配色: 字号:
Effects of drawing on the tensile fracture strength and its reliability of small-sized metallic glas
2015-09-15 | 阅:  转:  |  分享 
  
metallic

Hui,

20

25

Thee?ectsofdrawingonthestructureandmechanicalpropertiesofaCo-basedmetallicglassundertensionwerethoroughlyinves-

tigated.Surfacechangesinducedbydrawing,includingremovalofsurfaceflaws,surfacechemicalhomogenizationandgenerationof

duetotheirintriguingpropertiesincludinghighstrength

capability,BMGshavegreatpotentialasmaterialfor

small-sizedcomponents,inparticularformicro-electro-

mechanicalsystems(MEMS)[4–6].

hausene?ect[11]andMatteuccie?ect[12]—andthese

understandingthedeformationmechanismsofBMGs.

Frombothtechnologicalandscientificpointsofview,

therefore,itisofgreatimportancetoinvestigatethe

mechanicalpropertiesandthereliabilityofBMGsamples

atsmallscales,suchasglassywires,aswehavedonein

thecurrentstudy.



Correspondingauthor.Fax:+861062332508.

E-mailaddress:luzp@ustb.edu.cn(Z.P.Lu).

Availableonlineatwww.sciencedirect.com

ActaMaterialia58(2010)2564–2576

andelasticitycombinedwithhighcorrosionresistance[1–

3].AbovetheglasstransitiontemperatureT

g

inthesuper-

cooledliquidregime,BMGsusuallyremainstableagainst

crystallizationandsoftenintoaviscousliquid,whichmake

themmalleablelikeathermosettingpolymer.Moreimpor-

tantly,BMGsalwaysshowlowshrinkageduringsolidifica-

tionduetothenatureoftheirrandomatomicpacking,

whichpermitsmoldingofintricate,nearnet-shapedparts

withmicroscaleprecisionandsmoothsurfaces[4–6].

Therefore,duetotheirexcellentnet-shapefabrication

havebeenemployedinsomeMEMSapplications.How-

ever,variousissuesregardingapplicationsofMGsas

MEMShaveyettobesolved,suchasflawtolerances(i.e.

thereliabilityunderloading).Inaddition,itwasfoundthat

MGsatsmallsamplesizesexhibiteddi?erentdeformation

behaviorascomparedwiththebulk-sizedones[13–20].

Homogeneousdeformationhasbeenreportedinnano-

sizedspecimensofZr-andPd-basedBMGs[19,20]and

micro-sizedMg-basedglassywires[21].Systematicstudies

ofthesizee?ectswoulddefinitelyshednewinsightsinto

compressiveresidualstresstendtoincreasethefracturestrength,whilstopenvolumescreatedduringdrawing,particularlynano-voids,

arelikelytosoftenthewires.Initially,thesurfacechangesaredecisivefactors,butasdrawingproceeds,theopenvolumesgradually

becomedominant,yieldingamaximumfracturestrengthinthewireswithanareareductionratioof22%.Moreover,itwasfoundthat

thefracturestrengthreliabilitywasenhancedbythedrawing,whichisduenotonlytothesurfaceperfectionbutalsototheincreaseof

plasticdeformationcapability,manifestedbythedecreaseintheactivationenergyofindividualsheartransformationzones.Ourresults

implythatthedrawingtechniquecouldbeapromisingapproachtocontinuouslyproducingsmall-sizedglassywireswithimprovedover-

allproperties.

C2112009ActaMaterialiaInc.PublishedbyElsevierLtd.Allrightsreserved.

Keywords:Metallicglasses;Drawing;Tensiontest;Strengthreliability

1.Introduction

Bulkmetallicglasses(BMGs)areofcommercialinterest

Metallicglassesatsmallsamplesizeshavedemonstrated

excellentmagneticproperties—e.g.giantmagnetoimped-

ancee?ect[7,8],giantstress-impedance[9,10],largeBark-

E?ectsofdrawingonthetensilefracture

ofsmall-sized

Y.Wu,H.H.Wu,X.D.

StateKeyLaboratoryforAdvancedMetalsandMaterials,University

Received3October2009;receivedinrevisedform

Availableonline

Abstract

1359-6454/$36.00C2112009ActaMaterialiaInc.PublishedbyElsevierLtd.All

doi:10.1016/j.actamat.2009.12.043

strengthanditsreliability

glasses

G.L.Chen,Z.P.Lu



ofScienceandTechnologyBeijing,Beijing100083,China

December2009;accepted22December2009

January2010

www.elsevier.com/locate/actamat

rightsreserved.

ibrateandmeasurethestrainduringloading,andaspecial

grip(seeFig.1b)wasdesignedtoensureproperspecimen

alignment.Nano-indentationexperimentswereconducted

withaMTSDCMnano-indentationsystematvarious

loadingratesrangingfrom8C210

C03

to2C210

C01

s

C01

.Each

datapointwasanaveragefromninetestssothatartifacts

canbeminimized.Positronannihilationlifetimespectros-

copy(PALS)measurementsofthewirespecimenswere

performedusingafast–slowcoincidentmethodanda

22Napositronsourcesandwichedbetweentwo

10C210mmglassplates.Theas-castanddrawnwireswere

preparedandthenlineduponeafteranothercloselyonthe

twoglassplatesforthePALSanalysis.Stressdistribution

inducedbydrawingaftereachstepwascharacterizedby

thefiniteelementmethod(Ansyssoftware).Numericalcal-

culationsabouttheactivationenergyofsheartransforma-

tionzones(STZs)wereperformedintheMatLabprogram.

High-resolutiontransmissionelectronmicroscopy

(HRTEM)specimenswerepreparedbyionmillingunder

liquidnitrogenandtheHRTEMobservationwascon-

ductedonaJEM2010Fwithafieldemissiongun,operated

atavoltageof200kV.HRTEMimageswereobtainedwith

thesameconditionsasreportedbyLiandcoauthors

[30,31],i.e.adefocusvalueof–200nm,toensurethesame

contrasttransferfunction(CTF)fortheas-castanddrawn

wires.Imageanalysiswascarriedoutusingthesoftware

DigitalMicrograph3.5.2ofGatanInc.

Recently,variouspre-treatmentmethodshavebeenver-

ifiedtobee?ectiveinimprovingmechanicalpropertiesof

MGs.RemarkablecompressiveplasticityofseveralZr-

basedBMGshasbeenachievedbycold-rolling[22],surface

shot-peening[23],high-pressureprocessing[24],surface

mechanicalattritiontreatment[25]andotherpre-straining

methods[26].However,thesepre-treatmenttechniques

wereusuallyappliedtolarge-sizedZr-basedBMGsamples

andonlytheire?ectsoncompressivepropertieswere

reported.Drawingisaproductivewaytoproducemicrom-

eter-sizedwiresandwasverifiedtohaveremarkablee?ects

onthemagneticandmechanicalpropertiesofMGs[27,28].

Unfortunately,therelatedmechanismshavenotbeen

clearlyrevealeduntilnow.TofacilitatetheuseofMGs

assmall-sizedcomponentsandprovideacontinuouspre-

treatmenttechnique,thee?ectsofdrawingonthestructure

andtensilepropertiesofMGsmeritfurtherinvestigation.

Inthispaper,weselectaCo-basedMGasanexampleto

thoroughlyinvestigatethee?ectsofwiredrawingonthe

structureandmechanicalproperties.Specificattention

waspaidtothedrawinge?ectsonthefracturestrength

anditsreliability,andunderstandingoftheunderlying

mechanisms.

2.Experimental

Masteralloyswithanominalcompositionof

Co

69.5

Fe

4.5

Cr

1

Si

8

B

17

(inat.%)werefabricatedbyinduc-

tion-meltingamixtureofrawelementshavingapuritylevel

above99.99%.Amorphouswireswithadiameterof125lm

wereproducedbythein-rotating-waterquenchingtechnique

usingthemasteralloys[29];themasteralloysweremelted

usingargonaspurginggasinaquartztubeandthenejected

totherotatingcoolingwaterinanairatmosphere.Noseri-

ousoxidationwasobservedduetotherapidsolidification

andrelativelygoodoxidationresistanceofthechosenCo-

basedalloy.As-quenchedamorphouswiresweredrawn

throughmultiplediamonddieswith2–3lmreductionin

diameterperstepatroomtemperature.Aschematicillustra-

tionofthediamonddiesispresentedinFig.1.

Theamorphousnatureoftheas-quenchedanddrawn

wireswasexaminedbyX-raydi?raction(XRD)usingCu

K

a

radiation.Thermalpropertieswereanalyzedbydi?er-

entialscanningcalorimetry(DSC)(NetzschSTA449C)at

aheatingrateof20Kmin

C01

.Anelectronprobemicro-

analysis(EPMA)(JEOLJXA-8100)wasusedtoinspect

theelementaldistributiononcross-sectionsofthewires.

Priortomechanicaltests,theas-castanddrawnwireswere

observedbyscanningelectronmicroscopy(SEM,

SUPRAe55)toverifytheintegrityofthecircumference,

andonlythoseamorphouswireswithgoodroundness

andnolargecastingdefectsand/orotherimperfections

werechosenfortensiletesting.Theactualwirediameters

werealsomeasuredbySEM.

TensionexperimentswereconductedonanInstron5848

Y.Wuetal./ActaMaterialia

micro-testerwithagaugelengthofC2410mmandastrain

rateof2C210

C04

s

C01

.Asmallstraingaugewasusedtocal-

(a)

(b)

(1)-30ConeAngle

(2)-16-18SecondaryAngle

(3)-20-30%BearingLength

(4)-30ReliefAngle

(1)(2)(3)(4)

Fig.1.Schematicillustrationofthediamonddie(a),andthegripforthe

wiretensiletesting(b).

58(2010)2564–25762565

Inordertocharacterizelocalizedorderingoftheas-

quenchedanddrawnglassywires,aprocessnamedauto-

correlationfunction(ACF)wasappliedfortheobtained

HRTEMimages.TheACFtreatmenthasbeenconsidered

asastatisticalinterpretationofHRTEMimages,often

appliedtothequantitativeestimationofthedegreeof

orderinginnon-periodicobjects[32,33].

Tocharacterizenano-scalevoidsinourspecimens,a

methoddevelopedbyMillerandGibson[34],andlater

extendedbyLiandcoauthors[30,31],wasusedinthepres-

entstudy.Inthismethod,thekeyistoidentifydensityfluc-

tuationsonHRTEMimagesanddeterminethelocations

withstatisticallysignificantlylowerdensitiesthantheaver-

age,whichcanbereferredtoasnano-voidsaccordingto

theauthors[30,31,34].

3.Results

3.1.Drawinge?ectsonthewirestructureandlateralsurfaces

Comparisonofthelateralsurfacesbetweentheas-

quenchedanddrawnwiresisshowninFig.2a.Allofthe

as-quenchedanddrawnwiresshowagooduniformityin

shape.However,flawscanbeseenoccasionallyonthesur-

faceoftheas-quenchedwires,whichwereformedduring

thefabricationprocessinairatmosphereduetoimpurities

and/oroxides.Duringthedrawingprocess,theflawswere

removedandthedrawnwiresshowalmostflawlesssurface,

asillustratedinFig.2a.Theamorphousnatureoftheas-

2566Y.Wuetal./ActaMaterialia

quenchedanddrawnwiresisascertainedbytheX-raydif-

30405060708090100

R=82%

R=71%

R=58%

R=41%

RelativeIntensity,a.u.

2θ,degree

as-cast

R=22%

(b)

(a)

Fig.2.SEMimagesoflateralsurfacesoftheas-castanddrawn

amorphouswires(a),and(b)X-raydi?ractionpatternsoftheas-

quenchedanddrawnamorphouswires(Ristheareareductionratio).

InsetistheTEMimageanditsSAEDdi?ractionpatternofthedrawn

wireswithR=82%.

fractionandTEMimageshowninFig.2b.Onlyabroad

di?usepeakwithoutanyevidenceofcrystallinephasesis

seenforallthesamples,indicatingthatthesewiresare

mostlyamorphous.TheTEMimageandthecorrespond-

ingselected-areaelectrondi?raction(SAED)pattern

shownintheinsetofFig.2bfurtherconfirmnooccurrence

ofanycrystallizationeventeveninthewiredrawntothe

largestareareduction,i.e.R=82%.

Itwasarguedthatmechanicaldeformationcouldinflu-

encetheatomicstructuresatsmallscalessuchasstress-

inducedlocalizedordering[35,36].Tofurtherverify

whetherlocalizedordering(atthelengthscaleof1–2nm

butwithoutaclearinterfacewiththeamorphousmatrix

[37])hasoccurredduringthedrawing,theACFtechnique,

whichiscapableforaquantitativemeasurementofthe

extentoflocalizedordering,hasbeenappliedtoelectron

microscopeimageanalysis.HRTEMimagesoftheas-cast

anddrawnsampleswithR=22%and82%wereshownin

Fig.3a,c,ande,respectively.Toconductlocalizedorder-

inganalysis,theHRTEMimagesweredividedinto64sub-

images,eachofwhichhasadimensionof

1.895C21.895nm

2

.Onesub-imagewithcoordinates(1,4)

inFig.3b,whichshowssomeclearcrystal-likedi?raction

spotsinitsfastFouriertransformation(FFT)pattern

(notshown),waschosenasareferencepatterntodepict

thelocalizedorderinginthisstudy.Allthesub-images

whoseatomicarrangementsexhibitaclearerfringethan

thereferencepatternwereconsideredasbeingordered.

Statisticalanalysisofallthesub-imagesinFig.3b,d,and

frevealsthecontentsoflocalizedorderingonthescaleof

1–2nminthethreewiresare12.5%,10.9%,and14.1%,

respectively.Thereisnoobviousdi?erenceofthelocalized

orderingbetweentheas-castanddrawnwires,thusthepos-

sibleinfluenceofthelocalizedorderinginducedbydefor-

mationonthefracturestrengthcanberuledout.

3.2.Drawinge?ectsonthechemicalandmicro-mechanical

homogenization

Detailedelementalanalysesoncompositionfluctuation

fromthecircumferencetothecenteronthecross-section

oftheas-quenchedanddrawnamorphouswiresareshown

inFig.4.Fortheas-quenchedsample(Fig.4a),theconcen-

trationsofCoandBremainroughlyconstantfromthesur-

facetocenter,whilsttheFeconcentrationdecreases

graduallyfromthesurfacetoadepthofC247.5lmandthen

remainsconstantatitsnominallevelof4.5%.Incontrastto

theFedistribution,siliconisdepletedonthesurfacebut

graduallyincreasestoitsdopinglevelof8%atasimilar

depthof7.5lm.AccordingtoLiuetal.,thecompositional

inhomogeneitynearthesurfaceoftheas-quenchedamor-

phouswirecanbeattributedtotheSorete?ectinduced

bytemperaturegradientduringcooling[38].Afterfurther

drawingtoanareareductionlargerthan22%,i.e.more

than7.5lmreductioninradius,alltheconstituentele-

58(2010)2564–2576

mentsshowahomogeneouscompositiondistribution

alongtheradius,asshowninFig.4bandc.

Y.Wuetal./ActaMaterialia

Nano-indentationexperimentswerecarriedouttochar-

acterizemicro-mechanicalpropertiesofthedrawnamor-

phouswires.Fig.5illustratesthehardnessdi?erence

betweenthecenterandsurfaceofthedrawnwireswithdif-

ferentareareductionratiosmeasuredatthesameloading

rateof5C210

C02

s

C01

.Itcanbeseenthatthehardnessdi?er-

encebetweenthesurfaceandcenterdecreasesmonotoni-

Fig.3.HRTEMimagesoftheas-cast(a)anddrawnamorphouswireswith

images(b),(d),and(f).

58(2010)2564–25762567

callywiththeincreaseoftheareareductionratio,

indicatinganincreasedhomogeneityinthemicro-struc-

ture.Similarly,di?erenceoftheelasticmodulusbetween

thesurfaceandcenteralsodiminisheswithdrawing.Thus,

itcanbeinferredthatthemicro-structureinthewires

becamemoreandmorehomogeneousasthedrawingpro-

cessproceeds.

R=22%(c),andR=82%(e),respectively,andthecorrespondingACF

70

72

Co



2568Y.Wuetal./ActaMaterialia

3.3.Drawinge?ectsonthemacroscopictensilefracture

strength

Thestress–straincurvesforthewireswithR=0%,22%,

and82%areshowninFig.6a,b,andc,respectively.For

010203040506070

15

18

21

B





Distancefromsurface,μm

7.5

8.0

8.5Si



4.2

4.5

4.8

Fe





concentration,%

0102030405060

15

18

21

B







concentration,%

Distancefromsurface,μm

7.5

8.0

8.5Si





4.2

4.5

4.8

Fe



70

72

Co





(b)

(a)

-50510152025303540

15

18

21

B





concentration,%

7.5

8.0

8.5Si





4.2

4.5

4.8

Fe







70

72

Co





Distancefromsurface,μm

(c)

Fig.4.Elementaldistributionfromthesurfacetocenterfortheas-cast

amorphouswire(a),thedrawnwireswithR=22%(b),andR=82%(c).

eachsize,morethan20tensiletestswerecarriedout.All

thetensilestress–straincurvesshowatypicalnon-linear

deformationbehaviorafterapparentyielding[39,14,17],

whichmaybeduetotheformationofnano-metervoids

fromcoalescenceoffreevolume[40].Asshownin

Fig.6a,theapparentfracturestrengthoftheas-quenched

amorphouswirerangesfrom2816to3228MPa,witha

variationof412MPa(i.e.thedi?erencebetweenthemax-

imumandtheminimumstrength).Thefracturestrength

rangesfrom3430to3740MPawithavariationof

310MPaforthedrawnwirewithR=22%,whilstthewires

withthelargestareareduction(R=82%)showafracture

strengthbetween2996and3260MPa,withavariationof

264MPa.Theaveragefracturestrengthr

f

asafunction

ofthereductionratioRisshowninFig.6d.Ascanbeseen,

thefracturestrengthr

f

increaseswithRinitially,reachesa

maximumaroundR=22%,andthendecreaseswithfur-

therincreaseofR.Theoriginsofthefracturestrength

dependenceontheareareductionratiowillbediscussed

020406080

0.0

0.5

1.0

1.5

2.0



HDifference,

GPa

AreaReduction,%

10

20

30

EDifference,

GPa

Fig.5.Micro-mechanicalpropertydi?erencebetweenthesurfaceand

centeronthecross-sectionsoftheamorphouswiresasafunctionofarea

reductionratioR.

58(2010)2564–2576

lateron.

3.4.Drawinge?ectsonthetensilefracturestrength

reliability

Weibullstatisticalanalysishasbeenintroducedtochar-

acterizethestrengthreliabilityofMGs[17,19,41].TheWei-

bullequationusuallyusedtoplottheWeibullmodulusisin

thedoublelogarithmicform:

lnfln?1=e1C0P

f

TC138g?lnVtmlnrC0mlnr

0

;e1T

wheremistheWeibullmodulusthatrepresentsthe

strengthreliability,r

0

isascalingparameter,Visthevol-

umeofthetestedsample,P

f

isthefractureprobabilityat

agivenuniaxialstress,andcanbecalculatedusingthe

equation:P

f,i

=(iC00.5)/n,wherenisthetotalnumberof

thesamplestestedandiisthesamplerankinginascending

orderoffailurestress.

Fig.7ashowstheWeibullplotsinthefashionsuggested

byEq.(1)fortheas-quenchedandthedrawnwireswith

0

1000

2000

3000

4000

Stress,MPa

Strain

as-cast

2%

1000

2000

3000

4000



2%

Stress,MPa

R=22%

(a)

(b)

Y.Wuetal./ActaMaterialia

R=22%and82%.Alinearcorrelationbetweenlnln[1/

(1C0P

f

)]andlnrisobtainedforallthethreetypesof

wires,andthelinearleast-squaresfittingwithEq.(1)to

theseexperimentaldatayieldstheWeibullmodulusmas

31.7fortheas-quenchedamorphouswires,51.0and57.1

forthedrawnwireswithR=22%and82%,respectively.

TheWeibullmodulus,m,actuallyreflectsreliabilityof

thetestedsamples,andahighermvaluerepresentsanar-

rowerdispersionofthefracturestrengthandthushigher

reliability.Themvaluefortheas-quenchedamorphous

wiresislargerthanthatofbrittleceramics,similartothat

ofFe-basedBMGs[42]andMg-basedBMGs[43],but

smallerthanthatofZr-basedBMGs[44].Itisinteresting

topointoutthatadistinctincreaseofthemvalueoccurs

withdrawing,asdemonstratedinFig.7b,implyingthat

thewiredrawingprocesscouldenhancethereliabilityof

themacroscopictensilestrength.

4.Discussion

4.1.originsforthefracturestrengthdependenceonthewire

drawingprocess

Aselaboratedearlier,noapparentlocalizedordering

andcrystallizationhasoccurredduringthewiredrawing

process,butdefectconcentrationeitheronthesurfaceor

0



Strain

Fig.6.Tensilestress–straincurvesfortheamorphouswireswithdi?erent

Dependenceofthefracturestrengthoftheas-quenchedanddrawnamorphou

0

1000

2000

3000

Stress,MPa

Strain

2%

R=82%

(c)

(d)

3000

3300

3600



σ

f



(MPa)

58(2010)2564–25762569

insidethewires,freevolumecontentsandsurfaceresidual

stressofMGwirescouldbechanged,whichallinfluence

thefinalfracturestrength.Normally,fewerdefectsand

largecompressivesurfaceresidualstressarelikelyto

increasethefracturestrengthwhilemorefreevolumetends

tosoftenMGwires.

4.1.1.E?ectsofsurfacestatesonthefracturestrength

First,ithasbeenverifiedthatsurfacedefectshavesignif-

icantinfluencesontheplasticityandstrengthofMGs;sur-

facedefectswitharadiusassmallas1nmcouldtrigger

rapidfailure[45].Fig.2ashowsrandomlydistributedsur-

facedefectsonthevirginwireresultingfromthein-rotat-

ing-waterquenchingprocess,whichcouldinitiatecracks

undertensionandthusreducethetensilestrengthofthe

wires.Afterthesurfaceflawswereremovedbywiredraw-

ing,theaveragefracturestrengthshouldbeincreased.In

addition,itiswellknownthatthefractureofbrittleengi-

neeringmaterialsdependsonthestressnecessarytoprop-

agateacritical-sized“weakestlink”anywhereinthe

samples.Asthedrawingprocessproceeds,theinhomoge-

neouselementaldistributionhasbeeneliminated(Fig.4),

andthedi?erenceofmicro-mechanicalpropertiesbetween

thesurfaceandcenterisdiminished(Fig.5),indicatingthat

“weakestlinks”becamefewerinthesamples[20],andthe

appliedstresscanbedistributedmorehomogeneouslywith

020406080



AreaReduction,%

areareductions:(a)R=0(as-cast),(b)R=22%,and(c)R=82%.(d)

swiresontheareareductionratioR.



(a)

7.98.08.18.28.3

-6

-4

-2

0

2

R=82%

m=57.1

R=22%

m=51.0

lnln(1/1-P

i

)

ln[σ

f

(MPa)]

as-quenced

m=31.7

40

50

60

(b)

2570Y.Wuetal./ActaMaterialia

fewerstressconcentrationsites,whichcanalsoresultina

higherfracturestrength.

Second,surfaceresidualstresschangecouldbeanother

factorwhichaltersthefracturestrength.Toinvestigate

e?ectsoftheresidualstressofthedrawnamorphouswires

aftereachdrawingstep,afiniteelementanalysis(FEA)was

conductedinanAnsyssoftware.Fig.8ashowstheconsti-

tutedmodelsystemforthedrawingprocess,andFig.8b

showsarepresentativeVonMisesstressdistributionon

thecross-sectionofthedrawnamorphouswire.Itiseasily

seenthattheamorphouswireexperiencedloadingand

unloadingofacompressivestressalongtheradiusdirec-

tionduringeachdrawingstep.Whentheamorphouswire

wasdrawnoutofthediamonddie,residualstresseswere

leftupontheunloadingofthecompressivestressalong

theradiusdirection.Forsimplicity,theresidualstresson

thesurfaceoftheas-castamorphouswireswastakento

bezero,andthenthechangeofthesurfaceresidualstress

asafunctionoftheareareductionratioisinafashion

showninFig.8c.Thecompressivesurfaceresidualstress

increasesinitiallyandreachesamaximumvalueabout

40MPaaroundR=25%,decreaseswithfurtherdrawing,

andeventuallyturnsintotensileresidualstressafter60%

areareduction.Ithasbeenpointedoutthatthecompres-

020406080

30

Weibullmodulus

AreaReduction,%

Fig.7.Weibullplotsofthetensilefracturestrengthfortheas-castand

drawnwireswithR=22%and82%(a),and(b)theWeibullmodulusasa

functionoftheareareductionratiofortheas-castanddrawnamorphous

wires.

sivesurfaceresidualstressisbeneficialwhilethetensile

residualstressisdetrimentalfortheincreaseofhardness

andstrength[11,46,47].Thecompressiveresidualstress

onthesurfacehasasimilartrendtothatofthefracture

strengthshowninFig.6d,suggestingthatitcouldbea

dominantfactora?ectingthefracturebehaviorofthe

drawnwires.

4.1.2.Evolutionofopenvolumesduringdrawing

Itisalsooftenconsideredthatmechanicalpropertiesof

BMGsarecloselyassociatedwithflowdefectswhichhavea

goodcorrelationwithenthalpychangebeforeglasstransi-

tioninDSCmeasurements[48].Toassesstheinfluenceof

drawingonflowdefectsevolution,DSCmeasurements

werecarriedoutforamorphouswireswithR=0%,22%,

and82%.AsshowninFig.9,allwiresexhibitsimilarther-

malbehaviorwithnosignofanyglasstransitionprocess

butaverysimilarcrystallizationevent.Thedisappearance

ofglasstransitioneventisdueprobablytothefactthatit

occurredtoocloselywiththecrystallizationandwascov-

eredbythestrongsignalfromthelaterreaction[49].How-

ever,theexothermicsignalsbeforethecrystallizationin

DSCcurvesaredi?erentamongthesesamples,asclearly

indicatedinFig.9b.Theexothermicsignalsusuallycorre-

spondtotheenthalpyreleaseduetostructurerelaxationof

theamorphousstructure,whichisproportionaltothe

amountofexcessflowdefectscontainedintheamorphous

alloy[48].Thereisonlynegligibleexothermicsignalforthe

as-castwireandaslightincreaseforthedrawnwirewith

R=22%,buttheheavilydrawnwirewithR=82%shows

anobviousexothermicenthalpyofabout3.3Jg

C01

,indicat-

ingthatconsiderableamountofflowdefectshavebeencre-

atedandstoredinthiswires.Thecreatedflowdefectslead

toalessdenselypackedstructureandweakera?nity

betweenatoms,andthereforeadecreaseinhardness,elas-

ticmodulus,andfracturestrength.

Ithasbeenverifiedthatsizesof“openvolumedefects”

inBMGsrangedfromthesubatomiclengthscaleto

nano-meterscale.Floresetal.havecategorizedtheseopen

spacesintothreecategories[50,51],i.e.interstitialholes,

flowdefects,andnano-metervoids.Thethreetypesof

theopenvolumesplayimportantrolesindeformation

behaviorsofBMGs[40].Toexploreevolutionoftheopen

volumesduringdrawing,wefirstadoptedthequantitative

HRTEManalysismethoddevelopedbyMillerandGibson

[34]andlaterextendedbyLietal.[30]andJiangandAtz-

mon[31],toidentifynano-meterscaledefectsintheas-cast

anddrawnamorphouswires.Fig.10a–cshowsthecon-

vertedimagescorrespondingtoFig.8a,c,ande,respec-

tively.Thesmalldarkspotsintheimagesrepresentnano-

metervoidsassuggestedbyMillerandcoauthors

[30,31,34].Byanalyzingthecontrastfromtheseimages

usingcomputersoftware,theareafractionofthenano-

voidsshowninFig.10isestimatedtobe0.49%,0.58%

and1.29%fortheas-castanddrawnwireswithR=22%

58(2010)2564–2576

and82%,respectively.Apparently,thereisnosignificant

changeinthenumberofnano-voidsduringtheinitial

(a)

Y.Wuetal./ActaMaterialia

drawingstage(R=22%),whilstanappreciableincrease

canbeobservedforthewireheavilydrawntoR=82%.

Tofurthercharacterizetheevolutionoftheopenvolumes

aftertheheavydrawing,PALSmeasurementswerecon-

ductedfortheas-castandheavilydrawnamorphouswires

withR=82%,andthecorrespondingresultsaregivenin

(b)

(c)

0204

-20

0

20

40

AreaReduction

Compressiveresidualstress,MPa

Fig.8.(a)Finiteelementmodelusedfornumericalcalculation,(b)VonMises

drawnamorphouswires,and(c)variationofthesurfaceresidualstresswiththe

58(2010)2564–25762571

Fig.11.Followingdetailedexplanationso?eredbyFlores

etal.[50],theshortlifetimes

1

ands

2

areattributedtoposi-

tronannihilationininterstitialholesofthedenselypacked

bulkandflowdefectsofthealloy,respectively,whilstthelon-

gestlifetimes

3

isassociatedwiththeannihilationinnano-

metervoids.Asshown,thethreelifetimecomponents

06080

-FEAsimulation

,%

ο

stressdistributionafterdrawingtoR=22%asarepresentationforthe

areareductionratioR.Thelineistoguidetheeyes.

4006008001000

R=82%

R=22%

as-cast

exothermic,a.u.

Temperature,K

(a)

(b)

2572Y.Wuetal./ActaMaterialia

increaseafterheavydrawing,indicatingthatactualsizesof

allthetypesoftheopenvolumedefectsaredilated,which

isincontrasttowhathasbeenobservedinrollingofmetallic

glasses[50].Thenormalizedintensitiesareindicativeofthe

relativeconcentrationofeachpositrontrap.Afterheavy

drawing,thes

1

intensitycorrespondingtothenumberof

interstitialholesandthes

2

intensityassociatedwiththecon-

centrationofflowdefectsslightlydecrease,whilethes

3

inten-

sitycorrespondingtothenumberofnano-metervoidsis

surprisinglyincreasedfrom1.3%to6.8%.Therefore,itseems

thatsomeofflowdefectsconglomeratetogetherduringthe

heavilydrawingandformthenano-metervoids.Ourpresent

resultssuggestthatthereexisttwocompetingmechanisms

fortheopenvolumeevolutionduringtheheavydrawing:

freevolumecreationthroughdeformationandfreevolume

coalescenceandthenano-voidformation,whichisconsis-

tentwithpreviousreports[52].

Therefore,onecanspeculatedthatthetensilefracture

strengthofthedrawnwiresisdeterminedbythecom-

binede?ectsoftheseveralfactors.Thefirsttypeoffac-

torsisbeneficialfortheincreaseofthefracture

strength,includingremovalofsurfaceflaws,surface

600700800

R=82%

R=22%

as-cast

exothermic,a.u.

Temperature,K

Fig.9.DSCcurvesoftheas-castanddrawnwireswithR=22%and82%

(a),and(b)istheblow-upcorrespondingtothecircledareain(a).

58(2010)2564–2576

homogenizationandthegenerationofthecompressive

residualstresses.Thesecondtypeoffactorstendsto

softenthewiresbecauseofalooseratomicpackingstruc-

tureand/orweakeratomica?nityresultingfromthefree

volumeandnano-voidscreatedduringmultiple-steps

drawing.DuringtheinitialdrawingtoaroundR=22%,

thefirsttypeoffactorsisdecisive,leadingtotheincrease

inthefracturestrength.Asthedrawingproceeds,the

compressiveresidualstressonthesurfacestartsto

decreaseandmoreandmoreopenvolumeswerecreated,

theincreaseofthetotalopenvolumesbecamedominant,

leadingtothedecreaseinthefracturestrength.

Fig.10.Fourier-filtered,thresholdfilteredandinvertedimagesthat

correspondtoFig.8(a),(b),and(c),respectively.Thedarkspotsrepresent

nano-voids.

0.0

0.7

1.4

2.1



τ3τ2

Lifetime,ns

Defecttype

as-cast

R=82%

τ1

80

(a)

Y.Wuetal./ActaMaterialia

4.2.Mechanismsfortheenhancedfracturestrength

reliability

4.2.1.Surfaceperfection

Asmentionedearlier,fractureofbrittlematerialsusu-

allyinitiatesfromthe“weakestposition”anywhereinthe

material.Theweakpositionssuchaschemicalimpurities

andsurfacedefectscouldbethestressconcentrationsites

andmaytriggerrapidfailureofBMGsundertension

[45].Inotherwords,therandomlydistributedsurfaceflaws

andthemacro-scalechemicalandmechanicalinhomogene-

ityoftheas-castamorphouswireswouldincreaseuncer-

taintyofthefracturestrengthandthereforereducethe

Weibullmodulusoftheas-castwires.Whenthesurface

flawsandthemacro-scaleinhomogeneitywereremoved

bysubsequentdrawing,thetensilereliabilityisincreased

consequentlyforthedrawnamorphouswires.Neverthe-

less,itisworthnotingthattheWeibullmoduluskeeps

increasingafterthesurfacehomogenizationandremoval

ofsurfaceflaws(i.e.R>22%),asshowninFig.7b,which

0

20

40

60





Intensity,%

as-cast

R=82%

Ι3Ι2

Defectstype

Ι1

(b)

Fig.11.Positronannihilationspectrumoftheas-castanddrawnwires

withR=82%.Lifetimecomponents(a)thatreflectsizes,andintensities

(b)thatrepresenttherelativeconcentrationofthethreetypesoftheopen

volumes.

impliesthattherearesomeotherfactorsa?ectingthe

strengthreliabilityduringdrawing.

4.2.2.Activationenergyofsheartransformationzones

PlasticdeformationofBMGsatroomtemperatureis

usuallyknowntobeachievedbysheardeformation.Local

eventsofcooperativeshearingofatomicclusterstermedas

STZs[53]arethebasicunitoftheplasticdeformationand

mechanicalbehaviorofBMGs,andmacroscopicdeforma-

tionbehaviorofBMGsisintrinsicallydependentonthe

actualactivationenergyofSTZs.Basedonmechanical

instabilityofindividualSTZs,aquantitativelinkbetween

themicro-plasticinstabilityandmacroscopicdeformation

ofMGshasbeenproposed[54].Inthisapproach,metallic

glasseswereregardedasanensembleofnumerousSTZ

embryoswhichcanbepossiblyactivatedtotakeplastic

sheareventswithfiniteactivationenergy.Duetothelack

ofperiodicstructureinMGs,therandomenergymodel

isadoptedwhichdescribestheenergylevelsinadisordered

systemasindependentrandomvariables.Thepopulation

ofSTZswithdi?erentactivationenergyvfortheoccur-

renceofplasticinstabilityisassumedtofollowthequasi-

Gaussiandistribution[55]:

pevT?

p

0

expC0

evC0VT

2R

2

hi

evP0T

0ev<0T

()

;e2T

whereVistheapparentaverageactivationenergyofthe

sample,Risthestandarddeviationofactivationenergies,

andp

0

isapre-factor.Basedontheanalysisofstrainen-

ergydensityandtheClausius–Duheminequality,a

stress–strainrelationshipcanbeobtainedas:

retT?Ee1C0/etTTfeeetTC0e

p

etTTC0

Z

1

0

pevTCevTdv

Z

t

0

C2exp?C0CevTetC0sTC138eeesTC0e

p

esTTdsg;e3T

whereretT;eetTande

p

etTarethestress,totalstrainandplas-

ticstrainatadeformationtimet,respectively.u(t)isa

functionusedtodescribethestrainraterelationshipbe-

tweentheplasticandtotaldeformation.C(v)istheactiva-

tionratefunctionofSTZs,andsisarandomtimethat

se[0,t].FromEq.(3),thenormalizedstressduringstress

relaxationcanbeobtainedas:

C22retT?1C0

Z

1

0

pevT?1C0expeC0CevTtTC138dv;e4T

whereC22retT?

retT

r

0

,andr

0

isthestressatthebeginningofthe

relaxation.Henceimportantparametersinthisapproach

canbeestimatedbyfittingtheexperimentaldatawith

Eq.(4).SubstitutingtheseparametersintoEq.(2),distribu-

tionoftheactivationenergyoftheSTZsinthesamplecan

thenbeestimated.Thedetailedtheoreticalanalysisand

mathematicoperationofEq.(3)canbefoundinourearlier

paper[54].

Stressrelaxationexperimentswereconductedatapreset

58(2010)2564–25762573

strainof2.5%fortheas-castanddrawnamorphouswires

withR=22%and82%.Thecorrespondingexperimental

paredwiththeas-castone.Thewiresdrawnmoreheavily

containamuchhigherproportionofSTZsthatcanbeeas-

ilyactivatedforplasticdeformationincomparisonwiththe

as-castandlightlydrawnones.Thisobservationimplies

thatthewiredrawingprocessreducedtheenergybarrier

58(2010)2564–2576

0.98

1.00

??experiment

simulation

(a)

2574Y.Wuetal./ActaMaterialia

dataandtheirfittingwithEq.(4)areshowninFig.12aby

solidlinesandtrianglesymbols,respectively.Theresultant

distributioncurvesoftheactivationenergyfortheSTZsin

allthesewiresamplesareshowninFig.12b.Clearly,the

drawnamorphouswirereachestheequilibriumstatemuch

slowerduringtherelaxationtestsandalsoshowsalower

andnarrowerdistributionoftheactivationenergyascom-

forlocalizedshearingeventsandthereforeincreasedthe

plasticdeformationcapabilityofthedrawnamorphous

wires.Theaverageactivationenergyobtainedforeach

individualspecimenisillustratedinTable1.

06001200

0.92

0.94

0.96

R=82%

R=22%

as-cast

σ/

σ

0

time,s

0123

0.000

0.005

0.010

0.015





Possibility

ActivationEnergy,eV

as-cast

R=22%

R=82%

(b)

0.010.1

8

10

12

14

as-cast

R=22%

R=82%

Hardness,GPa

StrainRate,s

-1

m

(c)

Fig.12.(a)Stressrelaxationresponses(solidline)andfittingresults

(trianglesymbol)withEq.(4oftheas-castanddrawnamorphouswires

withR=22%and82%atapresetstrainof2.5%,(b)thederivedquasi-

Gaussiandistributionoftheactivationenergyinthesespecimens,and(c)

dependenceofmicro-hardnessonstrainratesatthemiddleofthecross-

sectionoftheas-castanddrawnwireswithR=22%and82%.

TofurtherinvestigatetheSTZactivationenergyduring

drawing,arecentlydevelopedexperimentalmethod[56,57]

basedonthecooperativeshearmodel[58]wasalsoadopted

tocharacterizetheenergybarrieroftheSTZsintheas-cast

anddrawnamorphouswires.Inthismethod,thekeyisto

determinestrain-ratesensitivity,m,fromtherelationship

betweenstrainrateandmicro-hardnessmeasuredby

meansofnano-indentations.Fig.12cshowsthehardness

valueversusstrainratefortheas-castanddrawnwires

withareareductionratioR=22%and82%.Thestrain-

ratesensitivitycorrespondingtoeachtypeofwireswas

thendeterminedbytheslopeofthelinearregressionline.

Table1alsosummarizestheenergybarriersofSTZsfor

eachwiremeasuredbythenano-indentationmethodin

comparisonwiththeaverageactivationenergydetermined

byourmodeldiscussedearlier.Similartotheresults

obtainedfromthecurrentmethod,theactivationenergy

ofSTZsdeterminedfromthenano-indentationmethod

alsoshowsadecreasetrendwithdrawing,confirmingthat

thewiredrawingprocesscouldenhanceplasticshearing

capability.Itistobenoticedthattheaverageactivation

energyobtainedbyourmodelisinthesameorderbut

somewhatlargerthanthatdeterminedbymolecular

dynamicsimulationbasedonthetheoryofpotentialenergy

landscape[59]andthenano-indentationmethodbasedon

thecooperativeshearmodel.Thisdiscrepancymaybedue

mainlytothefactthatmicro-plasticeventsizesmayscale

withtheoperationalvolume[60–62]involvedinthese

methods.Molecularsimulationisusuallylimitedtorather

simple,one-ortwo-componentatomicsystems,andtypical

indentationsizeisnomorethanseveralmicrons,whichis

farsmallerthanthatinourstressrelaxationmeasurements.

TheaboveanalysisoftheSTZactivationenergyofdif-

ferentwiresverifiesthattheincreaseofthestrengthreli-

abilityisalsoduetotheenhancedplasticdeformation

capabilityresultingfromthedrawingprocess.Decrease

oftheSTZactivationenergysuggeststhattheatomsor

Table1

ActivationenergyofSTZsoftheas-castanddrawnwiresdeterminedfrom

thestressrelaxationandnano-indentationmethods.

SampleAveragedactivation

energyofSTZs

a

(eV)

Strain-rate

sensitivity

STZ

volume

(A

?

3

)

STZenergy

barrier(eV)

As-cast0.750.04468060.57

R=22%0.730.04767930.56

R=82%0.630.07046130.44

a

Fromthepresentmodel.

58(2010)2564–25762575

clustersinthedrawnwirescanbemoreeasilyreshu?ed,

i.e.plasticdeformationcapabilityofthedrawnwires

enhanced,whichisequivalenttoincreasingtheflaw/dam-

agetoleranceandthengivesrisetotheincreaseofthefrac-

turestrengthreliability.Theaforementionedresultsalso

confirmthatthereexistsacorrelationbetweentheplastic

deformationabilityandthefracturestrengthreliability,

whichisusefulfordesigningBMGswithgoodengineering

propertiescombininggoodstrengthreliabilityandlarge

plasticity.

Therefore,itcanbeconcludedthatthefracturestrength

reliabilityisalsoa?ectedbytwoaspects:oneisthesurface

perfectionincludingremovalofthesurfaceflaws,the

macro-scalechemicalandmechanicalhomogenization,

andtheotheristheenhancementoftheplasticdeformation

ability,whichismanifestedbythedecreaseintheSTZacti-

vationenergyintheheavilydrawnwires.

5.Conclusions

Basedonthesystematicstudyofdrawinge?ectsonthe

fracturestrengthandthestrengthreliabilityofthe

Co

69.5

Fe

4.5

Cr

1

Si

8

B

17

amorphouswire,coupledwithcareful

investigationontherelatedmicro-structureandsurface

characteristics,thefollowingconclusionsaredrawn:

1.TheCo-basedwirescanbedrawnsmoothlywithout

appreciablelocalizedorderingandnano-crystallization.

Thedrawingprocessisane?ectivepre-treatmentto

improveboththefracturestrengthanditsreliability,

whichmayhavegreatimplicationsforengineering

applicationsofBMGsatsmallscales.

2.Thefracturestrengthdramaticallyincreasesduringthe

initialdrawingtoanareareductionratioofRC2522%,

andthendecreasesduringfurtherdrawing.Thisis

relatedtotwoaspects.Oneisthesurfacechange,caused

by,forexample,theremovalofsurfaceflaws,surface

homogenization,andcreationofcompressivesurface

residualstress.Thesesurfacechangeshelptoincrease

thefracturestrengthduringtheinitialdrawingstage.

Theotheriscreationofopenvolumes,inparticularfor-

mationofnano-voids,whichleadstoalooseratomic

packingstructureandtendstosoftenthewires.The

increaseintheopenvolumesbecameadominantfactor

duringfurtherdrawingwithR>22%andreducesthe

fracturestrength.

3.Thefracturestrengthreliability,reflectedbytheWeibull

modulus,increasesasthedrawingprocessproceeds.

Thisisduetotwofacts.Oneistheimprovementin

thesurface,causedby,forexample,removalofsurface

defectsandreductioninlocalizedstressconcentration

sitesduetochemicalandmicroscopicmechanical

homogenization,whichreducestheprobabilityoffind-

ingafertilesiteforfracture,andthereforeincreases

thefracturestrengthreliability.Theotheristheincrease

Y.Wuetal./ActaMaterialia

intheplasticdeformationcapability,manifestedbythe

decreaseintheactivationenergyofindividualSTZs,

whichincreasesthecapabilityofflaw/defectstolerance

andtheresultantfracturestrengthreliability.

Acknowledgements

ThefinancialsupportfromNationalNaturalScience

FoundationofChina(GrantNos.50725104,50841023),

the973Program(No.2007CB613903)andtheNational

HighTechnologyResearchandDevelopmentprogramof

China(No.2009AA03Z113)isgratefullyacknowledged.

References

[1]JohnsonWL.MRSBull1999;24:42.

[2]AshbyMF,GreerAL.ScriptaMater2006;54:321.

[3]SchuhCA,HufnagelTC,RamamurtyU.ActaMater2007;55:4067.

[4]KumarG,TangHX,SchroersJ.Nature2009;457:868.

[5]GreerAL.MaterToday2009;12:14.

[6]FukushigeT,HataS.JMicroelectromechSyst2005;14:243.

[7]ChiriacH,OvariTA.ProgMaterSci1996;40:333.

[8]VazquezM.JMagnMagnMater2001;226:693.

[9]LiDR,LuZC,ZhouSX.SensActuators,A2003;109:68.

[10]HuJF,QinHW,ChenJ,ZhangYZ.JMagnMagnMater

2003;266:290.

[11]GonzalezJ,MurilloN,LarinV,BarandiaranJM,VazquezM,

HernandoA.SensActuators,A1997;59:97.

[12]DimitropoulosPD,AvaritsiotisJN.SensActuators,A2001;94:165.

[13]MasumotoT,MaddinR.ActaMetall1971;19:725.

[14]TakayamaS.ScriptaMetall1979;13:463.

[15]InoueA,MasumotoY,YanoN,KawashimaA,HashimotoK,

MasumotoT.JMaterSci1985;20:97.

[16]HagiwaraM,InoueA,MasumotoT.MaterSciEng1982;54:197.

[17]LeamyHJ,ChenHS,WangTT.MetallTrans1972;3:699.

[18]OlofinjanaAO,DaviesHA.MaterSciEngA1994;186:143.

[19]GuoH,YanPF,WangYB,TanJ,ZhangZF,SuiML,etal.Nat

Mater2007;6:735.

[20]VolkertCA,DonohueA,SpaepenF.JApplPhys2008;103:083539.

[21]ZbergB,ArataER,UggowitzerPJ,Lo?erJF.ActaMater

2009;57:3223.

[22]YokoyamaY,YamanoK,FukauraK,SunadaH,InoueA.Mater

TransJIM2001;42:623.

[23]ZhangY,WangWH,GreerAL.NatMater2006;5:857.

[24]YuP,BaiHY,ZhaoJG,JinCQ,WangWH.ApplPhysLett

2007;90:051906.

[25]FanJT,ChenAY,FuMW,LuJ.ScriptaMater2009;61:608.

[26]HeL,ZhongMB,HanZH,ZhaoQ,JiangF,SunJ.MaterSciEngA

2008;496:285.

[27]InoueA,YanoN,ChenHS,HagiwaraM,MasumotoT.MaterSci

Eng1986;77:45.

[28]ChenHS,SherwoodRC,JinS,ChiGC,InoueA,MasumotoT,etal.

JApplPhys1984;55:1796.

[29]HagiwaraM,InoueA,MasumotoT.MetallTransA1982;13:373.

[30]LiJ,WangZL,HufnagelTC.PhysRevB2002;65:144201.

[31]JiangWH,AtzmonM.ActaMater2003;51:4095.

[32]FanGY,CowleyJM.Ultramicroscopy1985;17:345.

[33]LiangJM,ChenLJ.ApplPhysLett1994;64:1224.

[34]MillerPD,GibsonJM.Ultramicroscopy1998;74:221.

[35]ChenMW,InoueA,ZhangW,SakuraiT.PhysRevLett

2006;96:245502.

[36]ChenH,HeY,ShifletGJ,PoonSJ.Nature1994;367:541.

[37]LiuXJ,ChenGL,HouHY,HuiX,YaoKF,LuZP,etal.Acta

Mater2008;56:2760.

[38]LiuY,LiuCT,GeorgeEP,WangXZ.ApplPhysLett

2006;89:051919.

[39]HagiwaraM,InoueA,MasumotoT.MetallTrans1982;13A:373.

[40]WuY,LiHX,ChenGL,HuiX,WangBY,LuZP.ScriptaMater

2009;61:564.

[41]WeibullWJ.JApplMech1951;18:293.

[42]WuY,LiHX,JiaoZB,GaoJE,LuZP.PhiloMagLettsubmittedfor

publication.

[43]ZhaoYY,MaE,XuJ.ScriptaMater2008;58:496.

[44]WuWF,LiY,SchuhCA.PhiloMagLett2008;88:71.

[45]LiQK,LiM.ApplPhysLett2005;87:031910.

[46]SureshS,GiannakopoulosAE.ActaMater1998;46:5755.

[47]CarlssonS,LarssonPL.ActaMater2001;49:2179.

[48]SlipenyukA,EckertJ.ScriptaMater2004;50:39.

[49]LuZP,LiuCT,LiY.Intermetallics2004;12:869.

[50]FloresKM,ShererE,BharathulaA,ChenH,JeanYC.ActaMater

2007;55:3403.

[51]FloresKM,SuhD,DauskardtRH,Asoka-KumarP,SternePA,

HowellRH.JMaterRes2002;17:1153.

[52]TechBB.Master’sthesis,OhioStateUniversity;2004.

[53]ArgonAS.ActaMetall1979;27:47.

[54]WuY,ChenGL,HuiX,LiuCT,LinY,ShangXC,etal.JApplPhys

2009;106:083512.

[55]DerridaB.PhysRevLett1980;45:79.

[56]PanD,InoueA,SakuraiT,ChenMW.PNAS2008;105:14769.

[57]Putho?JB,StoneDS,CaoHB,VoylesPM.MaterResSocSymp

Proc2008;1048:Z03–8.

[58]JohnsonWL,SamwerK.PhysRevLett2005;95:195501.

[59]MayrSG.PhysRevLett2006;97:195501.

[60]MaloneyC,Lema??treA.PhysRevLett2004;93:016001.

[61]BaileyNP,Schi?tzJ,Lema??treA,JacobsenKW.PhysRevLett

2007;98:095501.

[62]RodneyD,SchuhCA.PhysRevLett2009;102:235503.

2576Y.Wuetal./ActaMaterialia58(2010)2564–2576

献花(0)
+1
(本文系whh1235068首藏)