配色: 字号:
Effects of cooling rates on the mechanical properties of a Ti-based bulk metallic glass
2015-09-15 | 阅:  转:  |  分享 
  
SCIENCECHINA

Physics,Mechanics&Astronomy

?ScienceChinaPressandSpringer-VerlagBerlinHeidelberg2010phys.scichina.comwww.springerlink.com



Correspondingauthor(email:luzp@ustb.edu.cn)

?ResearchPaper?

March2010Vol.53No.3:394–398

SpecialTopiconBulkMetallicGlassesdoi:10.1007/s11433-010-0136-8

EffectsofcoolingratesonthemechanicalpropertiesofaTi-based

bulkmetallicglass

XIAOYueHua,WUYuan,LIUZhiYuan,WUHongHui&LüZhaoPing





StateKeyLaboratoryforAdvancedMetalsandMaterials,UniversityofScienceandTechnologyBeijing,Beijing100083,China

ReceivedDecember29,2009;acceptedJanuary22,2010



MechanicalpropertiesoftheglassyspecimensfabricatedatdifferentcoolingrateswithacompositionofTi

40

Zr

25

Cu

12

Ni

3

Be

20



weresystematicallyinvestigated.Itwasconfirmedthatfastercoolingratescausednotonlyalargeramountoffrozen-infree

volumebutalsoahigherglasstransitiontemperatureinthebulkglassyalloy.Increaseinthefreevolumewasfoundtofavor

plasticdeformationandthentogiverisetolargercompressiveplasticity,whilsttheriseintheglasstransitiontemperature

seemedtobecloselyrelatedtothehigheryieldstrength.Moreover,theincreaseofyieldstrengthandplasticityinducedbyfast

coolingratesmayalsobeassociatedwiththeresidualstressgeneratedduringthefabricationprocess.Ourresultssuggestthat

thedeformationbehaviorofbulkmetallicglassesissensitivetovariousfactorsandinfluencesfromtheotherfactorsshouldbe

excludedasfarascooling-rateeffectsonbulkmetallicglassesareconsidered.

bulkmetallicglasses,mechanicalproperties,cooling-rateeffects,residualstress

PACS:61.43.Dq,65.60.+a,81.05.Kf









Bulkmetallicglasses(BMGs)areusuallyfabricatedby

rapid-quenchingtechniquesinwhichthecoolingrateisa

keyprocessingfactor.Asdiscussedinliterature,glassfor-

mationability(GFA)ofBMGsisbestdescribedbythe

criticalcoolingrate,R

c

[1–3].Inadditiontoitsroleasone

ofthedecisivefactorsinthevitrificationprocessofBMGs,

thecoolingratealsoinfluencesthefinalmicrostructure



[4,5]

andphysicalproperties[6].Boththeoreticandexperimental

resultshavedirectlyshownthatmechanicalpropertiesof

BMGswerecloselyrelatedtocoolingratesappliedduring

thesamplepreparationprocess[7,8].Anincreaseinthe

coolingrateislikelytogiverisetoalargerplasticityand

loweryieldstrength[9].However,furtherinvestigationsare

neededforafullunderstandingofthecooling-rateeffects

onmechanicalpropertiesofBMGs.

Recently,thedeformationbehaviorofamorphoussolids

wasfoundextremelysensitivetotheotherfactorssuchas

Poison’sratio[10],residualstress[11],andtestingspeci-

mensizes[12,13].Assuch,effectsofthecoolingrateare

oftenoverlappedwiththesefactorsinBMGs.Itisthusnec-

essarytoexcludeinfluencesfromtheotherfactorsinterms

ofthecooling-rateeffects.Inthispaper,weattempttoin-

vestigatethecooling-ratedependenceofmechanicalprop-

ertiesinBMGsandtherelatedmechanismsviacarefully

designedexperiments.

1Experiment

MasteralloyswithnominalcompositionsofTi

40

Zr

25

-



Cu

12

Ni

3

Be

20

(at.%)[14]werepreparedbyarc-meltinga

mixtureofrawmetalsincluding99.999%Ti,99.5%Zr,

99.99%Cu,99.99%Niand99.99%BeinaTi-getteredargon

atmosphere.Thealloyingotsweremeltedsixtimestoen-

sureacompositionalhomogeneity.Rod-shapedsamples

wereobtainedbysuction-castingthemoltenalloysinto

coppermoldswithdiametersof2,5,8and10mminhelium

atmosphere.Theamorphousstructureoftheas-castsamples

XIAOYueHua,etal.SciChinaPhysMechAstronMarch(2010)Vol.53No.3395

wasascertainedbyX-raydiffraction(XRD)usingCu-Kα

radiation.AsdemonstratedinFigure1,compressivespeci-

menswithadiameterof2mmandanaspectratioof2:1

(height/diameter)werepreparedfromtheas-castrodswith

differentdiametersbyanelectricaldischargemachine.Lat-

eralsurfacesofallthecompressionsampleswerecarefully

polishedtoeliminatesurfacedefects.Aspeciallydesigned

devicewasusedtogrindbothendsofcompressionsamples

forensuringagoodalignment.Uniaxialcompressiontests

wereconductedbetweentwoWCplatensatanengineering

strainrateof2×10

?4

s

?1

inaSANStestingmachinewitha

maximumloadof300kN.Thermalpropertieswereana-

lyzedbydifferentialscanningcalorimetry(DSC)(Netzsch

STA449C)ataheatingrateof20K/min.







Figure1Schematicillustrationofthesamplepreparationforcompres-

siontestingsamples.Forlargesizecasting,specimenswithadiameterof2

mmwerecutfromcentersoftheas-castrods.

2Results

AccordingtoJohnsonetal.



[15],achievedcoolingrate,T

?



foranas-castdiameterRcanbeestimatedas:T

?

=10/R

2



(cm).Asmentionedearlier,fourkindsoftheas-castrods

withdiametersof2,5,8and10mm,whicharedenotedas

R-2,R-5,R-8andR-10,respectively,wereprepared.Thus,

theachievedcoolingrateinthesamplesR-2,R-5,R-8and

R-10couldbeestimatedtobe1000,160,63and40K/s,

respectively.Obviouslythesmallertheas-castdiameter,the

largerthecoolingrateisachieved.X-raydiffraction(XRD)

patternsinFigure2(a)verifytheamorphousnatureofall

theas-castsamplesandthecorrespondingDSCresultsof

theseas-castrodswithdifferentcastingdiametersare

showninFigure2(b).Allfourkindsofthesamplesexhibit

anendothermiceventatlowtemperatures,followedbya

glasstransitionreactionandtwoexothermicpeaksassoci-

atedwithcrystallizationeventsathightemperatures.Note

thattheglasstransitiontemperatureisincreasedastheas-

castdiameterisdecrease(i.e.,thecoolingrateisincreased),

asshowninTable1.

Tominimizeinfluencesfromtheotherfactorsondefor-

mationbehavior,wepreparedthespecimensforcompres-

siontestsasillustratedinFigure1.Forthecastingdiameter

largerthan2mm,testingsampleswerecutfromcentersof

theas-castrods.Sinceallthecompressivespecimenshave

thesamediameterof2mm,thereportedsizeeffects[12,13]

couldbeeliminated.Furthermore,samplesurfaceswere

carefullypolishedtoeliminatepossibleeffectsofsurface

roughnessanddefects.Figure3showsrepresentativecom-







Figure2X-raydiffractionpatterns(a)andDSCcurves(b)ofthetestingsampleswithdifferentas-castdiameters.

Table1Thermalandmechanicalpropertiesforthesamplespreparedunderdifferentcoolingrates

SamplesT

g

(K)T

x

(K)Yieldstrength(MPa)Plasticity(%)Structuralrelaxationenthalpy(Jg

?1

)

R-262365018028.57.07

R-561665017513.04.51

R-861065117201.84.06

R-1060265116750.83.65

396XIAOYueHua,etal.SciChinaPhysMechAstronMarch(2010)Vol.53No.3



Figure3(a)Representativecompressivestress-straincurvesofthe2mmdiametertestingsamplespreparedfromtherodswithdifferentcastingdiameters;

(b)dependenceofthecompressiveplasticityandyieldstrengthoncoolingrate.

pressivestress-straincurvesofthesamplesR-2,R-5,R-8

andR-10.Appreciabledifferencesinboththeplasticityand

yieldstrengthwereobservedinthesesamples.Asthe

as-castdiameterisdecreased,i.e.,thecoolingrateisin-

creased,boththecompressiveplasticityandyieldstrength

areincreased,asdemonstratedinFigure3(b).

3Discussion

Figure4(a)schematicallyshowsthevolume(orenthalpy)

changeofametallicliquidasafunctionoftemperatureata

constantpressure[16].Uponcooling,ifthemetallicliquid

iscooledsufficientlyfast,crystallizationcanbeavoidedand





Figure4(a)Schematicillustrationofthevolumeorenthalpyofaliquidasafunctionoftemperatureataconstantpressure[16].Ahighercoolingrateb

leadstoahigherglasstransitiontemperatureT

gb

andalargefrozenvolume,(b)dependenceoftheyieldstrengthandplasticityonstructuralrelaxationen-

thalpy(i.e.freevolume),and(c)comparisonbetweentheyieldingstrengthexperimentallydeterminedandthatpredictedfromYang’sequation[17]with

glasstransitiontemperature.

XIAOYueHua,etal.SciChinaPhysMechAstronMarch(2010)Vol.53No.3397

thetotalvolume(orenthalpy)doesnotundergoanabrupt

changeatthefreezingpointT

m

whichusuallyoccursin

conventionalcrystallinematerialsbecauseoftheformation

ofcrystallattices.Instead,thevolume(orenthalpy)ofthe

liquidcontinuouslydecreaseswiththedecreaseoftempera-

tureuntilatacertaintemperature,termedastheglasstran-

sitiontemperature,atwhichtheundercooledliquidisfrozen

inanamorphoussolid[16].Inaddition,thehigherthe

coolingrate(linebinFigure4(a))is,theshorterthetime

availablefortheconfigurationalrelaxationateachtemper-

atureis.Thefallingoutofliquid-stateequilibriumoccurs

earlier,whichresultsinanearlierglasstransition,i.e.a

higherglasstransitiontemperature[17].Inthecurrent

Ti-basedalloy,DSCmeasurementdatapresentedinFigure

2(b)andTable1confirmthatthesamplefabricatedatthe

fastestcoolingrate(i.e.,R-2)showsthehighestT

g

valueof

623Kwhiletheonepreparedattheslowestcoolingrate

(i.e.,R-10)possessesalowestT

g

valueof602K,whichis

constantwithwhatisdemonstratedinFigure4(a).

Inadditiontothehighglasstransitiontemperature,high-

ercoolingrates(e.g.,lineb)inducealargerfrozenvolume

ofthesystem,asclearlyillustratedinFigure4(a).Forliq-

uidswiththesamechemicalcompositions,alargerfrozen

volumeindicatesalargeramountoffreevolumequenched

intheglassysamplewhichismanifestedbyDSCmeasure-

ment.Ithasbeenproposedthattheexothermiceventprior

totheglasstransitiontemperatureT

g

isstronglylinkedto

theexistenceoffreevolumeinsideBMGs[18],namely,the

enthalpyobtainedbyintegratingtheheatflow?H

r

ofthe

exothermiceventjustbeforeT

g

isproportionaltotheanni-

hilationofexcessfreevolume.BasedonFigure2(b),the

?H

r

valuesforallthetypesofthecompressionsamples

withdifferentas-castdiametersaredeterminedasshownin

Table1.Thesampleswithsmalleras-castdiametersshow

larger?H

r

values,indicatingalargeramountofthe

quenched-infreevolumeinsidethesematerials,whichis

alsoconsistentwithFigure4(a).

Asdiscussedabove,fastercoolingratescaninducea

largeramountoffreevolumeandahigherglasstransition

temperatureinBMGs.Variationsoftheyieldstrengthand

plasticityofthepresentTi-basedalloywithstructuralrelax-

ationenthalpy?H

r

areshowninFigure4(b).Withanin-

creaseoftherelaxationenthalpy(i.e.,freevolume),both

yieldstrengthandplasticityincrease.Ithasbeenwellrec-

ognizedthatfreevolumecontainedinmetallicglassesfa-

vorsplasticdeformation,andleadstoahigherplasticity[9].

Thecooling-ratedependenceoftheplasticityshowninFig-

ure4(b)canbewellinterpretedfromtheperspectiveoffree

volume.Howevermorefreevolumenormallymeansa

looseratomicstructure,whichwouldsoftenthemetallic

glass,therebyresultinginadecreaseintheyieldstrength,

contrarytothecooling-ratedependenceoftheyielding

strengthobservedinFigure4(b).

Yangetal.haveproposedaunifiedequationbetween

yieldingstrengthandglasstransitiontemperatureT

g

for

BMGs,writtenas[19]:



gg0

mm

5050

y

TTT

VV

?

??

??,(1)

whereT

0

istheambienttemperature,V

m

ismolarvolume

thatcanbecalculatedaccordingtotheruleofmixture[20].

Figure4(c)showsourmeasuredyieldingstrengthforthe

samplesfabricatedatdifferentcoolingratesincomparison

withthatpredictedusingeq.(1).Ascanbeseen,eq.(1)can

correctlydescribethetrendoftheyieldingstrengthasa

functionofcoolingrateforourTi-basedBMG.Ithasbeen

arguedthatthemechanicalenergydensityforplasticde-

formationisverysimilartothethermalenergydensityfor

theglasstransitioninBMGs,andglasstransitiontempera-

tureT

g

ofBMGscanalsoreflectthedegreeofatomic

bondingstrength.HigherT

g

indicatesthattheatomsare

moredifficulttobereshuffled,thereforegivingrisetothe

higheryieldstrength.

Althoughareasonableagreementbetweentheexperi-

mentaldataandthepredictedyieldstrengthfromYang’s

equationisobtained,itisworthytonotethatdiscrepancy

betweentheexperimentalandpredicteddatabecomesmore

distinctwiththeincreaseofthecoolingrate,asshownin

Figure4(c),implyingsomeotherpossiblereasonsforthe

cooling-ratedependenceoftheyieldstrength.Ithasbeen

proposedthathighconvectionheattransfercoefficientre-

sultingfromrapidquenchingduringfabricationofBMGs

cangenerateresidualstressintheas-castsamples



[21,22].It

isalsoconfirmedthatasuitableresidualstresscouldin-

creaseyieldstrengthofmetallicglasses



[11,23].Thus,itis

reasonabletospeculatethatthehighercoolingratesinthe

thinneras-castsamplesmayinducelargerresidualstress

whichinturncontributestotheincreaseintheyield

strength.Inoneword,thelargerthecoolingrate,thelarger

theresidualstresscouldbe,thereforeleadingtohigheryield

strength.Usually,low-temperatureannealingcaneffective-

lyreduceresidualstressinas-castBMGs[24].Toconfirm

iftheresidualstressinducedbyfastcoolingratesisalso

responsibleforthehighyieldingstrengthobservedexperi-

mentally,annealingofthe2mm,as-castrodsampleatthe

temperature50Kbelowtheglasstransitiontemperaturefor

30minuteswasconducted.Thecorrespondingcompressive

stress-straincurveisshowninFigure5,ascomparedtothat

oftheas-castrod.Normally,low-temperatureannealing

embrittlesBMGsduetotheannihilationoffreevolume,but

contrarytothiscommonknowledge,theyieldstrengthof

the2mm,as-castTi-basedBMGrodslightlydecreasesaf-

terannealing,althoughtheplasticityisindeedreduced.In

otherwords,theyieldstrengthoftheseTi-basedsamples

preparedwithdifferentcoolingratesafterannealingisclos-

ertothepredictedvaluefromtheirT

g

usingeq.(1),imply-

ingthatdifferentstatesoftheresidualstressinducedby

differentcoolingratesalsoplayaroleintheobserveddis-

crepancyoftheyieldingstrengthinthepresentTi-based

BMG,whichisfurtherconfirmedinourrecentwork[25].

398XIAOYueHua,etal.SciChinaPhysMechAstronMarch(2010)Vol.53No.3



Figure5Compressivestress-straincurvefortheannealedsamplewitha

castingdiameterof2mmincomparisonwiththatoftheas-castspecimen.

4Conclusions

Insummary,cooling-rateeffectsonmechanicalproperties

ofaTi-basedBMGhavebeenthoroughlyinvestigatedby

speciallydesignedexperiments.Fastercoolingratesin-

creasenotonlythecompressiveplasticitybutalsotheyield

strength.Largeramountoffrozen-infreevolumeduetothe

fastercoolingratesshouldberesponsibleforthelarger

plasticity,whilsthigherglasstransitiontemperatureisasso-

ciatedwiththehigheryieldstrengthofthesamplesfabri-

catedathighercoolingrates.Inaddition,residualstress

generatedfromtherapid-quenchingprocessproperlyalso

affectsthemechanicalpropertiesofBMGs.Thepresent

studysuggeststhatcooling-rateeffectsondeformationbe-

haviorofBMGsarecomplexthatfurtherin-depthinvesti-

gationsareneeded.

ThisworkwassupportedbytheNationalNaturalScienceFoundationof

China(GrantNo.50725104),theNationalBasicResearchProgramof

China(GrantNo.2007CB613903)andtheProgramofIntroducingTalents

ofDisciplinetoUniversities(GrantNo.B07003).

1JohnsonWL.Bulkglass-formingmetallicglass:Scienceandtech-

nology.MRSBull,1999,24:42–56

2GreerAL.Metallicglass.Science,1995,267:1947–1953

3LuZP,LiuCT.Anewglass-formingabilitycriterionforbulkme-

tallicglasses.ActaMater,2002,50:3501–3512

4GerbertA,EckertJ,SculztL.Effectofoxygenonphasefromation

andthermalstabilityofslowlycooledZr

65

Al

7.5

Cu

17.5

Ni

10

metallic

glass.ActaMater,1998,46:5475–5482

5XingLQ,HufnagelTC,EckertJ,etal.Relationbetweenshort-

rangeorderandcrystallizationbehaviorinZr-basedamorphousal-

loys.ApplPhysLett,2000,77:1970–1972

6HuX,NgSC,FengYP,etal.Cooling-ratedependenceoftheden-

sityofPd

40

Ni

10

Cu

30

P

20

bulkmetallicglass.PhysRevB,2001,64:

172201

7LiuY,BeiH,LiuCT,etal.Cooling-rateinducedsofteningina

Zr

50

Cu

50

bulkmetallicglass.ApplPhysLett,2007,90:071909

8MayrSG.Impactofionirradiationonthethermal,structural,and

mechanicalpropertiesofmetallicglasses.PhysRevB,2005,71:

144109

9HuangYJ,ShenJ,SunJF.Bulkmetallicglasses:Smallerissofter.

ApplPhysLett,2007,90:081919

10LewandowskiJJ,WangWH,GreerAL.Instrinsicplasticityorbrit-

tlenessofmetallicglasses.PhilosMagLett,2005,85:77–87

11ZhangY,WangWH,GreerAL.Makingmetallicglassesplasticby

controlofresidualstress.NatMater,2006,5:857–860

12WuY,LiHX,LiuZY,etal.Interpretingsizeeffectsofbulkmetal-

licglassesbasedonasize-independentcriticalenergydensity.Inter-

metallics,2009,18:157–160

13WuFF,ZhangZF,MaoSX.Size-dependentshearfractureand

globaltensileplasticityofmetallicglasses.ActaMater,2009,57:

257–266

14GuoFQ,WangHJ,PoonSJ,etal.Ductiletitanium-basedglassy

alloyingots.ApplPhysLett,2005,86:091907

15LinXH,JohnsonWL.FormationofTi-Zr-Cu-Nibulkmetallic

glasses.JApplPhys,1995,78:6514–6519

16DebenedettlPG,StillingerFH.Supercooledliquidsandtheglass

transition.Nature,2001,410:259–267

17BruningR,SamwerK.Glasstransitiononlongtimescales.PhysRev

B,1992,46:11318–11322

18SlipenyukA,EckertJ.Correlationbetweenenthalpychangeandfree

volumereductionduringstructuralrelaxationofZr

55

Cu

30

Al

10

Ni

5

me-

tallicglass.ScriptaMater,2004,50:39–44

19YangB,LiuCT,NiehTG.Unifiedequationforthestrengthofbulk

metallicglasses.ApplPhysLett,2006,88:221911

20DentonAR,AshcroftNW.Vegard’slaw.PhysRevA,1991,43:

3161–3164

21AydinerCC,UstundagE.Residualstressesinabulkmetallicglass

cylinderinducedbythermaltempering.MechMater,2005,37:

201–212

22AydinerCC,UstundagE,PrimeMB,etal.Modelingandmeasure-

mentofresidualstressedinabulkmetallicglassplate.JNon-cryst

Solids,2003,316:82–95

23LauneyME,BuschR,KruzicJJ.Effectsoffreevolumechanges

andresidualstressesonthefatigueandfracturebehaviorofa

Zr-Ti-Ni-Cu-Bebulkmetallicglass.ActaMater,2008,56:500–510

24TejedorM,GarciaJA,CarrizoJ,etal.Influenceofthermaltreat-

mentsontheinternalstressesofmetallicglasses.JNon-crystSolids,

1998,235:793–795

25WuY,WuHH,HuiXD,etal.Effectsofdrawingonthetensile

fracturestrengthanditsreliabilityofsmall-sizedmetallicglasses.

ActaMater,inpress



献花(0)
+1
(本文系whh1235068首藏)