配色: 字号:
Capacitive RF MEMS Switches With Tantalum-Based Materials
2014-12-31 | 阅:  转:  |  分享 
  
Thisarticlehasbeenacceptedforinclusioninafutureissueofthisjournal.Contentisfinalaspresented,withtheexceptionofpagination.

JOURNALOFMICROELECTROMECHANICALSYSTEMS1

CapacitiveRFMEMSSwitchesWith

Tantalum-BasedMaterials

AnnaPersano,AdrianoCola,GiorgioDeAngelis,AntoniettaTaurino,PietroSiciliano,andFabioQuaranta

Abstract—Inthispaper,shuntcapacitiveRFmicroelectro-

mechanicalsystems(MEMS)switchesaredevelopedinIII–V

technologyusingtantalumnitride(TaN)andtantalumpentox-

ide(Ta

2

O

5

)fortheactuationlinesandthedielectriclayers,

respectively.Acompositional,structural,andelectricalcharacter-

izationoftheTaNandTa

2

O

5

filmsispreliminarilyperformed,

demonstratingthattheyarevalidalternativestotheconven-

tionalmaterialsusedinIII–VtechnologyforRFMEMSswitches.

Specifically,itisfoundthattheTaNfilmresistivitycanbetuned

from0.01to30Ω·cmbychangingthedepositionparameters.

Ontheotherhand,dielectricTa

2

O

5

filmsshowalowleakage-

currentdensityoffewnanoamperespersquarecentimeterfor

E~1MV/cm,ahighbreakdownfieldof4MV/cm,andahigh

dielectricconstantof32.Therealizedswitchesshowgoodactu-

ationvoltages,intherangeof15–20V,aninsertionlossbetter

than?0.8dBupto30GHz,andanisolationof~?40dBatthe

resonantfrequency,whichis,accordingtobridgelength,between

15and30GHz.AcomparisonbetweenthemeasuredS-parameter

valuesandtheresultsofacircuitsimulationisalsopresentedand

discussed,providingusefulinformationontheoperationofthe

fabricatedswitches.[2010-0236]

IndexTerms—Capacitiveswitches,RFmicroelectromechanical

systems(MEMS),tantalumnitride(TaN),Ta

2

O

5

.

I.INTRODUCTION

T

HERFmicroelectromechanicalsystems(MEMS)repre-

sentaviablesolutiontoovercomethelimitationsex-

hibitedbysemiconductor-basedswitches(pindiode,FET

switches,...)owingtotheverylowpowerdissipationandin-

sertionloss,highisolation,andlinearity[1].Moreover,theuse

ofIII–VtechnologyforRFMEMSswitchfabricationmaypave

thewayfortheimplementationoffuture-generationtransmit/

receivemodulesowingtothemonolithicintegrationofMEMS

andHEMTcomponentsinasinglefabricationprocess[2].

However,inspiteoftheattractivecapabilities,RFMEMS

reliabilityisofmajorconcernforlong-termapplications,andit

iscurrentlythesubjectofanintenseresearcheffort[3]–[7].

Todate,thedevicelifetimeisreducedinRFMEMSohmic

switchesbythedegradationofthemetal-to-metalcontactbe-

ManuscriptreceivedAugust4,2010;revisedNovember29,2010;accepted

January3,2011.ThisworkwassupportedinpartbytheItalianMinistryfor

Education,University,andResearch(MIUR)underProjectDM25810ofthe

BasicResearchInvestmentFund(FIRB).SubjectEditorC.-J.Kim.

A.Persano,A.Cola,A.Taurino,P.Siciliano,andF.Quarantaarewiththe

InstituteforMicroelectronicsandMicrosystems,NationalResearchCouncil

(IMM-CNR),UnitofLecce,73100Lecce,Italy(e-mail:anna.persano@le.

imm.cnr.it).

G.DeAngelisiswiththeInstituteforMicroelectronicsandMicrosystems,

NationalResearchCouncil(IMM-CNR),UnitofRome,00133Rome,Italy.

Colorversionsofoneormoreofthefiguresinthispaperareavailableonline

athttp://ieeexplore.ieee.org.

DigitalObjectIdentifier10.1109/JMEMS.2011.2107884

tweentheactuationelectrodeandthebridge.Thisdegradation

canbeduetodifferentphenomena,suchasthecontamination

andtheelectromigrationofmaterialsacrossthecontact,the

creeps,theductile,andthebrittlewearingofthecontact,and

thehardeningofthecontactarea[8].However,thisdrawback

canbemanagedbyproperdesignguidelineswhichallowactu-

ationvoltagesnotexceeding50Vandaswitchlifetimebeyond

onetrillioncycles[9],[10].Incapacitiveswitches,themetal-to-

metalcontactiseliminatedbycoveringtheactuationpadwith

adielectriclayer,whichalsooffersthebenefittoprovideahigh

ratiobetweentheswitchcapacitanceinthedownandupstates

(C

down

/C

up

).However,thisdielectriclayerusuallyundergoes

chargingeffectsinthearea(approximately100μm×100μm

intypicalconfigurations)underthebridge[5],[7],[11]–[13]

whichcancausestictionphenomenabetweenthedielectric

layerandthebridgemetaloranincreaseinthepull-downvolt-

age,dependingonthepolarityoftheinjectedcharge.Dielectric

chargingincreaseswiththeappliedelectricfield[7],andhence,

effortstocontroltheactuationvoltagehavebeenmadebythe

optimizationofthebridgefabricationprocess[14].

Nowadays,mostofthetechnologicalissueslimitingtheRF

MEMSswitchesarestillopen,particularlyinIII–Vtechnol-

ogy,whichismuchlessmaturethantheSi-basedfabrication

process.Hence,theinvestigationofalternativematerialswith

respecttotheonescommonlyusedinIII–Vtechnologyfor

bothdielectricandactuationcomponentsofMEMSswitches

becomesmandatory.

Inthispaper,RFMEMSshuntcapacitiveswitchesincopla-

narconfigurationarefabricatedinIII–Vtechnologymaterials

whicharealternativetothestandardones.Specifically,films

oftantalumnitride(TaN)andtantalumpentoxide(Ta

2

O

5

)

arechosenfortherealizationofactuationlinesanddielectric

layers,respectively.Thispaperisorganizedasfollows.In

SectionII,thecompositional,structural,andelectricalcharac-

terizationofTaNandTa

2

O

5

thinfilmsisreported.Deposition

parameters,suchasthesubstratetemperatureandthesputtering

gasmixturecomposition,havebeenvaried.Theresistivityof

TaNfilmsisobtainedfromHall-effectmeasurements,while

I–Vcharacteristicsallowidentifyingtheconductionmecha-

nismswhichareresponsiblefortheleakagecurrentinthe

Ta

2

O

5

films.Capacitancemeasurementshavealsobeenper-

formed,allowingtheestimationofthestaticdielectricconstant

ofTa

2

O

5

films.InSectionIII,thestepsforthefabricationof

shuntcapacitiveswitchesinIII–VtechnologyusingTaNand

Ta

2

O

5

filmsaredescribed.Finally,inSectionIV,theresultsof

theRFcharacterizationperformedonthefabricatedswitches

arepresentedandcomparedwiththeresultsobtainedbya

circuitsimulation.

1057-7157/$26.00?2011IEEE

Thisarticlehasbeenacceptedforinclusioninafutureissueofthisjournal.Contentisfinalaspresented,withtheexceptionofpagination.

2JOURNALOFMICROELECTROMECHANICALSYSTEMS

TABLEI

COMPOSITIONANDRESISTIVITYOFTaNFILMS

II.MATERIALCHARACTERIZATION

A.TaNThinFilms

ThinfilmsofTaNweredepositedbyreactivemagnetron

sputteringstartingfromaTatarget.Variablemixturesofni-

trogenandargon,withreactivegas(N

2

)varyingfrom20%to

33%,wereusedinordertoproperlycontrolthefilmcompo-

sitionandstoichiometry.Thesubstratetemperaturewasalso

variedfromroomtemperatureto300

?

C.AllTaNfilmswere

depositedatafixedpowerof200Wandare150μmthick.

X-rayphotoelectronspectroscopy(XPS)analysisoftheTaN

filmsindicatesthattheTa/Nratioisclosetounity(0.9)inthe

film,obtainedbyusingthehigherN

2

contentinthesputtering

gasmixtureatasubstratetemperatureof300

?

C.Fortheother

samples,asignificantlylowerTa/Nratioisfound(≤0.7).

Theresistivityofthedepositedfilmswasevaluatedbymeans

ofHall-effectmeasurements,anditresultedtobeontheorder

of10

?2

Ω·cmwhenanN

2

contentof20%wasusedinthe

sputteringgasmixture.ByincreasingtheN

2

contentto33%,

theresistivitysignificantlyincreased.Inparticular,whenthe

filmsweredepositedatroomtemperature,theresistivitywas

foundtoincreasebythreeordersofmagnitude,whereasalower

riseofthesheetresistancewasinducedbythesameincreaseof

theN

2

contentforfilmsdepositedat300

?

C(seeTableI).

Hence,thestudiedTaNfilmsshowaresistivitythatishigher

thanthatofNiCr(ρ~1×10

?4

Ω·cm),whichisthestandard

materialusedforactuationlinesintheRFMEMSswitches

fabricatedinIII–Vtechnology.Thisaspectisbeneficialfor

theapplicationofTaNasalternativetoNiCrsincethehigher

resistivitywouldallowabetterseparationofthedcandRF

contributions.Moreover,thepossibilitytotunetheTaNresis-

tivityoverthreeordersofmagnitudecouldofferthepossibility

toovercomesometechnologicallimitationsrelatedtothefilm

thicknessandthelinegeometry.

B.Ta

2

O

5

-BasedMIMStructures

Ta

2

O

5

thinfilmsweredepositedbyRF-magnetronreactive

sputteringfromahigh-puritytantalummetaltarget(4-indiam-

eter).TheTa

2

O

5

filmswerepreparedatafixedpowerof200W

andwithachamberpressureof9mtorr.Aflowratioof1:2in

thesputteringgasmixtureofargonandoxygenwasused.

InordertoperformtheTa

2

O

5

filmelectricalcharacterization,

testcapacitorswithametal–insulator–metal(MIM)structure

werefabricatedon(100)semiinsulatingGaAssubstrates.The

bottomandtopmetallizationsoftheMIMstructureswerede-

positedbymagnetronreactivesputteringinaseparatevacuum

system.ThebottomcontactisacontinuousmultilayerTi/Au/Ti

(10/100/10nm)overthewafer.Thetopelectrodeconsistsof

squareTi/Au(10/300nm)contactswitha180-μmsize,which

wererealizedbystandardopticallithography.TheTa

2

O

5

film

Fig.1.(a)SEMimageofaTa

2

O

5

-basedMIMstructure.Thecrosssection

wasobtainedonasurfacecleavedbyusingaFIB.Theplanviewofthe

Ta

2

O

5

layerandoftheupperTi/Aucontactsurfaceisshownin(b)and(c),

respectively.

Fig.2.TypicalJ?EcharacteristicforTa

2

O

5

-basedMIMstructuresatroom

temperature.A1-mAvalueissetascompliancelevelofthemeasurement.The

insetshowstheplotofln(J/E)versusE

1/2

.Thelineisaguidetotheeyes.

thicknesswasmeasuredbyusinganAlpha-StepIQandresulted

tobe324±5nm.

ThestructureandthecompositionofthedepositedTa

2

O

5

filmswereanalyzedbyusingX-raydiffractionandXPS,

respectively.Thefilmswerefoundtobeamorphouswitha

compositionthatisalmoststoichiometric(ratioO/Ta=2.46).

Ta

2

O

5

filmmorphologywasinvestigatedbyplan-viewand

cross-sectionalscanningelectronmicroscopy(SEM)images.

Inparticular,thecross-sectionalSEMimageswererecordedon

cleavedsurfacesobtainedbyusingafocusedionbeam(FIB).

Atypicalcross-sectionalSEMimageoftheinvestigatedMIM

capacitorsisshowninFig.1(a).Thedifferentmorphologyof

thevariouslayersintheMIMstructureisclearlyobserved.

Specifically,theTa

2

O

5

filmisfoundtobedenseandcontinuous

overthewholesurface,asalsoevidencedbytheplan-view

images[Fig.1(b)].Thesurfaceoftheuppermetalliccontact

isobservedtobecontinuousandgranular,asexpectedforAu

layerdeposition[Fig.1(c)].

Fig.2showsthetypicalJ?Ecurvemeasuredatroomtem-

peraturefortheTa

2

O

5

-basedMIMcapacitors.Intheelectric-

fieldrangeof0.2–1MV/cm,thecurrentdensityincreases

approximatelylinearlywiththefield,andtheconductivity

isverylow.Fortheselowelectric-fieldvalues,thecurrent

inthedielectricfilmsisexpectedtobeduetothehopping

conductionmechanism,i.e.,thethermalexcitationoftrapped

Thisarticlehasbeenacceptedforinclusioninafutureissueofthisjournal.Contentisfinalaspresented,withtheexceptionofpagination.

PERSANOetal.:CAPACITIVERFMEMSSWITCHESWITHTANTALUM-BASEDMATERIALS3

electronsfromonetrapsitetoanotherdominatesthetransport

indielectricfilms[15].Forfieldshigherthanabout1MV/cm,a

kinkinthecurrentdensityisobserved,whichpointsoutthat

aconductionmechanismdifferentfromhoppingdominates.

Specifically,thecurrentdatashowalinearbehaviorintheplot

ln(J/E)versusE

1/2

forE>1.2MV/cm(seeinsetofFig.2),

whichisindicativethatthePoole–Frenkelemissiondetermines

thecurrentthroughthedielectriclayer[15].Irreversibledielec-

tricbreakdownoccursforE~4MV/cm,consistentwiththe

highestbreakdownfieldvaluesreportedforTa

2

O

5

films[16].

Capacitancemeasurementswerealsoperformedat1MHz

ontherealizedTa

2

O

5

-basedMIMstructures.Withnoapplied

electricfield,thecapacitancevalueis28.77pF.Underthe

assumptionthattheMIMcapacitanceisgivenbythegeometric

expressionC=ε

s

ε

0

A/d,whereε

s

isthestaticdielectriccon-

stantoftheinsulator,ε

0

isthepermittivityoffreespace,Ais

theactivearea(180×180μm

2

),anddisthefilmthickness,

astaticdielectricconstantof32isestimated,inagreement

withthevaluesreportedforTa

2

O

5

films[17].Thisdielectric-

constantvalueismuchhigherthanthatofSi

3

N

4

(6–7),which

isthedielectricmaterialcommonlyusedincapacitiveRF

MEMSswitches.Thehighdielectricconstantisappealingfor

theapplicationofTa

2

O

5

asdielectricmaterialincapacitive

switchessinceitallowssignificantlyincreasingthecapacitance

ratioC

down

/C

up

[18].

Finally,inordertoinvestigatethechargingeffectsinthe

Ta

2

O

5

films,capacitanceandcurrenttransients(notshown

here)weremeasuredundertheapplicationofaconstantelectric

fieldintherangeof0.3–4MV/cm.Itisfoundthatboththe

capacitanceandcurrenttransientsarewelldescribedbylaws

derivedbyachangeinthedielectricpolarization,whichisex-

pressedbyastretchedexponentialrelation[19].Thevariation

inthepolarizationisattributedtothetrappingoftheinjected

chargeinthelargedensityofstatescontainedinthedielectric

film[12].

III.SWITCHFABRICATION

ThedepositedTaNandTa

2

O

5

thinfilmswereusedtofabri-

cateshuntcapacitiveswitchesintheIII–Vtechnology.Tothis

scope,asurface-micromachinedapproachwasfollowed.The

fabricatedswitchesareincoplanarwaveguide(CPW)config-

uration,withasuspendedmetalbridgeconnectingthelateral

groundplanesandadielectriclayeronthecentralconductor

whichprovidesacapacitivecontributionwhenthebridgeison

thedownstate.Aneight-maskprocesswasusedtomanufacture

theswitches.Theprocessflowcanbedescribedasfollows.

1)Ona625-μm-thicksemiinsulatingGaAssubstrate,a

500-nm-thickSi

3

N

4

layerwasdepositedoverallthe

waferasisolationlayer.Next,a120-nm-thickTaNlayer

wasdepositedbysputteringat25

?

Cwitha20%content

ofN

2

inthegasfeedmixture.Inordertodefinethe

actuationelectrodes,theTaNfilmwaspatternedbya

reactive-ion-etchingprocessbasedonfluorinechemistry

thathadbeenoptimized,reachinganetchingratevalue

of28nm/minandagoodselectivitywithrespectto

theunderneathSi

3

N

4

.Theobtainedactuationlinesare

shownasredregionsinFig.3(a).

Fig.3.(a)Designof(inredcolor)theactuationlines,(inyellowcolor)the

underpassandthepadstocontacttheactuationlines,and(indarkcolor)thevia

holesinthedielectriclayercoveringtheunderpass.(b)Designofthecompleted

switch.

2)Then,a400-nm-thickTa

2

O

5

wasdeposited,andviaholes

weredefinedtocontacttheelectrodesbystandardoptical

photolithographyanddryetching(fluorine-basedchemis-

try).Withthedry-etchingprocessbeingnotselectivewith

respecttoTaN,apreviousoptimizationwasperformed.

3)AmetalmultilayerofTi/Pt/Au(30/30/60nm)wasthen

depositedtorealizeunderpasslinesandthepadsto

contacttheTaNelectrodesbyusingliftofftechnique[see

yellowareasinFig.3(a)].

4)Themetalisnextcoveredwithanother400-nm-thick

Ta

2

O

5

dielectriclayer.Viaholesintheoxidefilmwere

realizedbymeansofphotolithographyanddryetching

inthesameconditionasStep2)[seedarksquaresin

Fig.3(a)].

5)Thesacrificiallayerforthedefinitionoftheairgapunder

thebridgeswasformedbya3-μm-thickphotoresist.In

ordertostabilizethislayerandtoobtainwell-rounded

edgesofbridgeswhicharenecessarytopromotethe

flatnessofthemembraneanchorsandborders,ahard

bakeat200

?

Cwasperformed.Frompreliminarysim-

ulations,anairgapontheorderof3μmfulfilsboththe

electricalisolationbetweenthebridgeintheupposition

andthecentralconductor,aswellastherequirementthat

actuationvoltagesmaynotexceed70–80V.

6)AmetalmultilayerofTi/Au/Ti(5/50/5nm)wasevapo-

ratedontheentiresurface,tobeusedaselectricalcon-

tactfilmandseedlayerforthefollowingelectroplating

process.Theairbridges,theanchorposts,theCPW

lines,andthegroundpadsweredefinedusinga3-μm-

thickphotoresist.TheupperTifilm,whichactsasad-

hesionlayerfortheresist,hastoberemovedinthe

membrane-structureareasbeforethegolddeposition.A

1-μm-thickgoldlayerwasgrownbyelectroplatingusing

agoldcyanidebath.Toobtainflatbridges,thedeposition

parameterswerechoseninordertoachieveaslight

overalltensilestress.Moreover,thebridgesweregrown

withasetofalignedholes,whichallowtheremovalof

Thisarticlehasbeenacceptedforinclusioninafutureissueofthisjournal.Contentisfinalaspresented,withtheexceptionofpagination.

4JOURNALOFMICROELECTROMECHANICALSYSTEMS

Fig.4.SEMplanviewofashuntcapacitiveRFMEMSswitchfabricatedon

aGaAssubstrateusingTaNandTa

2

O

5

thinfilmsfortheactuationlinesand

thedielectriclayers,respectively.

thesacrificiallayerusingdry-etchingtechniquesanda

fasteroperationoftheswitchbyreducingtheairdamping

underneaththebridge.Theholeshaveasquareshapewith

anareaoftypically10×10μm

2

andadistancefrom

eachotherof~10μm.

7)Asecondgold-electroplatingdepositionwitha1.5-μm

thicknesswasusedtothickentheCPWlinesandthe

groundpadsandtobuildupaframetoimprovethe

flatnessofthebridge[seeblueareasinFig.3(b)].A

combinationofselectivewetanddryetchingwasused

toremovetheunwantedTi/Au/Timultilayeramongthe

devices.

8)Finally,theairbridgeswerereleasedbyremovingthe

underneathsacrificialphotoresistbyahighpressureO

2

plasmaprocessperformedinabarreletcherinorderto

preventstickingproblems.Theprocesswasdividedinto

manystepsinordertoavoidoverheatingofmembranes

whichcaninducedistortioneffects.

Profilometeranalysisshowedthatthebridgesarerobust

enoughforreliabilitypurposesandflexibleenoughtobedriven

byreasonablevaluesoftheappliedvoltage.

SEMimageswerealsorecordedinordertocheckthequality

ofthedifferentprocesssteps.ASEMplanviewofthefabri-

catedswitchisshowninFig.4.

IV.RFCHACTERISTICS

AremotelycontrolledHP8510Cvectornetworkanalyzer,to-

getherwithaKarlSüssProbeStationequippedwithgroundsig-

nalgroundRF|Z|-probesanddcprobes,wasusedintheair

forthemeasurementoftheSparametersoftheswitchesin

theupanddownstates.Measurementsweretakenusinga

commercialshort–open–loadthrucalibrationwith801points

inthefrequencyrangefrom1to40GHz.Switchactuation

voltagesof15–20Vwereobtainedbyperformingavoltage

rampwitharateof1V/sec.Finally,theSparametersinthe

downandupstateswererecorded.

TypicalSparametersintheupstateareshowninFig.5.

Thereturnlossislowerthan?10dBbelow28GHz,while

Fig.5.Insertion(S

21

)andreturn(S

11

)lossesforashuntcapacitiveswitch

intheupstate:(Solidline)Experimentalresultsand(dashedline)circuitsim-

ulations.Thebridgeoftheswitchhasalengthandawidthof550and150μm,

respectively,beingwiderinthecentralpartwithanareaof150×250μm

2

.

theinsertionlossis?0.2dBat20GHzandbetterthan

?0.8dBupto30GHz.TheexperimentalSparametersare

comparedwiththeresultsofacircuitsimulationcarriedout

usingthecommercialsoftwarepackageAgilentAdvancedDe-

signSystem(seeFig.5).Forthesesimulations,theequiva-

lentresistor–inductor–capacitor(RLC)circuitmodel,together

withtherelatedformulaspreviouslyproposedin[20],wasused.

ThemeasuredSparametersarefoundtobewelldescribedby

theresultsprovidedbythecircuitsimulations,witha0.07-pF

equivalentupcapacitance(C

up

).

TheSparametersinthedownstate,togetherwiththesimu-

latedresults,areshowninFig.6.Thereturnlossisbetterthan

?0.4dBinalmostallthemeasuredfrequencyrange,anda

resonantfrequency(f

0

)of23GHz(isolationof?38dB)is

observed.Specifically,circuitsimulationsareabletodescribe

theexperimentaldataprovidedthatatunableseriescapacitance

(C

s

)isaddedtotheRLCmodel.Asreportedin[20],therea-

sonforthisadditionalseriescapacitanceislikelyaresidualair

gapbetweentheactuatedbridgeandthedielectricunderneath

itduetoapoorflatnessofthebridgecausedbybothresidual

stressandstressgradientinthesuspendedgoldmembrane.

Acurvatureinthecentralregionofthebridgecanbeindeed

noticedinFig.4.Thevaluesofthelumpedelementsinthe

equivalentRLCcircuit,whichbestdescribetheexperimental

data,arefoundtobeasfollows:R=0.39Ω,L=34.52pH,

C=18.14pF,andC

s

=1.43pF.ThevalueofC

s

isconsistent

withthecapacitancewhichiscalculatedtobeassociatedtothe

effectiveareaofthebridgeportionoverthecentralconductor

(150×250μm

2

lessthetotalareaofholes)whena200-nmair

gapispresent.Moreover,the200-nmairgapisobtainedby3-D

electromechanicalsimulations(notshownhere)performedon

thetestedswitchesusingAnsoftHFSSsimulator.

DuetothecontributionofC

s

,thetotaldowncapacitance

(C

down

)resultstobeof1.32pF,andhence,thecapacitance

ratioC

down

/C

up

turnsouttobe~19.

Theinsetshowstheresonantfrequencyforswitcheshaving

bridgesofthesamewidthanddifferentlengths.Itisobserved

thatf

0

reducesfrom~30to15GHzbyincreasingthebridge

Thisarticlehasbeenacceptedforinclusioninafutureissueofthisjournal.Contentisfinalaspresented,withtheexceptionofpagination.

PERSANOetal.:CAPACITIVERFMEMSSWITCHESWITHTANTALUM-BASEDMATERIALS5

Fig.6.Insertion(S

21

)andreturn(S

11

)lossesforthesameswitchofFig.5

inthedownstate:(Solidline)Experimentalresultsand(dashedline)circuit

simulations.Theinsetshowstheresonantfrequencyasafunctionofthebridge

length.

lengthintherange450–750μm,inagreementwiththeincrease

oftheinductivecontribution[1].

Reliabilitytestswereperformedontherealizedcapacitive

switchesbyapplyingvoltagepulsesof15–20V(dutycycleof

50%withaperiodof1ms).ItisfoundthattheSparameters

exhibitnovariationevenafteronemillionofcycles,butthe

curvedshapeofthebridgeaffectstherepeatabilityofresults.

Ontheotherhand,evidentstictionphenomenamainlyinduced

bythedielectricchargingwerefoundtooccuronlyforvoltages

ashighas~100V.Hence,forappliedvoltagesnearactuation,

thepoorflatnessofthebridgeisthemostlimitingfactorforthe

reliabilityoftheswitchesstudiedhere.Consequently,before

performingasystematictestingoftheswitchreliability,the

optimizationofthemembranedepositionhastobecarried

out.Furthermore,theair-gapcontributioncanbeeliminated

byusingtheso-calledfloating-metalsolution.Insuchacase,

theportionofthedielectricunderneaththebridgeismetallized

onthetoptoobtainaMIMcapacitorindependentofthe

shapeofthebridgewhentheswitchisactuated[21].Parasitic

contributionsduetotherealshapeofthecollapsedbridgeare

expectedtobeeliminatedwithinthemicrowaverangewhenthe

floatingmetalisused,butontheotherhand,thedrawbackof

stiction,typicalofametal-to-metalcontact,canoccur.

V.CONCLUSION

ShuntcapacitiveRFMEMSswitchesaredevelopedinIII–V

technologyusingTaNandTa

2

O

5

asmaterialsforactuation

linesanddielectriclayers,respectively.Theelectricalcharac-

terizationindicatesthattheTaNandTa

2

O

5

filmsarevalidal-

ternativeswithrespecttothestandardmaterials,whichareNiCr

andSi

3

N

4

,foractuationlinesanddielectriclayers,respectively.

Thefabricatedswitchesshowprettylowactuationvoltages

of15–20V,aninsertionlossthatisbetterthan?0.8dBup

to30GHz,andanisolationof~?40dBattheresonant

frequencywhichisintherangeof15–30GHz,accordingto

thebridgelength.ThemeasuredSparametersareinagreement

withthoseobtainedbyacircuitsimulationperformedusing

thelumped-elementequivalent-circuitmodel,whichhasbeen

previouslyproposedin[17].Specifically,inordertoaccurately

describetheSparametersinthedownstate,anadditionalseries

capacitanceisinsertedtotheRLCcircuit,whichisattributedto

aresidualairgapbetweentheactuatedbridgeandthedielectric

underneathit.

TheresultspresentedhereprovethepotentialofTa-based

materialsfortherealizationofcapacitiveRFMEMSswitches.

Theoptimizationofthebridgefabricationisinprogressin

ordertoimprovethedeviceperformanceandreliability.

ACKNOWLEDGMENT

TheauthorswouldliketothankR.Marcelliforthefruit-

fuldiscussionsontheRFcharacteristics,M.C.Martuccifor

thetechnicalsupportintheswitch-fabricationprocess,and

theFondazioneBrunoKessler,MEMSResearchUnit,Povo,

Italy,forprovidingthedesignoftheswitchesrealizedin

thiswork.

REFERENCES

[1]G.Rebeiz,RFMEMSTheory,Design,andTechnology.NewYork:

Wiley-Interscience,2003.

[2]V.Ziegler,C.Siegel,B.Sch?nlinner,U.Prechtel,andH.Schumacher,

“RF-MEMSswitchesbasedonalow-complexitytechnologyandrelated

aspectsofMMICintegration,”inProc.13thGAAsSymp.,Paris,2005,

pp.289–292.

[3]S.Mellé,D.DeConto,D.Dubuc,K.Grenier,O.Vendier,J.-L.Muraro,

J.-L.Cazaux,andR.Plana,“ReliabilitymodelingofcapacitiveRF

MEMS,”IEEETrans.Microw.TheoryTech.,vol.53,no.11,pp.3482–

3488,Nov.2005.

[4]W.M.vanSpengen,R.Puers,R.Mertens,andI.DeWolf,“Theprediction

ofstictionfailuresinMEMS,”IEEETrans.Microw.TheoryTech.,vol.3,

no.4,pp.167–172,Dec.2003.

[5]A.Tazzoli,V.Peretti,andG.Meneghesso,“Electrostaticdischargeand

cyclingeffectsonohmicandcapacitiveRF-MEMSswitches,”IEEE

Trans.DeviceMater.Rel.,vol.7,no.3,pp.429–437,Sep.2007.

[6]D.Mardivirin,A.Pothier,A.Crunteanu,B.Vialle,andP.Blondy,

“ChargingindielectriclesscapacitiveRF-MEMSswitches,”IEEETrans.

Microw.TheoryTech.,vol.57,no.1,pp.231–236,Jan.2009.

[7]C.Goldsmith,J.Ehmke,A.Malczewski,B.Pillars,S.Eshelman,

Z.Yao,J.Brank,andM.Eberly,“Lifetimecharacterizationofcapacitive

RFMEMSswitches,”inProc.IEEEMTT-SInt.Microw.Symp.Dig.,

Phoenix,AZ,2001,pp.227–230.

[8]G.GregoriandD.R.Clarke,“Theinterrelationbetweenadhesion,contact

creep,androughnessonthelifeofgoldcontactsinradio-frequencymi-

croswitches,”J.Appl.Phys.,vol.100,no.9,pp.094904-1–094904-10,

Nov.2006.

[9]RadantMEMS.[Online].Available:http://radantmems.com/radantmems/

switchperformance.html

[10]N.ScottBarker,“ThefutureofN/MEMS,”IEEEMicrow.Mag.,vol.8,

no.6,pp.52–55,Dec.2007.

[11]R.Marcelli,G.Papaioannu,S.Catoni,G.DeAngelis,A.Lucibello,

E.Proietti,B.Margesin,F.Giacomozzi,andF.Deborgies,“Dielectric

charginginmicrowavemicroelectromechanicalohmicseriesandcapac-

itiveshuntswitches,”J.Appl.Phys.,vol.105,no.11,pp.114514-1–

114514-10,Jun.2009.

[12]G.Papaioannou,M.-N.Exarchos,V.Theonas,G.Wang,and

J.Papapolymerou,“Temperaturestudyofthedielectricpolarizationef-

fectsofcapacitiveRFMEMSswitches,”IEEETrans.Microw.Theory

Tech.,vol.53,no.11,pp.3467–3473,Nov.2005.

[13]N.Tavassolian,M.Koutsoureli,E.Papandreou,G.Papaioannou,

B.Lacroix,Z.Liu,andJ.Papapolymerou,“Theeffectofsiliconni-

tridestoichiometryonchargingmechanismsinRF-MEMScapacitive

switches,”IEEETrans.Microw.TheoryTech.,vol.57,no.12,pp.3518–

3524,Dec.2009.

[14]M.-J.Lee,Y.Zhang,C.Jung,M.Bachman,F.DeFlaviis,andG.P.Li,“A

novelmembraneprocessforRFMEMSswitches,”J.Microelectromech.

Syst.,vol.19,no.3,pp.715–717,Jun.2010.

[15]S.M.Sze,“Currenttransportandmaximumdielectricstrengthofsilicon

nitridefilms,”J.Appl.Phys.,vol.38,no.7,pp.2951–2956,Jun.1967.

Thisarticlehasbeenacceptedforinclusioninafutureissueofthisjournal.Contentisfinalaspresented,withtheexceptionofpagination.

6JOURNALOFMICROELECTROMECHANICALSYSTEMS

[16]K.-C.Tsai,W.-F.Wu,C.-G.Chao,andC.-C.Wu,“Improvingelectrical

characteristicsofTa/Ta

2

O

5

/Tacapacitorsusinglow-temperatureinduc-

tivelycoupledN

2

Oplasmaannealing,”J.Electrochem.Soc.,vol.154,

no.6,pp.H512–H516,Apr.2007.

[17]S.EzhilvalavanandT.-Y.Tseng,“Conductionmechanismsinamorphous

andcrystallineTa

2

O

5

thinfilms,”J.Appl.Phys.,vol.83,no.9,pp.4797–

4801,May1998.

[18]T.Lisec,C.Huth,andB.Wagner,“Dielectricmaterialimpactonca-

pacitiveRFMEMSreliability,”inProc.12thGAAsSymp.,Amsterdam,

TheNetherlands,2004,pp.471–474.

[19]A.Persano,F.Quaranta,M.C.Martucci,P.Cretì,P.Siciliano,and

A.Cola,“TransportandchargingmechanismsinTa

2

O

5

thinfilmsfor

capacitiveRFMEMSswitchesapplication,”J.Appl.Phys.,vol.107,

no.11,pp.114502-1–114502-6,Jun.2010.

[20]G.Bartolucci,R.Marcelli,S.Catoni,B.Margesin,F.Giacomozzi,

V.Mulloni,andP.Farinelli,“Anequivalent-circuitmodelforshunt-

connectedcoplanarmicroelectromechanicalsystemswitchesforhigh

frequencyapplications,”J.Appl.Phys.,vol.104,no.8,pp.084514-1–

084514-8,Oct.2008.

[21]X.Rottenberg,R.P.Mertens,B.Nauwelaers,W.DeRaedt,and

H.A.C.Tilmans,“Filter-throughdevice:AdistributedRF-MEMScapaci-

tiveseriesswitch,”J.Micromech.Microeng.,vol.15,no.7,pp.S97–S102,

Jul.2005.

AnnaPersanoreceivedtheLaurea(withhonors)de-

greeinphysicsfromtheUniversityofLecce,Lecce,

Italy,in2003,andthePh.D.degreeinmaterial

engineeringfromtheUniversityofSalento,Lecce,

in2008.

ShehasbeenwiththeInstituteforMicroelectron-

icsandMicrosystems,NationalResearchCouncil

(IMM-CNR),Lecce,since2008,wheresheiscur-

rentlyaContractResearcher.Hercurrentinterestsin-

cludethefabrication,electricalcharacterization,and

reliabilityofRFmicroelectromechanicalsystems

switchesrealizedwithinnovativetechnologiesonGaAsandGaN/Sisubstrates.

Shehasalsobeenworkingonthephotoelectricalcharacterizationoflow-

dimensionalsystems(quantumdots,quantumwires,nanorods,andtetrapods)

foroptoelectronicapplicationsand,morerecently,onthedevelopmentand

electricalcharacterizationofmicro-andnanodevicesforterahertzapplications.

AdrianoColawasborninLaSpezia,Italy,in

1961.HereceivedthePh.D.inphysicsfromthe

UniversityofBari,Bari,Italy,in1991,withathe-

sisondeeplevelsandSchottkybarriersonIII–V

compounds.

AfterhispostdoctoralstudiesattheLabora-

toiresd’étudesdespropriétésélectroniquesdes

solides,CentreNationaldelaRechercheScientifique

(LEPES-CNRS),Grenoble,France,andattheNa-

tionalInstituteofNuclearPhysics(INFN),Pisa,

Italy,hejoinedtheInstituteforMicroelectronicsand

Microsystems,NationalResearchCouncil(IMM-CNR),Lecce,Italy,in1994,

whereheiscurrentlyaSeniorResearcher.Heisthecoauthorofabout100

peer-reviewedjournalpapers.HehasbeenworkingonGaAsandCdTeX-ray

detectors,high-speedheterostructurephotodetectors,and,morerecently,on

low-dimensionalstructures(2DEG,quantumdots,nanowires,andnanorods)

forterahertzandphotovoltaics.Hismainresearchinterestsarethetransport

propertiesofsemiconductormaterialanddevices.

GiorgioDeAngeliswasborninRome,Italy,

in1980.HereceivedtheLaureadegreeinelec-

tronicengineeringfromtheUniversityofRome

“TorVergata,”Rome,in2006,whereheiscurrently

workingtowardthePh.D.degreeinintegratedcir-

cuitsandtelecommunications.

Hehasbeentherecipientofaresearchfellowship

ondesign,testandreliabilityoffrequencytunable

RFmicrodevicesattheInstituteforMicroelectron-

icsandMicrosystems,NationalResearchCouncil

(IMM-CNR),Rome,since2006.Hisresearchinter-

estsincludethedesignandtestofmicrowavecircuitsandmicroelectromechan-

icalsystemsdevicesforspaceandEarthapplications.

AntoniettaTaurinoreceivedtheLaurea(withhon-

ors)andPh.D.degreesinphysicsfromtheUni-

versityofLecce,Lecce,Italy,in1995and1999,

respectively.

Since2001,shehasbeenaResearcherwiththe

InstituteforMicroelectronicsandMicrosystems,Na-

tionalResearchCouncil(IMM-CNR),Lecce.Her

competencesarerelatedtotheanalysisofthemor-

phological,structural,andcompositionalproperties

ofsemiconductingmaterialsbytransmissionelec-

tronmicroscopy(TEM)techniques.Hermainfields

ofinterestarerelatedtonanostructuredthinfilmsforgassensorsandquantum

confinedsemiconductorsforoptoelectronicapplications.Recently,heractivity

hasbeenextendedtoadvancedSEMtechniques,likescanningTEMand

electron-beam-inducedcurrent,aswellastofocused-ion-beamtechniquesfor

thenanofabrication,nanodeposition,andnanomanipulationofmaterialsand

devices.

PietroSicilianoreceivedtheLaureadegreein

physicsfromtheUniversityofLecce,Lecce,Italy,

in1985,andthePh.D.degreeinphysicsfromthe

UniversityofBari,Bari,Italy,in1989.

HeiscurrentlyaDirectorofResearchatthe

InstituteforMicroelectronicsandMicrosystems,Na-

tionalResearchCouncil(IMM-CNR),Lecce,where

hehasbeenworkingformanyyearsinthefield

ofsensors,microelectromechanicalsystems,andmi-

crosystems,asLeaderoftheSensorsandMicrosys-

temsgroup.HeistheDirectorofIMM-CNR,Lecce,

responsibleforseveralnationalandinternationalprojects.HeisaRefereeand

MemberoftheAdvisoryBoardsofinternationaljournalsandhasauthored

about250scientificpapers.

Dr.SicilianoisamemberoftheSteeringCommitteeoftheItalianAssocia-

tiononSensorsandMicrosystems(AISEM),andisthePresidentoftheItalian

Associationon“AmbientAssistedLiving”(AitAAL).HehasbeenaChairman

andamemberoftheorganizingcommitteesofseveralinternationalconferences

andschools.

FabioQuarantawasborninBari,Italy,in1961.

HereceivedtheLaureadegreeinphysicsfromthe

UniversityofBari,Bari,Italy,in1988.

From1988to1994,hewaswiththePhysicsDe-

partment,UniversityofBari,andwiththeMaterial

ScienceDepartment,UniversityofLecce,Lecce,

Italy.In1994,hejoinedtheInstituteforMicroelec-

tronicsandMicrosystems,NationalResearchCoun-

cil(IMM-CNR),Lecce,Italy,becomingapermanent

ResearcherStaffMemberin1998.Heiscurrently

inchargeasLeaderoftheMicroelectronicTech-

nologiesLaboratoryofIMM-CNR,Lecce.Heisthecoauthorofover80

peer-reviewedjournalpapers.Hisresearchinterestsincludethefabrication

technologyandcharacterizationofdevicesbasedonIII–VandSiCcompound

semiconductorsformicro-andnanoelectronicsand,morerecently,thedevelop-

mentofinnovativetechnologiesforthefabricationofmicroelectromechanical

systemsonGaAsandGaN/Sisubstratesandofsolid-statechemicalsensorsfor

gasdetection.

献花(0)
+1
(本文系阿超书集首藏)