出中点,再以为圆心,为半径画圆.

(2)①要求,根据圆心角定理,同圆中圆心角相等所对的弧也相等,只需证出即可,再根据等腰三角形中的边角关系转化.

②首先根据已知条件可求出,依题意作出高,求高则用勾股定理或面积法,注意到为直径,所以想到连接,构造直角三角形,进而用勾股定理可求出,的长度,那么在中,求其高,就只需用面积法即可求出高.

【答案】(1)如图所示,圆为所求

(2)①如图连接,设,









②连接,过作于,过作于

cosC=,又

,

又为直径



设,则,

在和中,





解得:













圆的有关性质

(2014?)如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()



A. ∠ACD B. ∠ADB C. ∠AED D. ∠ACB

考点: 圆周角定理. 分析: 根据圆周角定理即可判断A、B、D,根据三角形外角性质即可判断C. 解答: 解:A、∵∠ABD对的弧是弧AD,∠ACD对的弧也是AD,

∴∠ABD=∠ACD,故本选项正确;

B、∵∠ABD对的弧是弧AD,∠ADB对的弧也是AB,而已知没有说弧AD=弧AB,

∴∠ABD和∠ACD不相等,故本选项错误;

C、∠AED>∠ABD,故本选项错误;

D、∵∠ABD对的弧是弧AD,∠ACB对的弧也是AB,而已知没有说弧AD=弧AB,

∴∠ABD和∠ACB不相等,故本选项错误;

故选A. 点评: 本题考查了圆周角定理和三角形外角性质的应用,注意:在同圆或等哦圆中,同弧或等弧所对的圆周角相等. ,弧长为的扇形半径为【】

A....

【解析】本题直接把n=120°,l=带入解方程即可.

【答案】C

【点评】正确解答本题只需牢记弧长公式.

3.(2014?重庆如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()



A. 30° B. 45° C. 60° D. 70°



考点: 圆周角定理.

专题: 计算题.

分析: 先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.

解答: 解:∵∠ABC=∠AOC,

而∠ABC+∠AOC=90°,

∴∠AOC+∠AOC=90°,

∴∠AOC=60°.

故选C.

点评: 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(2014?湖北荆门)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()

A.∠ACD=∠DAB B.AD=DE C. AD2=BD?CD D. AD?AB=AC?BD



考点: 相似三角形的判定;圆周角定理.

分析: 由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.

解答: 解:如图,∠ADC=∠ADB,

A、∵∠ACD=∠DAB,

∴△ADC∽△BDA,故本选项正确;

B、∵AD=DE,

∴=,

∴∠DAE=∠B,

∴△ADC∽△BDA,故本选项正确;

C、∵AD2=BD?CD,

∴AD:BD=CD:AD,

∴△ADC∽△BDA,故本选项正确;

D、∵AD?AB=AC?BD,

∴AD:BD=AC:AB,

但∠ADC=∠ADB不是公共角,故本选项错误.

故选D.

点评: 此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.

(2014?山西)如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()



A. 30° B. 40° C. 50° D. 80°



考点: 圆周角定理..

分析: 根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.

解答: 解:∵OA=OB,∠OBA=50°,

∴∠OAB=∠OBA=50°,

∴∠AOB=180°﹣50°×2=80°,

∴∠C=∠AOB=40°.

故选:B.

点评: 此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.

(2014?乐山)在ABC中,AB=AC=5,sinB=,O过点B、C两点,且O半径r=,则OA的值()

A. 3或5 B. 5 C. 4或5 D. 4

考点: 垂径定理;等腰三角形的性质;勾股定理;解直角三角形.. 专题: 分类讨论. 分析: 作ADBC于D,由于AB=AC=5,根据等腰三角形的性质得AD垂直平分BC,则根据垂径定理的推论得到点O在直线AD上,连结OB,在RtABD中,根据正弦的定义计算出AD=4,根据勾股定理计算出BD=3,再在RtOBD中,根据勾股定理计算出OD=1,然后分类讨论:当点A与点O在BC的两旁,则OA=AD+OD;当点A与点O在BC的同旁,则OA=AD﹣OD. 解答: 解:如图,

作ADBC于D,

AB=AC=5,

AD垂直平分BC,

点O在直线AD上,

连结OB,

在RtABD中,sinB==,

AD=4,

BD==3,

在RtOBD中,OB=,BD=3,

OD==1,

当点A与点O在BC的两旁,则OA=AD+OD=4+1=5;

当点A与点O在BC的同旁,则OA=AD﹣OD=4﹣1=3,

即OA的值为3或5.

故选A.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.也考查了等腰三角形的性质和勾股定理. (2014?丽水)如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知DE=6,∠BAC+∠EAD=180°,则弦BC的弦心距等于()



A. B. C. 4 D. 3

考点: 圆周角定理;勾股定理;旋转的性质.. 专题: 计算题. 分析: 作AH⊥BC于H,作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,再证明△ADE≌△ABF,得到DE=BF=6,由AH⊥BC,根据垂径定理得CH=BH,

易得AH为△CBF的中位线,然后根据三角形中位线性质得到AH=BF=3. 解答: 解:作AH⊥BC于H,作直径CF,连结BF,如图,

∵∠BAC+∠EAD=180°,

而∠BAC+∠BAF=180°,

∴∠DAE=∠BAF,

在△ADE和△ABF中



∴△ADE≌△ABF,

∴DE=BF=6,

∵AH⊥BC,

∴CH=BH,

而CA=AF,

∴AH为△CBF的中位线,

∴AH=BF=3.

故选D.

点评: 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质. (2014年贵州安顺)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为()



A. B. 1 C. 2 D. 2



考点: 轴对称-最短路线问题;勾股定理;垂径定理..

分析: 作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,根据轴对称确定最短路线问题可得AB′与MN的交点即为PA+PB的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠AON=60°,然后求出∠BON=30°,再根据对称性可得∠B′ON=∠BON=30°,然后求出∠AOB′=90°,从而判断出△AOB′是等腰直角三角形,再根据等腰直角三角形的性质可得AB′=OA,即为PA+PB的最小值.

解答: 解:作点B关于MN的对称点B′,连接OA、OB、OB′、AB′,

则AB′与MN的交点即为PA+PB的最小时的点,PA+PB的最小值=AB′,

∵∠AMN=30°,

∴∠AON=2∠AMN=2×30°=60°,

∵点B为劣弧AN的中点,

∴∠BON=∠AON=×60°=30°,

由对称性,∠B′ON=∠BON=30°,

∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,

∴△AOB′是等腰直角三角形,

∴AB′=OA=×1=,

即PA+PB的最小值=.

故选A.



点评: 本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键.

.(2014年广西南宁)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()



A. 40cm B. 60cm C. 80cm D. 100cm



考点: 垂径定理的应用;勾股定理..

分析: 连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.

解答: 解:连接OA,过点O作OE⊥AB,交AB于点M,

∵直径为200cm,AB=160cm,

∴OA=OE=100cm,AM=80cm,

∴OM===60cm,

∴ME=OE﹣OM=100﹣60=40cm.

故选A.



点评: 本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.

(2014?黑龙江龙东)直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是30°或150°.

考点: 圆周角定理;含30度角的直角三角形;垂径定理..

专题: 分类讨论.

分析: 连接OA、OB,根据等边三角形的性质,求出∠O的度数,再根据圆周定理求出∠C的度数,再根据圆内接四边形的性质求出∠D的度数.

解答: 解:连接OA、OB,

∵AB=OB=OA,

∴∠AOB=60°,

∴∠C=30°,

∴∠D=180°﹣30°=150°.

故答案为30°或150°.



点评: 本题考查了圆周角定理和圆内接四边形的性质,作出辅助线是解题的关键.

2014?湖南衡阳,第17题3分)如图,AB为O直径,CD为O的弦,ACD=25°,BAD的度数为65°.





考点: 圆周角定理..

分析: 根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得B的度数,即可求得BAD的度数.

解答: 解:AB为O直径

ADB=90°

∵∠B=∠ACD=25°

∴∠BAD=90°﹣B=65°.

故答案为:65°.

点评: 考查了圆周角定理的推论.构造直径所对的圆周角是圆中常见的辅助线之一.

,则∠BAC的度数_______



【答案】【考点】圆周角定理.【】,得OB=2,BD=CD=2,利用三角函数关系,易得∠BOD=60°;OB=OC,得角∠BOC=120°,所以圆周角∠BAC=∠BOC=60°.【】,

∴BD=CD=BC=×=。

在Rt△BDC中,∵sin∠BOD==,

∴∠BOD=60°。

∵△BOC是等腰三角形,

∴∠BOC=2∠BOD=2×60°=120°,

∴∠BAC=×∠BOC=×120°=60°

故∠BAC的度数是60°。





5.(2014?陕西)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是4.





考点: 垂径定理;圆周角定理.

专题: 计算题.

分析: 过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,根据圆周角定理得∠AOB=2∠AMB=90°,则△OAB为等腰直角三角形,所以AB=OA=2,由于S四边形MANB=S△MAB+S△NAB,而当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,即M点运动到D点,N点运动到E点,所以四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB?CD+AB?CE=AB(CD+CE)=AB?DE=×2×4=4.

解答: 解:过点O作OC⊥AB于C,交⊙O于D、E两点,连结OA、OB、DA、DB、EA、EB,如图,

∵∠AMB=45°,

∴∠AOB=2∠AMB=90°,

∴△OAB为等腰直角三角形,

∴AB=OA=2,

∵S四边形MANB=S△MAB+S△NAB,

∴当M点到AB的距离最大,△MAB的面积最大;当N点到AB的距离最大时,△NAB的面积最大,

即M点运动到D点,N点运动到E点,

此时四边形MANB面积的最大值=S四边形DAEB=S△DAB+S△EAB=AB?CD+AB?CE=AB(CD+CE)=AB?DE=×2×4=4.

故答案为4.



点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.



.(2014?成都)如图,AB是⊙O的直径,点C在AB的延长线上,CD切⊙O于点D,连接AD.若∠A=25°,则∠C=40度.





考点: 切线的性质;圆周角定理. 专题: 计算题. 分析: 连接OD,由CD为圆O的切线,利用切线的性质得到OD垂直于CD,根据OA=OD,利用等边对等角得到∠A=∠ODA,求出∠ODA的度数,再由∠COD为△AOD外角,求出∠COD度数,即可确定出∠C的度数. 解答: 解:连接OD,

∵CD与圆O相切,

∴OD⊥DC,

∵OA=OD,

∴∠A=∠ODA=25°,

∵∠COD为△AOD的外角,

∴∠COD=50°,

∴∠C=40°.

故答案为:40

点评: 此题考查了切线的性质,等腰三角形的性质,以及外角性质,熟练掌握切线的性质是解本题的关键. (2014?黔西南州)如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=.

考点: 圆周角定理;勾股定理;锐角三角函数的定义. 分析: 根据勾股定理求出BC的长,再将tan∠ADC转化为tanB进行计算. 解答: 解:∵AB为⊙O直径,

∴∠ACB=90°,

∴BC==12,

∴tan∠ADC=tanB===,

故答案为. 点评: 本题考查了圆周角定理和三角函数的定义,要充分利用转化思想. (2014?黄冈)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.

考点: 垂径定理;解直角三角形. 专题: 计算题. 分析: 连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4. 解答: 解:连结OD,如图,设⊙O的半径为R,

∵∠BAD=30°,

∴∠BOD=2∠BAD=60°,

∵CD⊥AB,

∴DE=CE,

在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,

∵cos∠EOD=cos60°=,

∴=,解得R=4,

∴OE=4﹣2=2,

∴DE=OE=2,

∴CD=2DE=4.

故答案为4.

点评: 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形. (2014?广西来宾)如图,点A、B、C均在⊙O上,∠C=50°,则∠OAB=40度.





考点: 圆周角定理. 分析: 由∠C=50°求出∠AOB的度数,再根据等腰三角形的性质和三角形的内角和定理,即可求得答案. 解答: 解:∵∠C=50°,

∴∠AOB=2∠C=100°,

∵OA=OB,

∴∠OAB=∠OBA==40°.

故答案为:40. 点评: 此题考查了圆周角定理,用到的知识点是圆周角定理、等腰三角形的性质、三角形的内角和定理,注意数形结合思想的应用. .(2014?黔南州)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.





考点: 勾股定理;圆周角定理;锐角三角函数的定义. 分析: 连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC的值,又由圆周角定理,即可求得cos∠OBC的值. 解答: 解:连接CD,

∵∠COD=90°,

∴CD是直径,

即CD=10,

∵点C(0,6),

∴OC=6,

∴OD==8,

∴cos∠ODC===,

∵∠OBC=∠ODC,

∴cos∠OBC=.

故答案为.

点评: 此题考查了圆周角定理,勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意掌握转化思想的应用. 11.



三、解答题

1.(2014?黑龙江绥化)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.

(1)求证:CB∥PD;

(2)若BC=3,sin∠BPD=,求⊙O的直径.





考点: 圆周角定理;垂径定理;解直角三角形. 分析: (1)根据圆周角定理和已知求出∠D=∠BCD,根据平行线的判定推出即可;

(2)根据垂径定理求出弧BC=弧BD,推出∠A=∠P,解直角三角形求出即可. 解答: (1)证明:∵∠D=∠1,∠1=∠BCD,

∴∠D=∠BCD,

∴CB∥PD;



(2)解:连接AC,

∵AB是⊙O的直径,

∴∠ACB=90°,

∵CD⊥AB,

∴弧BD=弧BC,

∴∠BPD=∠CAB,

∴sin∠CAB=sin∠BPD=,

即=,

∵BC=3,

∴AB=5,

即⊙O的直径是5. 点评: 本题考查了圆周角定理,解直角三角形,垂径定理,平行线的判定的应用,主要考查学生的推理能力. ((2014?黔南州)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.

(1)求证:△ADF∽△AED;

(2)求FG的长;

(3)求证:tan∠E=.





考点: 相似三角形的判定与性质;垂径定理;圆周角定理;解直角三角形. 分析: ①由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:弧AD=弧AC,DG=CG,继而证得△ADF∽△AED;

②由=,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;

③由勾股定理可求得AG的长,即可求得tan∠ADF的值,继而求得tan∠E=. 解答: 解:①∵AB是⊙O的直径,弦CD⊥AB,

∴DG=CG,

∴弧AD=弧AC,∠ADF=∠AED,

∵∠FAD=∠DAE(公共角),

∴△ADF∽△AED;

②∵=,CF=2,

∴FD=6,

∴CD=DF+CF=8,

∴CG=DG=4,

∴FG=CG﹣CF=2;

③∵AF=3,FG=2,

③∵AF=3,FG=2,∴AG=,

tan∠E=.

点评: 此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想的应用. (2014?攀枝花)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将ABC绕点P旋转180°,得到MCB.

(1)求B、C两点的坐标;

(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;

(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EGBC于G,连接MQ、QG.请问在旋转过程中MQG的大小是否变化?若不变,求出MQG的度数;若变化,请说明理由.





考点: 圆的综合题. 分析: (1)连接PA,运用垂径定理及勾股定理即可求出圆的半径,从而可以求出B、C两点的坐标.

(2)由于圆P是中心对称图形,显然射线AP与圆P的交点就是所需画的点M,连接MB、MC即可;易证四边形ACMB是矩形;过点M作MHBC,垂足为H,易证MHP≌△AOP,从而求出MH、OH的长,进而得到点M的坐标.

(3)易证点E、M、B、G在以点Q为圆心,QB为半径的圆上,从而得到MQG=2∠MBG.易得OCA=60°,从而得到MBG=60°,进而得到MQG=120°,所以MQG是定值. 解答: 解:(1)连接PA,如图1所示.

PO⊥AD,

AO=DO.

AD=2,

OA=.

点P坐标为(﹣1,0),

OP=1.

PA==2.

BP=CP=2.

B(﹣3,0),C(1,0).



(2)连接AP,延长AP交P于点M,连接MB、MC.

如图2所示,线段MB、MC即为所求作.

四边形ACMB是矩形.

理由如下:

MCB由ABC绕点P旋转180°所得,

四边形ACMB是平行四边形.

BC是P的直径,

CAB=90°.

平行四边形ACMB是矩形.

过点M作MHBC,垂足为H,如图2所示.

在MHP和AOP中,

MHP=∠AOP,HPM=∠OPA,MP=AP,

MHP≌△AOP.

MH=OA=,PH=PO=1.

OH=2.

点M的坐标为(﹣2,).



(3)在旋转过程中MQG的大小不变.

四边形ACMB是矩形,

BMC=90°.

EG⊥BO,

BGE=90°.

BMC=∠BGE=90°.

点Q是BE的中点,

QM=QE=QB=QG.

点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.

MQG=2∠MBG.

COA=90°,OC=1,OA=,

tan∠OCA==.

OCA=60°.

MBC=∠BCA=60°.

MQG=120°.

在旋转过程中MQG的大小不变,始终等于120°.





点评: 本题考查了垂径定理、勾股定理、全等三角形的判定与性质、矩形的判定与性质、圆周角定理、特殊角的三角函数、图形的旋转等知识,综合性比较强.证明点E、M、B、G在以点Q为圆心,QB为半径的圆上是解决第三小题的关键. (2014?湖北黄石)如图,A、B是圆O上的两点,∠AOB=120°,C是AB弧的中点.

(1)求证:AB平分∠OAC;

(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.





考点: 菱形的判定与性质;等边三角形的判定与性质;圆心角、弧、弦的关系;圆周角定理.

分析: (1)求出等边三角形AOC和等边三角形OBC,推出OA=OB=BC=AC,即可得出答案;

(2)求出AC=OA=AP,求出∠PCO=90°,∠P=30°,即可求出答案.

解答: (1)证明:连接OC,

∵∠AOB=120°,C是AB弧的中点,

∴∠AOC=∠BOC=60°,

∵OA=OC,

∴△ACO是等边三角形,

∴OA=AC,同理OB=BC,

∴OA=AC=BC=OB,

∴四边形AOBC是菱形,

∴AB平分∠OAC;



(2)解:连接OC,

∵C为弧AB中点,∠AOB=120°,

∴∠AOC=60°,

∵OA=OC,

∴OAC是等边三角形,

∵OA=AC,

∴AP=AC,

∴∠APC=30°,

∴△OPC是直角三角形,

∴.



点评: 本题考查了圆心角、弧、弦之间的关系,勾股定理,等边三角形的性质和判定的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.

(2014?河北11分)图1和图2中,优弧所在⊙O的半径为2,AB=2.点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.

(1)点O到弦AB的距离是1,当BP经过点O时,∠ABA′=60°;

(2)当BA′与⊙O相切时,如图2,求折痕的长:

(3)若线段BA′与优弧只有一个公共点B,设∠ABP=α.确定α的取值范围.





考点: 圆的综合题;含30度角的直角三角形;勾股定理;垂径定理;切线的性质;翻折变换(折叠问题);锐角三角函数的定义 专题: 综合题. 分析: (1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.

(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.

(3)根据点A′的位置不同,分点A′在⊙O内和⊙O外两种情况进行讨论.点A′在⊙O内时,线段BA′与优弧都只有一个公共点B,α的范围是0°<α<30°;当点A′在⊙O的外部时,从BA′与⊙O相切开始,以后线段BA′与优弧都只有一个公共点B,α的范围是60°≤α<120°.从而得到:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°. 解答: 解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.

∵OH⊥AB,AB=2,

∴AH=BH=.

∵OB=2,

∴OH=1.

∴点O到AB的距离为1.

②当BP经过点O时,如图1②所示.

∵OH=1,OB=2,OH⊥AB,

∴sin∠OBH==.

∴∠OBH=30°.

由折叠可得:∠A′BP=∠ABP=30°.

∴∠ABA′=60°.

故答案为:1、60.



(2)过点O作OG⊥BP,垂足为G,如图2所示.

∵BA′与⊙O相切,

∴OB⊥A′B.

∴∠OBA′=90°.

∵∠OBH=30°,

∴∠ABA′=120°.

∴∠A′BP=∠ABP=60°.

∴∠OBP=30°.

∴OG=OB=1.

∴BG=.

∵OG⊥BP,

∴BG=PG=.

∴BP=2.

∴折痕的长为2.



(3)若线段BA′与优弧只有一个公共点B,

Ⅰ.当点A′在⊙O的内部时,此时α的范围是0°<α<30°.

Ⅱ.当点A′在⊙O的外部时,此时α的范围是60°≤α<120°.

综上所述:线段BA′与优弧只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.





点评: 本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,考查了用临界值法求α的取值范围,有一定的综合性.第(3)题中α的范围可能考虑不够全面,需要注意. (2014?无锡8分)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.

(1)若∠B=70°,求∠CAD的度数;

(2)若AB=4,AC=3,求DE的长.





考点: 圆周角定理;平行线的性质;三角形中位线定理 分析: (1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;

(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得. 解答: 解:(1)∵AB是半圆O的直径,

∴∠ACB=90°,

又∵OD∥BC,

∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°.

∵OA=OD,

∴∠DAO=∠ADO===55°

∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;



(2)在直角△ABC中,BC===.

∵OE⊥AC,

∴AE=EC,

又∵OA=OB,

∴OE=BC=.

又∵OD=AB=2,

∴DE=OD﹣OE=2﹣. 点评: 本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.

























































































献花(0)
+1
(本文系菊影秋魅首藏)