配色: 字号:
Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties
2015-09-15 | 阅:  转:  |  分享 
  
b

,

Science

National

form

19

dendritespacingthroughcontrollingpreparationroutes

andalloycompositions,Johnsonetal.[13,14]wereable

toachievelargetensileductilityinbothZr-andTi-based

intoBMGhavebeenmade,anddeformation-induced

phasetransformationhasbeenobservedmainlyinthe

Cu

47.5

Zr

47.5

Al

5

BMGcompositesconsistingofaCuZr

phaseasreinforcement[17–21].TheCuZrphasehasaB2

crystalstructureathightemperatures>988K,buttends

todecomposeintoCu

10

Zr

7

andZr

2

Cuatlowtemperatures

?

Correspondingauthor.Tel.:+861082375387;fax:+861062333447.

E-mailaddress:luzp@ustb.edu.cn(Z.P.Lu).

Availableonlineatwww.sciencedirect.com

ActaMaterialia59(2011)2928–2936

1.Introduction

Bulkmetallicglasses(BMGs)haveattractedmuch

attentionowingtotheirhighstrengthandlargeelasticlimit

[1–4].However,theroom-temperaturebrittlenessand

strain-softeningnaturelimittheirrealstructuralapplica-

tions[5–7].Amongmanyapproachesthathavebeenpro-

posedtoovercomethisissue,formingBMG–matrix

compositeshasprovedtobee?ectiveinenhancingcom-

pressiveplasticityandtoughness[8–12].Nevertheless,no

obvioustensileductilityhadbeenobserveduntiltherecent

workofJohnson’sgroup[13,14].Byproperlyadjusting

BMGcomposites.Unfortunately,becauseofthelackof

work-hardeningmechanisms,theseBMGcompositessu?er

frommacroscopicstrainsoftening,whichcausesunstable

deformationbehavior,withanearlyonsetofneckingnear

theyieldpoint.Tomaketheseglassyalloysviableforengi-

neeringapplications,work-hardeningcapabilityanduni-

formtensileductilityarenecessary,whichrequiresanew

methodologyfordesigningnovelBMGcomposites.

Indesigningcrystallineceramicsandsteels,theconcept

oftransformation-inducedplasticity(TRIP)hasbeen

adoptedtoincreasetoughnessandwork-hardeningproper-

ties[15,16].Similarly,attemptstointroducetheTRIPe?ect

Abstract

Thedependenceofmicrostructureonthealloycompositionandcoolingrateofaseriesof(Zr

0.5

Cu

0.5

)

100C0x

Al

x

(x=1,2,

3,...,10at.%)alloyswasinvestigatedindetailandexplainedintheframeworkoftime–temperature–transformationdiagrams.The

relationshipbetweenthemicrostructuresofbulkmetallicglass(BMG)compositesandtheirmechanicalpropertieswascharacterized

systematically.ItwasfoundthattheadditionofaluminumcanpromotetheformationofthemetastableausteniticCuZrphase,and

compositestructureswithB2–CuZrparticlescanbeformedinalloyscontaining3–8%Al.Boththevolumefractionanddistribution

ofthereinforcedB2phasecouldgreatlya?ectthedeformationbehavior,andtheBMGcompositeswithhomogeneouslydistributedsin-

gleB2–CuZrphaseexhibitedstabletensileductility.AnalysisindicatesthattheB2–CuZraustenitetransformedintotheB19

0

martensite

duringdeformation(i.e.,stress-inducedmartensitictransformation),whichaccountsfortheobservedsuperiormechanicalpropertiesof

thecurrentBMGcomposites.

C2112011ActaMaterialiaInc.PublishedbyElsevierLtd.Allrightsreserved.

Keywords:Bulkamorphousmaterials;Composites;Metastablephase;Mechanicalproperties;Martensiticphasetransformation

FormationofCu–Zr–Albulk

withimprovedtensile

Y.Wu

a

,H.Wang

a

,H.H.Wu

a

,Z.Y.Zhang

X.L.Wang

a

StateKeyLaboratoryforAdvancedMetalsandMaterials,Universityof

b

NeutronScatteringScienceDivision,OakRidge

Received15September2010;receivedinrevised

Availableonline

1359-6454/$36.00C2112011ActaMaterialiaInc.PublishedbyElsevierLtd.All

doi:10.1016/j.actamat.2011.01.029

metallicglasscomposites

properties

a

,X.D.Hui

a

,G.L.Chen

a

,D.Ma

b

,

Z.P.Lu

a,?

andTechnologyBeijing,Beijing100083,People’sRepublicofChina

Laboratory,OakRidge,TN37831,USA

13January2011;accepted17January2011

February2011

www.elsevier.com/locate/actamat

rightsreserved.

3.Results

3.1.Composition–coolingrate–microstructurerelationship

Toinvestigatethestructuraldependenceonthecompo-

sitionandcoolingratein(Cu

0.5

Zr

0.5

)

100C0x

Al

x

(x=1,

2,...,10at.%)alloys,sampleswithdi?erentAlcontents

andcastingdiameterswerefabricatedandexamined.For

thebinaryCu

50

Zr

50

alloy,afullyamorphousstructurecan-

notbeobtainedinas-castrodswithdiameter>2mm,and

themartensiteCuZrphaseappearedintheamorphous

matrix,whichisconsistentwiththepreviousreport[29].

WithadditionsofAl,thestructurewassignificantlychan-

ged,andXRDpatternsofthe(Cu

0.5

Zr

0.5

)

96

Al

4

samples

withvariousdiametersareshowninFig.1asexamples.

Whenthecastingdiameterdis2mm,thecorresponding

XRDtraceshowsasinglehump,indicatingthefullyamor-

phousnatureoftheas-castrods.Withthedecreaseinthe

Y.Wuetal./ActaMaterialia59(2011)2928–29362929

[22].Athighcoolingrates,themetastableB2structurecan

beretainedand,duringsubsequentdeformation,thestress

willinducethephasetransformationfromtheparentB2to

asupersaturatedmartensite[23,24],thusresultinginwork-

hardeningandplasticity.Previousworkconfirmedthatthe

TRIPe?ectoriginatingfromtheCuZrphaseise?ectivein

improvingthecompressivepropertiesofBMG[25–27]but,

undertension,distincttensileplasticityhasseldombeen

reported[28].Itisknownthatthemorphologyandvolume

fractionoftheCuZrphasearestronglydependentonthe

fabricationprocess(e.g.,coolingrates)andalloycomposi-

tions[29,30].Assuch,understandingtheformationkinetics

oftheBMGcompositeswithproperlydistributedB2–

CuZrphasesisthekeytoattainingwork-hardeningand

uniformtensileductility.Inthepresentwork,therefore,a

thoroughinvestigationofthemicrostructuredependence

onalloycompositionandcoolingrateinthe

(Zr

0.5

Cu

0.5

)

100C0x

Al

x

(x=1,2,...,10at.%)systemwas

conducted.ThemainpurposesweretodevelopBMGcom-

positeswithstabledeformationbehaviorandappreciable

plasticityundertensionandtounderstandtherelated

deformationmechanisms.

2.Experimental

Alloyingotswithnominalcompositionsof

(Zr

0.5

Cu

0.5

)

100C0x

Al

x

(x=1,2,...,10at.%)wereprepared

byarc-meltingamixtureofconstituentelementswithpur-

ity>99.9%inaTi-getteredatmosphere.Thealloyingots

weremeltedsixtimestoensurecompositionalhomogene-

ity.Cylindersampleswithdi?erentdiameterswerefabri-

catedbysuctioncastingusingcoppermolds.Toreduce

theporosity,thesamplelengthwascontrolledintherange

70–80mm,usingacopperstopper.Thestructuralnatureof

theas-castrodswasexaminedbyX-raydi?raction(XRD)

usingCuKaradiationandtransmissionelectronmicros-

copy(TEM)usingaJEM2010Finstrumentwithafield

emissiongun.TheTEMsampleswerefirstmechanically

groundtoa50lmthickplateandthentwin-jetelectropo-

lishedusingasolutionmixedintheratioHNO

3

:-

CH

4

O=1:3.Longitudinalandcross-sectionsurfacesof

theas-castandstrainedsampleswereexaminedbyscan-

ningelectronmicroscopy(SEM)inaZEISSSUPRA55

instrument.Volumefractionsofcrystallinephaseswere

estimatedfromtheSEMimagesofthecross-sectionsur-

faceswithImagetoolsoftware.Thermalpropertieswere

analyzedbydi?erentialscanningcalorimetry(DSC)(Net-

zschSTA449C)atarateof10Kmin

C01

.Finiteelement

analysiswasconductedusingABAQUS/Explicitv.6.6

(Providence,RI)software,andthematerialconstantswere

setaccordingtopreviousliterature[25].Tensiletestswere

carriedoutinaWDW-200Dmachinewithamaximum

loadof200kNatanengineeringstrainrateof

2C210

C04

s

C01

,andasmallstraingaugewasusedtocalibrate

andmeasurethestrainduringloading.

coolingrate(i.e.,dincreasesto4mm),sharpcrystalline

peaksofB2–CuZrappearontopoftheamorphoushump.

Afurtherdecreaseinthecoolingrate(i.e.,dincreasesto

5mm)leadstotheformationofanothercrystallinephase

whichcanberecognizedasAl

2

Zr[31].Itcanbeseenthat

themicrostructureoftheas-castsamplesforthisparticular

alloyvariesasfollows:fullyamorphous!amor-

phous+B2–CuZr!amorphous+B2–CuZr+Al

2

Zr,as

thecoolingratedecreases.Asimilartrendwasobserved

fortheotheralloyswithAlcontentupto8%butwithdif-

ferentcriticaldiameters.Forinstance,afullyamorphous

structurecanbeformedinrodswithdiameter6mm,while

thecompositestructureofamorphous+B2–CuZrcanbe

obtainedforadiameterof7mminthealloycontaining

8%Al.TheAl

2

Zrphaseprecipitateswhenthecoolingrate

decreasesfurther,i.e.,diameter>7mm.Nevertheless,when

theAlcontentinthealloyreaches10%orabove,theglass-

formingability(GFA)ofthealloysstartstodecreaseanda

fullyamorphousstructurecanonlybeobtainedintheas-

20406080100

?-Al

2

Zr

?

??

?

φ5mm

φ4mm

φ3mm

?

?

RelativeIntensity(a.u.)

2θ(degree)

φ2mm

?-B2-CuZr

?

Fig.1.XRDpatternsof(Cu

0.5

Zr

0.5

)

96

Al

4

alloyfabricatedatdi?erent

coolingrates.

r

48

Al

4

alloyswithdi?erentcastingdiameters.Thefully

amorphousspecimenshowscatastrophicfracturewithout

Fig.2.SEMimagesofCu

48

Zr

48

Al

4

alloywithdi?erentcastingdiameters:

(a)d=3mm,(b)d=4mmand(c)TEMimagesofnano-sizedcrystalsin

Cu

48

Zr

48

Al

4

alloy;insetistheselectedareaelectrondi?ractionpatternofa

nanocrystal.

castrodswithdiameters55mm.Surprisingly,composites

withasingleB2–CuZrphasecannolongerform.Instead,

Al

2

Zrandotherunknownphasesprecipitateoutofthe

amorphousmatrixwhenthecastingdiameterexceeds

5mm.

Inaddition,themorphologycharacteristics(e.g.,shape

anddistribution)ofthecrystallinephaseshaveastrong

dependenceontheAlcontentandcastingsize,asdemon-

stratedbycentralpartsoftheas-castCu

48

Zr

48

Al

4

alloy

showninFig.2.Whencastina3mmrod,thealloyexhib-

itsacompositestructurewithsphericalprecipitatesembed-

dedintheglassymatrix.Thecrystallinephasesidentifiedas

body-centeredcubic(bcc)B2–CuZrphasearehomoge-

neouslydistributedwithavolumefractionofC2415%and

size20–100lm.Asthecastingsizeisraisedto4mm,the

B2–CuZrphasestillappears,butcombinesintopatch-like

shapesandnolongerdistributeshomogeneouslyacrossthe

amorphousmatrix,anditsvolumefractionisincreasedto

C2445%.DuringtherapidcoolingofBMGmaterials,alarge

temperaturegradientwillbegeneratedwhichcouldcause

compositioninhomogeneityalongtheradiusdirectionas

aresultofthe“Sorete?ect”[32,33].Thelargerthecasting

size,theslowerthecoolingrateandthelongerthetime

availableforthethermaldi?usion,thuskineticallyfavoring

largercompositionalinhomogeneity,whichmayaccount

forthepatch-likeshapesoftheB2–CuZrphase.Itisalso

worthytonotethat,otherthanthemicrometer-sizedB2–

CuZrphases,nanometer-sizedCuZrparticleswerealso

observedinsidetheglassymatrix,asshowninFig.2c.

Bythoroughlyinvestigatingthemicrostructuresof

alloyswithdi?erentAlcontentsandcastingdiameters,

thedependenceofstructureonthecompositionandcool-

ingrate(castingdiameter)ofthepresent

(Cu

0.5

Zr

0.5

)

100C0x

Al

x

alloysisillustratedinFig.3.Itcan

beseenthatGFAofthealloysincreasesinitiallywiththe

Alcontentandreachesthemaximumatx=8%Al,and

thendecreasesastheAladditionsincreasefurther.The

alloys,inwhichBMGcompositeswithsingleB2–CuZr

phasecanbeformedatsuitablecoolingrates,contain3–

8%Al,asboundedbythedashedlineinFig.3.Thecom-

positionswithaluminumcontentof5–6%havethelargest

rangeofcoolingratesforformingsuchspecialcomposites.

3.2.Tensileproperties

ForBMGmaterialswhichusuallylacktensileductility,

uniaxialcompressionhasbeenwidelyusedtostudythe

mechanicalproperties.Recently,itwasreportedthatmany

extrinsicfactorssuchassamplegeometrymaya?ectthe

testingresults,andthecompressivepropertiesmaycontain

artifacts[34–39].Thisstudyfocusedonthetensilebehavior

ofthecurrentBMGcompositesystem,althoughexcellent

compressivedeformabilityhasalsobeenobservedcom-

paredwithmonolithicBMG[19].

ThetensilepropertiesofthecurrentBMGcomposite

2930Y.Wuetal./ActaMaterialia

systemwereinvestigatedindetail.Asanexample,Fig.4a

showsthetensiletruestress–staincurvesoftheCu

48

Z-

59(2011)2928–2936

adistinctyieldingphenomenon,whichisconsistentwith

thecharacteristicofmostBMGsamplesintension.For

10

Amor+M-CuZr

Amorphous

Amor+B2-CuZr

Amor+B2+Al

2

Zr

Y.Wuetal./ActaMaterialia

thesampleswithC2415%homogeneouslydistributedspheri-

calB2crystallites(i.e.,d=3mm),atensileductility>2%

wasachieved.Furthermore,thetensiletruestress–strain

curvedoesnotshowthestress-dropphenomenonafter

yielding,whichwaspreviouslyreportedinBMGcompos-

2

4

6

8

1086

42

Amor+B2+Al

2

Zr

+Uknownphase

Diameter,mm

Alcontent,%

0

Fig.3.MicrostructuredependenceonAlcontentandcoolingratein

(Cu

0.5

Zr

0.5

)

100C0x

Al

x

alloysystem.

0

500

1000

1500

2000

Al=4%

d=5mm

d=4mm

d=3mm

TrueStress,MPa

TrueStrain

1%

d=2mm

1000

2000

x=3

d=5mm

x=7

d=8mm

x=6

=6mm

x=6

d=4mm

x=3

d=3mm

TrueStress,MPa

TrueStrain

2%

(a)

(b)

d

Fig.4.(a)Tensiletruestress–straincurvesofCu

48

Zr

48

Al

4

alloywith

di?erentcastingdiametersand(b)representativetensilestress–strain

curvesoftheothercompositesinthecurrentalloysystem.

itesreinforcedwithcoarsedendrites[13,14],indicatingthat

thestrain-softeningphenomenonhasbeensuppressedin

thecurrentBMGcomposite.Forthesampleswiththe

B2–CuZrphaseprecipitatedinhomogeneouslyand/or

coarsenedtogether(i.e.,d=4mm),however,thetrue

stress–straincurvealsoshowsdistinctyieldingatalower

strength,butwithasmallductilityofC240.5%.Asthecasting

sizeisfurtherincreasedto5mm,thebrittleAl

2

Zrphasein

additiontoB2–CuZrprecipitates,andthespecimenfrac-

turescatastrophicallyatamuchlowerstrengthwithnodis-

tinctyielding.

Toverifywhetherthetensileductilityandwork-harden-

ingcapabilitycanbeobservedintheotheralloys,tension

testsforalltheothercompositesinthecurrentsystemwere

conducted,andseveralrepresentativetruestress–strain

curvesareshowninFig.4b.Similarly,yieldingandstable

tensiledeformationbehaviorcanbeseeninthecomposites

reinforcedbythesingleB2–CuZrphase,althoughactual

valuesoftheyieldstrengthandductilitymayvarywith

Alcontentsandcoolingrates(i.e.,castingdiameters).

Therefore,itisevidentthattensileductilitycanbe

obtainedinBMGcompositesreinforcedwithpropervol-

umefractionanddistributionofthesingleB2–CuZrphase,

whilethecompositeswithanybrittlephasesuchasAl

2

Zr

shownotensileductility.

3.3.Phasetransformationduringdeformation

Owingtothelimitintensileductility,confinedcompres-

siontestswereusedtoscrutinizestructuralchangesduring

deformation.Forexample,loading–unloadingcompres-

sionexperimentsoftheas-castCu

48

Zr

48

Al

4

alloywitha

castingsizeof3mmandanaspectratioof1werecon-

ducted,andXRDmeasurementsforthespecimenatdi?er-

entdeformationstages(i.e.,di?erentcompressionstrains)

areshowninFig.5a.Fortheas-castspecimen,onlycrys-

tallinepeaksrelatedtotheB2–CuZrphasesuperimposed

ontheamorphoushumpareseen,whichisconsistentwith

theresultsshowninFig.1.Afterbeingdeformedto10%

strain,thespecimenshowsextrapeaks,whichcanbe

indexedasaB19

0

–CuZrphase,indicatingtheoccurrence

ofphasetransformationfromB2toB19

0

.Asthecompres-

sivestrainincreasesto15%,thepeakscorrespondingto

B19

0

becomedominant,whilethosecorrespondingtoB2

arediminishing,indicatingthatmostoftheB2–CuZrphase

hastransformedtoB19

0

afterlargedeformation.Thus,it

canbeconcludedthattheB2–CuZrphasecontinuesto

transformtoB19

0

asthedeformationproceeds,andthe

higherthedegreeofdeformation,themorethemartensite

B19

0

phaseisformed.Withfurtherstrainingto32%,adif-

fusehumpsurprisinglyappearsinsteadofsharpcrystalline

peaks,whichseeminglysuggestsafullyamorphousstruc-

tureinthisdeformedsample.However,thecrystalline

phasescouldstillbeseenfromtheSEMimagesofthesam-

pleunloadedatthisstrain,asshowninFig.5b,although

59(2011)2928–29362931

theyarenolongerspherical.

12020406080100

?

?

?

anneal

32%

15%

10%

as-cast

?

?

RelativiteIntensity,a.u.

2θ,degree

-B19′CuZr?

?-B2CuZr

(a)

(c)

2932Y.Wuetal./ActaMaterialia

Toinvestigatethisfurther,thepre-strainedsampleswere

annealedatatemperatureof683K(C2410Kbelowtheglass

transitiontemperature)for2handthenwater-quenched.

AlthoughthecorrespondingSEMimageisexactlythe

sameasthatshowninFig.5b,crystallinepeakscorre-

spondingtoB19

0

andB2–CuZrphasesreappearonthe

XRDcurveofthisannealedsample.Therefore,itseems

thatthedi?usepeakofthelargelydeformedsampledoes

notresultfromafullyamorphousstructure.Usually,

broadeningoftheXRDpeaksoccursbecauseofeitherlim-

itationsinthespatialextentofthecoherentscatteringvol-

umes(i.e.,grainsize)orthepresenceofinhomogeneous

residualstress[40,41].Inthepresentcase,thepeakbroad-

eningontheXRDtraceisseeminglyduetothelatter,

causedbyconfineddeformation.Toconfirmthishypothe-

sis,TEManalysiswasconductedtoinvestigatethestruc-

turechangeinthisheavilypre-strainedsamplebeforeand

aftertheannealing,asdemonstratedinFig.5candd.In

Fig.5c,thelargelydeformedsampleshowstortuousmar-

tensiticplates,indicatingtheexistenceoflargeresidual

stress,whicheventuallygivesrisetobroadeningofthe

XRDpeak.Afterbeingannealedat683K,thetortuous

platesbecomestraightand/ordisappear,implyingthat

Fig.5.(a)XRDpatternsofpre-strainedandannealedsamplesofCu

48

Zr

48

Al

4

pre-strainedto32%.(c)TEMimagesofthemartensiticplatesinsamplespre-strained

(b)

(d)

59(2011)2928–2936

theannealingprocessrelaxestheresidualstressandthus

leadstothereappearanceofthecrystallinepeaks.

4.Discussion

4.1.FormationofBMGcompositeswithsingleB2–CuZr

phase

Fig.4explicitlyshowsthedeterminativerolesofthepre-

cipitatedphasesinthemechanicalbehaviorofthepresent

BMGcomposites.Toobtaindesirablemechanicalproper-

ties,characteristicsoftheBMGcomposites,includingmor-

phology,distribution,volumefractionandtypesof

reinforcementcrystallinephases,havetobeproperlycon-

trolledviacarefullyadjustingthecompositionandcasting

diameter,asdemonstratedinFig.3.Fig.5confirmsthe

occurrenceofthemartensitictransformationduringdefor-

mationofthecurrentcomposites,althoughthee?ectsofAl

additionsonthemartensitictransformationarenotyetelu-

cidated.Toinvestigatethecharacteristictemperaturesof

themartensitictransformationinthepresentalloys,DSC

measurementsofthemotheralloysundercontinuousheat-

ingandcoolingwereconducted,andthecorresponding

alloycompositecastinadiameterof3mm.(b)SEMimageofthesample

to32%and(d)subsequentlyannealed.

200400600800

M

s

A

s

Al6

Al4

Al0

Al6

Al4

Al0

Cooling

HeatFlow

Temperature,K

Heating

Al

2

Zr

B2

T

L

(a)

(b)

Y.Wuetal./ActaMaterialia

curvesofthreealloysareshowninFig.6a.Themartensite

starttemperature(M

s

)isC24415KforthebinaryCu

50

Zr

50

alloy,whichisconsistentwiththeliterature[42].Forthe

alloyswithadditionof4%and6%Al,M

s

isreducedto

C24320and270K,respectively,confirmingthatadditionof

Alcanremarkablysuppressthemartensitetransformation

andstabilizethemetastableausteniteCuZrphase.From

theheatingprocessoftheDSCcurves,thereversemartens-

itetransformation(i.e.,theaustenitetransformation)tem-

peratureforalloysdopedwith0%,4%and6%Alare558,

484and415K,respectively,whichimpliesthatadditionof

Alcanpromoteaustenitetransformationanddestabilize

themartensiteCuZrphase.Assuch,thecombinede?ects

ofcoolingratesandAladditionscanbeschematicallyana-

lyzedfromtheframeworkofthetime–temperature–trans-

formation(TTT)diagrambasedonthecompetitive

formationmechanism[43],asdiscussedbelow.

Forthealloyswith<2%Al,themaincompetingcrystal-

linephaseisB2–CuZr,whichisstableattemperatures

>988K[19].Toformafullyglassystructure,thecooling

ratehastobefastenoughtobypassthenoseoftheB2–

CuZrTTTcurve(i.e.,thecriticalcoolingrateR

c

).Once

theappliedcoolingrateisslowerthanR

c

,theB2–CuZr

phasewouldprecipitateoutoftheliquidathightempera-

Glass+Al

2

ZrGlass+B2

Time,s

Temperature,K

T

g

M

s

Fig.6.(a)DSCheatingandcoolingcurvesof(Cu

0.5

Zr

0.5

)

100C0x

Al

x

(x=0,

4,6)alloyingotsshowingmartensiticandaustenitictransformationand

(b)schematicTTTdiagramof(Cu

0.5

Zr

0.5

)

100C0x

Al

x

alloys.

tures.BecausetheM

s

valueisrelativelyclosetotheglass

transitiontemperatureT

g

[42],thesuper-cooledparent

B2–CuZrphasecaneasilytransformintothemartensitic

CuZrphaseviamartensitictransformation,resultingina

compositestructureconsistingofthemartensiticCuZr

phases,ratherthantheausteniteB2–CuZrphase,embed-

dedintheamorphousmatrix.

Forthealloyswith3–8%Al,formationoftheB2–CuZr

phaseisretardedbecauseofnecessaryredistributionofthe

Alatomsduringsolidification[43].Asaresult,theTTT

curveoftheB2phasemovestowardsthelongertime,lead-

ingtoreductioninthecriticalcoolingrateandhencehigh

GFA(asindicatedbysolidlinesinFig.6b).Meanwhile,

formationoftheAl

2

Zrphaseathightemperatures

becomespossible,owingtothelargeamountofAl,

althoughB2–CuZrisstilltheprimarycompetingphase.

Moreover,themartensitictransformationisalsosup-

pressedbecauseofthestabilizationoftheparentB2–CuZr

phase,i.e.,adecreasedM

s

value(seeFig.6a).Therefore,at

asuitablecoolingrate,thesupercooledB2–CuZrphasecan

beretainedintheamorphousmatrixwithoutoccurrenceof

matensitictransformation.

WithfurtherincreaseinAlcontentto>8%,formation

oftheAl

2

Zrphasebecomespredominant,andprecipita-

tionoftheB2–CuZrphaseisfurthersuppressed(see

dashedlinesinFig.6b).Consequently,glassformationis

reduced,owingtothestrongformingtendencyoftheAl

2

Zr

phase.Uponslowcooling,Al

2

Zralwaysprecipitatesfirst,

andBMGcompositescontainingsingleB2–CuZrphase

asreinforcementcannolongerbeobtained.

4.2.Originsoftheenhancedmechanicalproperties

Aselaboratedabove,thecurrentBMGcompositesrein-

forcedwithsingleB2–CuZrhaveexcellentmechanicalproper-

ties.Next,theoriginsoftheenhancedpropertiesareexplained.

4.2.1.“Blockinge?ect”fromheterogeneitiesatmultiple

lengthscales

Alateralsurfaceimageofatensilefracturedsampleof

Cu

48

Zr

48

Al

4

BMGcompositeisshowninFig.7a,andmul-

tipleshearbandsthroughouttheentiregaugelengthcanbe

seen.Fromthedetailofthelateralsurface(Fig.7b),theso-

called“blockinge?ect”canbeclearlyobserved[44].Shear

bandsdeflectattheinterfacebetweenthecrystalsandthe

glassymatrixandthendivideintomanytinysecondary

shearbandsaroundthesphericalphases.Thecrystalline

spheresactasstrongbarriersfortherapidpropagation

ofshearbandsandthuse?ectivelyenhancetheplasticity

ofthereinforcedcomposites.Moreover,the“blocking

e?ect”wasobservedforB2–CuZrphasesnotonlyof

micrometerscale,butalsonanometerscale.Fig.7cshows

theinteractionofamicro-crackwithanano-sizedB2

phase,anditcanbeseenthatthemicro-crackisremark-

ablydeflectedintoawindingpropagation,whichshould

59(2011)2928–29362933

alsoretardtherapidpropagationofthemicro-crack.

Therefore,itisclearthatthe“blockinge?ect”fromboth

(a)

(b)

2934Y.Wuetal./ActaMaterialia

micrometerandnanometersphericalphaseswould

enhancetheplasticityofthecompositeremarkably.

Aselaboratedearlier,itwasverifiedthathomogeneous

distributionofthereinforcingB2phasesintheBMGcom-

positesisbeneficialforthemechanicalproperties.To

understandfurtherthee?ectsofdistributionoftherein-

forcingB2phase,thestrainfieldforsampleswithdi?erent

dispersioncharacteristicstensionedtothesamestrainof

4%wasanalyzedbyfiniteelementanalysis(FEA),and

thecalculatedresultsareshowninFig.8.Forthecompos-

itewithinhomogeneouslydistributedcrystallinephases,a

mainshearbandisformed,exhibitingtypicallocalized

sheardeformation.Forthecompositewithhomogeneously

dispersedcrystals,thestrainfieldismoreuniform,and

shearbandsareinteractedandmultiplied,whichshould

bebeneficialforplasticity.

4.2.2.Contributionfrommartensitictransformationof

homogeneouslydistributedB2–CuZrphases

The“blockinge?ect”isanormalphenomenoninBMG

composites,andithasbeenprovedthatinteractionand

Load

direction

Load

direction

Fig.7.(a)SEMimageofthelateralsurface,(b)blowupofthelateralsurface,

Cu

48

Zr

48

Al

4

alloy.

59(2011)2928–2936

multiplicationofshearbandswithcrystallinephasesis

capableofenhancingplasticity,butnotsu?cienttoover-

comeearlyneckingofBMGcompositesundertension

[13,14].

Ithasbeenrecognizedthatthedeformation-induced

martensitictransformationcanincreasethestrain-harden-

ingrateandsuppressearlyneckinginTRIPsteels

[15,16].Stress-inducedphasetransformationhasbeen

observedinthepresentB2–CuZrreinforcedcomposites

(Fig.5),thusitisreasonabletoconjecturethatthephase

transformationfromB2–CuZrtoB19

0

–CuZrisresponsible

forsuppressingthetensilework-softeninganda?ording

ductilityofthepresentcomposites.Accordingtotheliter-

ature[45],phasetransformationoftheausteniteB2crystals

duringdeformationcouldreleasethestressconcentration

aroundthemandrestrictsfreevolumeaccumulation.As

aresult,therapidpropagationofshearbandscanbehin-

dered,whichrequiresfurtherstresstomovetheshear

bandsandconsequentlyinhibitstheearlyneckingand

work-softening.Totestthishypothesis,anotherZr

55

Cu

29-

Ni

8

Al

8

BMGcompositewithasimilarvolumefractionof

and(c)TEMimageshowingcrackpropagationinafracturedsampleof

Y.Wuetal./ActaMaterialia

thesphericalZr

2

(CuNi)crystallinephase,whichdoesnot

undergoanyphasetransformationduringdeformation,

wassynthesizedasreportedpreviously[46].Tensileexper-

imentsonthisreferenceBMGcompositeshownowork-

hardeningandductility,whichmanifeststhatthestress-

inducedmartensitictransformationisresponsibleforthe

improvedtensilepropertiesinthecurrentcomposites.

Fig.8.(aandc)FEAmodelsusedforcalculationofcompositesreinforcedby

Strainfieldofcompositesafterbeingtensionedto4%strain,correspondingto

59(2011)2928–29362935

5.Conclusions

Bysystematicinvestigationofprimaryphaseprecipita-

tionin(Zr

0.5

Cu

0.5

)

100C0x

Al

x

alloys,therelationshipbetween

thecoolingrate,Alcontent,microstructureandmechani-

calpropertieswasestablished.ItwasfoundthatBMG

compositescontainingonlythebccB2–CuZrphasewhich

thesamevolumefractionbutdi?erentdistributionofcrystals.(bandd)

(aandc),respectively.

undergoesamartensitictransformationuponloadingcan

formundersuitablecoolingratesinthecompositionrange

3–8%Al.Compositesreinforcedbyhomogeneouslydis-

tributed,singlesphericalB2–CuZrphaseshoweduniform

tensileductilitywithnostrain-softening(e.g.,3mmas-cast

Zr

48

Cu

48

Al

4

alloy).Boththe“blockinge?ect”fromthe

heterogeneitiesatdi?erentlengthscalesandthestress-

inducedmartensitictransformationoftheprecipitated

B2–CuZrphaseareresponsiblefortheobservedsuperior

mechanicalproperties.Theconceptsappliedinthecurrent

studyarebelievednottobelimitedtotheCuZrAlalloy

system,butalsohavestrongimplicationsforthedevelop-

[15]ZackayVF,ParkerER,FahrD.TransASM1967;60:252.

[16]JacquesPJ,FumemontQ,LaniF,PardoenT,DelannayF.Acta

Mater2007;55:3681.

[17]DasJ,TangMB,KimKB,TheissmannR,BaierF,WangWH,etal.

PhysRevLett2005;94:205501.

[18]KimKB,DasJ,VenkataramanS,YiS,EckertJ.ApplPhysLett

2006;89:071908.

[19]PaulyS,DasJ,BednarcikJ,MatternN,KimKB,KimDH,etal.

ScriptaMater2009;60:431.

[20]SunYF,WeiBC,WangYR,LiWH,CheungTL,ShekCK.Appl

PhysLett2005;87:051905.

[21]PaulyS,DasJ,DuhamelC,EckertJ.AdvEngMater2007;9:487.

[22]AbeT,ShimonoM,OdeM,OnoderaH.ActaMater2006;54:909.

2936Y.Wuetal./ActaMaterialia59(2011)2928–2936

mentofotherBMGcompositeswithlargeplasticityand

work-hardeningability.

Acknowledgements

ThisresearchwassupportedbyNationalNaturalSci-

enceFoundationofChina(Nos.50725104and51010001)

andthe973program(No.2007CB613903).Y.W.acknowl-

edgessupportfromNSFC(GrantNo.51001009),China

PostdoctoralScienceFoundation(GrantNo.

20100470208)andtheFundamentalResearchFundsfor

theCentralUniversities.

References

[1]JohnsonWL.MRSBull1999;24:42.

[2]InoueA.ActaMater2000;48:279.

[3]SchroersJ.AdvMater2009;21:1566–97.

[4]Lo?erJF.Intermetallics2003;11:529.

[5]SchuhCA,HufnagelTC,RamamurtyU.ActaMater2007;55:4067.

[6]ChenMW.AnnuRevMaterRes2008;38:14.

[7]AshbyMF,GreerAL.ScriptaMater2006;54:321.

[8]ConnerRD,DandlikerRB,JohnsonWL.ActaMater1998;46:6089.

[9]FanC,LiHQ,KecskesLJ,TaoKX,ChooH,LiawPK,etal.Phys

RevLett2006;96:145506.

[10]HaysCC,KimCP,JohnsonWL.PhysRevLett2000;84:2901.

[11]QiaoJW,WangS,ZhangY,LiawPK,ChenGL.ApplPhysLett

2009;94:151905.

[12]WuFF,ZhangZF,MaoSX,PekerA,EckertJ.PhysRevB

2007;75:134201.

[13]HofmannDC,SuhJY,WiestA,DuanG,LindML,Demetrious

MD,etal.Nature2008;451:1085.

[14]HofmannDC,SuhJY,WiestA,LindML,DemetriouMD,Johnson

WL.ProcNatlAcadSciUSA2008;105:20136.

[23]SchryversD,FirstovGS,SeoJW,HumbeeckJV,KovalYN.Scripta

Mater1997;36:1119.

[24]SeoJW,SchryversD.ActaMater1998;46:1165.

[25]PaulyS,LiuG,WangG,KuhnU,MatternN,EckertJ.ActaMater

2009;57:5445.

[26]PaulyS,LiuG,GorantlaS,WangG,KuhnU,KimDH,etal.Acta

Mater2010;58:4883.

[27]ChengQ,WuHA,WangY,WangXX.ApplPhysLett

2009;95:021911.

[28]WuY,XiaoYH,ChenGL,LiuCT,LuZP.AdvMater2010;22:2770.

[29]DasJ,PaulyS,BostromM,DurstK,GokenM,EckertJ.JAlloy

Compd2009;483:97.

[30]CheungTL,ShekCH.JAlloyCompd2007;434:71.

[31]YuP,BaiHY,TangMB,WangWL.JNon-CrystSolids

2005;351:1328.

[32]LiuY,LiuCT,GeorgeEP,WangXZ.ApplPhysLett

2006;89:051919.

[33]LiuY,LiuCT,GeorgeEP,WangXZ.Intermetallics2007;15:557.

[34]WuWF,LiY,SchuhCA.PhilosMag2008;88:71.

[35]HanZ,WuWF,LiY,WeiYJ,GaoHJ.ActaMater2009;57:1367.

[36]ZhangZF,ZhangH,PanXF,DasJ,EckertJ.PhilosMagLett

2005;85:513.

[37]WuFF,ZhangZF,MaoSX,EckertJ.PhilosMagLett

2009;89:178.

[38]WuY,LiHX,LiuZY,ChenGL,LuZP.Intermetallics2010;18:157.

[39]WuY,LiHX,JiaoZB,GaoJE,LuZP.PhilosMagLett2010;90:403.

[40]BudrovicZ,SwygenhovenHV,DerletPM,PetegemSV,SchmittB.

Science2004;304:273.

[41]KlugHP,AlexanderLE.X-raydi?ractionproceduresforpolycrys-

tallineandamorphousmaterials.2nded.NewYork:Wiley;1974.

[42]KovalYN,FirstovGS,KotkoAV.ScriptaMetall1992;27:1611.

[43]LuZP,MaD,LiuCT,ChangYA.Intermetallics2007;15:253.

[44]Louzguine-LuzginDV,VinogradovA,XieGQ,LiS,LazarevA,

HashimotoS,etal.PhilosMag2009;89:2887.

[45]DasJ,KimKB,XuW,WeiBC,ZhangZF,WangWH,etal.Mater

Trans2006;47:2606.

[46]ChenG,BeiH,CaoY,GaliA,LiuCT,GeorgeEP.ApplPhysLett

2009;95:081908.

献花(0)
+1
(本文系whh1235068首藏)