配色: 字号:
压轴题目突破练——函数与导数
2015-09-24 | 阅:  转:  |  分享 
  
B组专项能力提升23451B组专项能力提升23451B组专项能力提升23451B组专项能力提升23451数学北(理)第三章导数及其应用压轴题目突破练——函数与导数23456789110A组专项基础训练A组专项基础训练23456789110AA组专项基础训练23456789110CA组专项基础训练23456789110AA组专项基础训练23456789110A组专项基础训练B23456789110A组专项基础训练23456789110A组专项基础训练23456789110A组专项基础训练23456789110A组专项基础训练23456789110A组专项基础训练234567891102∶1A组专项基础训练23456789110A组专项基础训练23456789110A组专项基础训练23456789110A组专项基础训练23456789110A组专项基础训练23456789110A组专项基础训练23456789110B组专项能力提升23451B组专项能力提升23451CB组专项能力提升23451B组专项能力提升23451B组专项能力提升23451DB组专项能力提升2345121B组专项能力提升23451B组专项能力提升23451[1,+∞)B组专项能力提升234511.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是()

A.3x+y+2=0B.3x-y+2=0

C.x+3y+2=0D.x-3y-2=0













































2.设f(x),g(x)在[a,b]上可导,且f′(x)>g′(x),则当a
A.f(x)>g(x)

B.f(x)
C.f(x)+g(a)>g(x)+f(a)

D.f(x)+g(b)>g(x)+f(b)













































3.三次函数f(x)=mx3-x在(-∞,+∞)上是减函数,则m的取值范围是()

A.m<0B.m<1

C.m≤0D.m≤1













































5.函数f(x)在定义域内的图像如图所示,记f(x)的导函数为f′(x),则不等式f′(x)≤0的解集为()



A.∪[1,2)

B.∪

C.∪[2,3)

D.∪∪

6.设函数f(x)=x3+·x2+tanθ,其中θ∈,则导数f′(1)的取值范围是________.

8.把一个周长为12cm的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为________.













































10.已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.

(1)求f(x)的解析式;

(2)是否存在自然数m,使得方程f(x)+=0在区间(m,m+1)内有且只有两个不等的实数根?若存在,求出所有m的值;若不存在,请说明理由.













































4.点P是曲线x2-y-2ln=0上任意一点,则点P到直线4x+4y+1=0的最短距离是()

A.(1-ln2)B.(1+ln2)

C.D.(1+ln2)













































7.(2012·江西)计算定积分?(x2+sinx)dx=________.













































9.(2013·重庆)设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).

(1)确定a的值;

(2)求函数f(x)的单调区间与极值.













































则由切线与直线2x-6y+1=0垂直,

解析设切点的坐标为(x0,x+3x-1),

可得切线的斜率为-3,













































又f′(x)=3x2+6x,故3x+6x0=-3,













































解得x0=-1,于是切点坐标为(-1,1),













































从而得切线的方程为3x+y+2=0.













































解析∵f′(x)-g′(x)>0,∴(f(x)-g(x))′>0,













































∴f(x)-g(x)在[a,b]上是增函数,













































∴当af(a)-g(a),













































∴f(x)+g(a)>g(x)+f(a).













































解析f′(x)=3mx2-1,依题可得m<0.













































解析将直线4x+4y+1=0平移后得直线l:4x+4y+b=0,使直线l与曲线切于点P(x0,y0),













































由x2-y-2ln=0得y′=2x-,













































∴直线l的斜率k=2x0-=-1













































解析∵f′(x)=sinθ·x2+cosθ·x,













































∴f′(1)=sinθ+cosθ=2sin.













































∵θ∈,∴θ+∈,













































∴sin∈.∴f′(1)∈[,2].













































解析∵′=x2+sinx,



























































































解析设圆柱高为x,底面半径为r,











































则r=,圆柱体积V=π2x=(x3-12x2+36x)(0












































V′=(x-2)(x-6).













































解(1)因为f(x)=a(x-5)2+6lnx,













































故f′(x)=2a(x-5)+.













































令x=1,得f(1)=16a,f′(1)=6-8a,













































?x0=或x0=-1(舍去),













































4.点P是曲线x2-y-2ln=0上任意一点,则点P到直线4x+4y+1=0的最短距离是()

A.(1-ln2)B.(1+ln2)

C.D.(1+ln2)













































∴P,













































所求的最短距离即为点P到直线4x+4y+1=0的距离d==(1+ln2).













































解析不等式f′(x)≤0的解集即为函数f(x)的单调递减区间,从图像中可以看出函数f(x)在和[2,3)上是单调递减的,所以不等式f′(x)≤0的解集为∪[2,3),答案选C.

答案C

当x=2时,V最大.













































此时底面周长为6-x=4,4∶2=2∶1.













































所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),













































由点(0,6)在切线上可得6-16a=8a-6,故a=.













































9.(2013·重庆)设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).

(1)确定a的值;

(2)求函数f(x)的单调区间与极值.













































(2)由(1)知,f(x)=(x-5)2+6lnx(x>0),













































f′(x)=x-5+=.













































令f′(x)=0,解得x1=2,x2=3.













































当03时,f′(x)>0,













































故f(x)在(0,2),(3,+∞)上为增函数;













































9.(2013·重庆)设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).

(1)确定a的值;

(2)求函数f(x)的单调区间与极值.













































当2












































由此可知,f(x)在x=2处取得极大值f(2)=+6ln2,











































在x=3处取得极小值f(3)=2+6ln3.













































解(1)∵f(x)是二次函数,且f(x)<0的解集是(0,5),

当x∈时,h′(x)<0,h(x)是减函数;

∴可设f(x)=ax(x-5)(a>0).

∴f(x)在区间[-1,4]上的最大值是f(-1)=6a.

由已知,得6a=12,∴a=2,

∴f(x)=2x(x-5)=2x2-10x(x∈R).

(2)方程f(x)+=0等价于方程2x3-10x2+37=0

设h(x)=2x3-10x2+37,

则h′(x)=6x2-20x=2x(3x-10).













































当x∈时,h′(x)>0,h(x)是增函数.

∵h(3)=1>0,h=-<0,h(4)=5>0,

∴方程h(x)=0在区间,内分别有唯一实数根,而在区间(0,3),(4,+∞)内没有实数根,

∴存在唯一的自然数m=3,使得方程f(x)+=0在区间(m,m+1)内有且只有两个不等的实数根.













































1.已知函数f(x)(x∈R)的图像上任一点(x0,y0)处的切线方程为y-y0=(x0-2)(x-1)(x-x0),那么函数f(x)的单调减区间是()

A.[-1,+) B.(-,2]

C.(-∞,-1),(1,2)D.[2,+∞)

解析根据函数f(x)(x∈R)的图像上任一点(x0,y0)处的切线方程为y-y0=(x0-2)(x-1)(x-x0),2.给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称函数f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′.若f″(x)<0在D上恒成立,则称函数f(x)在D上为凸函数,以下四个函数在上不是凸函数的是()

A.f(x)=sinx+cosxB.f(x)=lnx-2x

C.f(x)=-x3+2x-1D.f(x)=-xe-x

解析对于选项A,f(x)=sinx+cosx,

3.函数y=x2(x>0)的图像在点(ak,a)处的切线与x轴的交点的横坐标为ak+1,其中k∈N+.若a1=16,则a1+a3+a5的值是________.

解析因为y′=2x,所以过点(ak,a)处的切线方程为y-a=2ak(x-ak).













































4.设函数f(x)=,g(x)=,对任意x1、x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是________.













































解析因为对任意x1、x2∈(0,+∞),

5.(2012·辽宁)设f(x)=lnx+-1,证明:

(1)当x>1时,f(x)<(x-1);

(2)当1
证明(1)方法一记g(x)=lnx+-1-(x-1),

可知其导数f′(x)=(x-2)(x2-1)=(x+1)(x-1)(x-2),令f′(x)<0得x<-1或1
则f″(x)=-sinx-cosx<0在上恒成立,

故此函数为凸函数;

对于选项B,f(x)=lnx-2x,

2.给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称函数f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′.若f″(x)<0在D上恒成立,则称函数f(x)在D上为凸函数,以下四个函数在上不是凸函数的是()

A.f(x)=sinx+cosxB.f(x)=lnx-2x

C.f(x)=-x3+2x-1D.f(x)=-xe-x

则f″(x)=-<0在上恒成立,

故此函数为凸函数;

对于选项C,f(x)=-x3+2x-1,

则f″(x)=-6x<0在上恒成立,

2.给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称函数f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′.若f″(x)<0在D上恒成立,则称函数f(x)在D上为凸函数,以下四个函数在上不是凸函数的是()

A.f(x)=sinx+cosxB.f(x)=lnx-2x

C.f(x)=-x3+2x-1D.f(x)=-xe-x

故此函数为凸函数;

对于选项D,f(x)=-xe-x,

则f″(x)=2e-x-xe-x=(2-x)e-x>0在上恒成立,故此函数不是凸函数.

又该切线与x轴的交点为(ak+1,0),













































所以ak+1=ak,即数列{ak}是等比数列,













































首项a1=16,其公比q=,













































所以a3=4,a5=1.













































所以a1+a3+a5=21.













































不等式≤恒成立,所以≥max.

因为g(x)=,

所以g′(x)=(xe2-x)′=e2-x+xe2-x·(-1)=e2-x(1-x).

当00;当x>1时,g′(x)<0,













































所以g(x)在(0,1]上单调递增,在[1,+∞)上单调递减.

4.设函数f(x)=,g(x)=,对任意x1、x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是________.













































所以当x=1时,g(x)取到最大值,即g(x)max=g(1)=e;

因为f(x)=,当x∈(0,+∞)时,

f(x)=e2x+≥2e,当且仅当e2x=,

即x=时取等号,故f(x)min=2e.

所以max==.所以≥.













































又因为k为正数,所以k≥1.

则当x>1时,g′(x)=+-<0.

又g(1)=0,所以有g(x)<0,即f(x)<(x-1).

方法二当x>1时,2
令k(x)=lnx-x+1,则k(1)=0,k′(x)=-1<0,

5.(2012·辽宁)设f(x)=lnx+-1,证明:

(1)当x>1时,f(x)<(x-1);

(2)当1
故k(x)<0,即lnx
由①②得,当x>1时,f(x)<(x-1).

(2)方法一记h(x)=f(x)-,

由(1)得h′(x)=+-

=-<-=.

5.(2012·辽宁)设f(x)=lnx+-1,证明:

(1)当x>1时,f(x)<(x-1);

(2)当1
令G(x)=(x+5)3-216x,则当1
G′(x)=3(x+5)2-216<0,

因此G(x)在(1,3)内是减函数.

又由G(1)=0,得G(x)<0,所以h′(x)<0.

因此h(x)在(1,3)内是减函数.

又h(1)=0,所以h(x)<0.

5.(2012·辽宁)设f(x)=lnx+-1,证明:

(1)当x>1时,f(x)<(x-1);

(2)当1
于是当1
方法二记h(x)=(x+5)f(x)-9(x-1),

则当1
由(1)得h′(x)=f(x)+(x+5)f′(x)-9

<(x-1)+(x+5)·-9

5.(2012·辽宁)设f(x)=lnx+-1,证明:

(1)当x>1时,f(x)<(x-1);

(2)当1
=[3x(x-1)+(x+5)(2+)-18x]

<

=(7x2-32x+25)<0.

因此h(x)在(1,3)内单调递减.

又h(1)=0,所以h(x)<0,即f(x)<.













































[,2]













































献花(0)
+1
(本文系云师堂首藏)