考点跟踪突破7一元二次方程一、选择题(每小题6分,共30分)1.(2014·宜宾)若关于x的一元二次方程的两根为x1=1,x2=2,则这个方程是()A.x2+3x-2=0B.x2-3x+2=0C.x2-2x+3=0D.x2+3x+2=0B2.(2014·益阳)一元二次方程x2-2x+m=0总有实数根,则m应满足的条件是()A.m>1B.m=1C.m<1D.m≤13.(2012·荆门)用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是()A.(x-1)2=4B.(x+1)2=4C.(x-1)2=16D.(x+1)2=16DA4.(2014·菏泽)已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为()A.1B.-1C.0D.-25.(2014·潍坊)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2-12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.18BB二、填空题(每小题6分,共30分)6.(2014·舟山)方程x2-3x=0的根为.7.(2013·佛山)方程x2-2x-2=0的解是.8.(2014·白银)一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a=____.x1=0,x2=319.(2014·呼和浩特)已知m,n是方程x2+2x-5=0的两个实数根,则m2-mn+3m+n=____.10.(2013·白银)现定义运算“★”,对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是.8-1或4三、解答题(共40分)11.(6分)(1)(2014·遂宁)解方程:x2+2x-3=0;(2)(2012·杭州)用配方法解方程:2x2-4x-1=0.解:∵x2+2x-3=0,∴(x+3)(x-1)=0,∴x1=1,x2=-312.(8分)解方程:(1)(2012·安徽)x2-2x=2x+1;(2)(2014·自贡)3x(x-2)=2(2-x).13.(8分)(2014·梅州)已知关于x的方程x2+ax+a-2=0.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.15.(10分)(2014·泸州)已知x1,x2是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两实数根.(1)若(x1-1)(x2-1)=28,求m的值;∵x1,x2是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1·x2=m2+5,∴(x1-1)(x2-1)=x1·x2-(x1+x2)+1=m2+5-2(m+1)+1=28,解得:m=-4或m=6;当m=-4时原方程无解,∴m=6(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.当7为底边时,此时方程x2-2(m+1)x+m2+5=0有两个相等的实数根,∴Δ=4(m+1)2-4(m2+5)=0,解得:m=2,∴方程变为x2-6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;当7为腰时,设x1=7,代入方程得:49-14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程为x2-22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2-10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17x1=1+=1-
解:二次项系数化为1得:x-2x=-2x+=+1(x-1)=-1=±=+1=1-
解:x-4x=1-4x+4=1+4(x-2)=5-2=±=2+=2-
解:(x-2)(3x+2)=0解得x=2=-
解:(1)将x1代入方程x+ax+a-2=0得+a+a-2=0解得=;方程为x+x-=0即2x+x-3=0设另一根为x则1·x=-=-(2)∵Δ=a-4(a-2)=a-4a+8=a-4a+4+4=(a-2)+4>0不论a取何实数该方程都有两个不相等的实数根
|
|