配色: 字号:
Hypoxia-inducible factors in cancer stem cells and inflammation
2015-12-21 | 阅:  转:  |  分享 
  
Hypoxia-induciblefactors

Review

TIPS-1218;No.ofPages10

cells[1,2].Together,cancercellsandhostcellsforma

tumormicroenvironmentthatenablestumorinitiation

andprogression.Thedependenceofcanceronthehost

cellssuggeststhatthesehostcellscouldalsobetargeted

forcancertherapy.Again,becauseconventionalcancer

therapywasdevelopedwithoutemphasizingthetumor

microenvironment,amajornewfocusforcancertherapy

istolimitcancerdevelopmentbytargetingthismicroen-

vironment.

andactivityofpyruvatekinasemuscleisozyme2(PKM2),

HIF-1acanserveasamasterswitchforoxygenregulation

incellularmetabolism[17].

AsillustratedinFigure1,HIFisaheterodimercom-

prisingaandbsubunits.Theheterodimerstranslocate

intothenucleus,wheretheyinteractwithspecificDNA

sequencescalledHIF-responsiveelements(HREs).By

bindingtotheHRE,HIFmayeitheractivateorrepress

geneexpression.Atleastthreedifferentgeneshavebeen

identifiedthatencodeasubunitofHIF,namelyHIF1a,

HIF2aandHIF3a.AllthreeHIFasubunitsheterodimer-

izewithaHIF-1bsubunitandaresubjecttopost-

translationalregulationsthataredictatedbytheoxygen

concentrationintheenvironment.AlthoughHIF-3alacks

atransactivationdomainandisgenerallyconsideredtobe

anegativeregulatorforHIF-1aandHIF-2afunction,a

notableexceptionwasreportedrecently[18].Despitethe

0165-6147/

C2232015PublishedbyElsevierLtd.http://dx.doi.org/10.1016/j.tips.2015.03.003

Correspondingauthor:Liu,Y.(yaliu@cnmc.org).

Keywords:leukemia-initiatingcells;tumormicroenvironment;myeloid-derived

suppressorcells;dendriticcells;tumor-associatedmacrophages;cancerimmunother-

apy.

stemcellsandinflammatio

GongPeng

1

andYangLiu

1,2

1

InstituteofTranslationalMedicine,TheFirstHospital,JilinUniversity,

2

CenterforCancerandImmunologyResearch,Children’sResearch

USA

Hypoxia-induciblefactors(HIF)mediatemetabolic

switchesincellsinhypoxicenvironments,including

thoseinbothnormalandmalignanttissueswithlimited

suppliesofoxygen.Paradoxically,recentstudieshave

shownthatcancerstemcells(CSCs)andactivatedim-

muneeffectorcellsexhibithighHIFactivityinnormoxic

environmentsandthatHIFactivityiscriticalinthe

maintenanceofCSCsaswellasthedifferentiationand

functionofinflammatorycells.Giventhatinflammation

andCSCsaretwomajorbarrierstoeffectivecancer

therapy,targetingHIFmayprovideanewapproachto

developingsuchtreatments.

Challengesintargetingthetumormicroenvironment

Animportantparadigmshiftincancerresearchhasbeen

therealizationthatcancertissueisnotahomogenous

populationofclonallyexpandedcancercells[1–3].Ithas

beenestablishedinmultiplecancertypesthatcancercells

arehierarchical:whileasmallsubsetofCSCshaveahigh

capacityforself-renewalandareresponsibleforinitiating

cancer,thebulkofcancercellslackself-renewaland

cancer-initiatingcapacity[3,4].Perhapsbecauseconven-

tionaltherapeuticapproacheswerenotdevelopedtotarget

CSCs,manysuchcellsareenrichedbyconventionalcancer

therapy[5,6].TheineffectiveeliminationofCSCsiscon-

sideredamajorcauseofcancerrelapsefollowingconven-

tionaltherapyand,thus,isamajorbarriertoeffective

cancertreatment[7].

Inadditiontoheterogeneityamongtransformedcan-

cercells,cancertissuesalsocomprisenoncanceroushost

incancer

n

Changchun,China

Institute,Children’sNationalMedicalCenter,Washington,DC,

Basedontheseconsiderations,itwouldbeofinterestto

identifydruggabletargetsthatarecriticalforCSCsand

tumor-promotingmicroenvironments.Inthiscontext,

studieshavehighlightedtheselectiveactivationofthe

HIFpathwayandmetabolicswitchofCSCs[8–10].Re-

markably,recentstudiesdemonstratedthatHIFmayhave

amajorroleininflammation,includingtheadaptiveand

innateinflammatoryresponses[11–13].Thesharedre-

quirementforHIFinCSCsandinflammatorycellsraised

theinterestingprospectthatCSCsandinflammation,two

importantchallengesincancertherapy,maybeaddressed

bytargetingHIF.Here,wereviewthecriticalroleforHIF

inimmunologyandcancerbiology,withafocusonthe

potentialcross-fertilizationofHIFresearchoncancercells

andhostinflammatorycells.Wealsoexplorethetransla-

tionalpotentialofthisnewconcept.Readersarereferredto

outstandingrecentreviewsforthegeneralconceptand

involvementofHIFincancerbiologyandimmunology

[11,14,15].

HIFandcancer:anoverview

Themodesofenergyproductioninacellareusually

dictatedbytheoxygenlevelsintheenvironment:oxidative

phosphorylationoccursinawell-oxygenatedenvironment

(normoxia),whileglycolysisisswitchedonwhenoxygen

levelsdropbelow1%(hypoxia)[15].Inasearchforthe

fundamentalmechanismoftheoxygen-mediatedmetabol-

icswitch,GreggSemenzaandcolleaguesidentifiedHIF-1a

anoxygen-sensitivetranscriptionalactivator[16].Recent

studiessuggestthat,bydirectlyregulatingtheexpression

TrendsinPharmacologicalSciencesxx(2015)1–101

TIPS-1218;No.ofPages10

P

402OH

P

564OH

P

402

P

564

PHD1,2,3

VHL

O

2

O

2

UbUb

Proteasome

polyUb

HIF-1αHIF-2α

HIF-1β

HRE

P

405

P

531

P

405OH

P

531OH

O

2

TRENDSinPharmacologicalSciences

Figure1.Regulationofhypoxia-induciblefactors(HIF)activityinresponsetooxygen

levels.Underhypoxicconditions,stabilizedHIF-1aandHIF-2adimerizewithHIF-1b.

Theheterodimerstranslocateintothenucleustoregulategenetranscription.Inthe

presenceofoxygen,HIF-1aandHIF-2aproteinsarehydroxylatedbyprolyl

hydroxylasedomainproteins(PHD)1–3attheprolineresiduesindicated.

HydroxylatedHIFisrecognizedbyvonHippel-Lindautumorsuppressor,E3

ubiquitinproteinligase(VHL),whichcausespolyubiquitinylation(polyUb)and

Review

generalsimilarityinregulationandfunctionbetweenHIF-

1aandHIF-2a,theydifferintheirsensitivitytooxygen

deprivation,andtargetgenebindingandtissuedistribu-

tion[14].

ThecriticalroleofHIFincancerbiologywasestablished

whenamajorrenaltumorsuppressorgenevonHippel-

Lindautumorsuppressor,E3ubiquitinproteinligase

(VHL)wasidentifiedastheE3ligaseresponsibleubiqui-

tinylationofHIF-1aandHIF-2a[19–23].VHLrecognizes

hydroxylatedresiduesatPro402and/orPro562inHIF-1a

andPro405andPro531inHIF-2a,bymeansoftheprolyl

hydroxylasedomainprotein(PHD)[24].VHLisinacti-

vatedinmostrenalcancersamples,leadingtoincreased

expressionoftheHIF-1aandHIF-2aproteins[19–

23].MutationsofPHDprotein-encodinggenes,EGLN1

(PHD2),EGLN2(PHD1),andEGLN3(PHD3)havebeen

observedinvariouscancersatlowfrequency(http://www.

cbioportal.org/).ThefunctionofPHDisenhancedbyiso-

citratedehydrogenase1(IDH1)and/orIDH2[25,26],which

aremutatedatacombinedfrequencyofapproximately

15%inpatientswithacutemyeloidleukemia(AML)[27–

30]andlow-gradegliomaorglioblastoma[31].Tworeports

suggestedthatIDHmutationsleadtoincreaseinHIF-1a

accumulation[25,26],whileamorerecentstudysuggests

otherwise[32].

OverexpressionofHIF-1aand/orHIF-2aisamarkerfor

poorprognosisinmostcancertypestested,including

commoncancers,suchasbreast,prostate,colon,hepato-

cellular,pancreatic,brain,andovariancancers,aswellas

ahostoflesscommoncancers[14].Intransgenicmouse

proteasome-mediateddegradationofHIF.Abbreviation:HRE,HIF-responsive

element.

2

cancermodels,heterozygousdeletionofHif1areducedthe

growthofthymiclymphoma[33],whileshorthairpin

(sh)RNAsilencingofHif1aandoverexpressionofVHL

stronglyreducedleukemia-initiatingactivity[9].

DespitetheoverwhelmingassociationbetweenHIF

levelsincancertissueandpoorprognosisofpatientswith

cancer,conflictingreportshaveemergedinrenalcancer,

whereoverexpressionofHIF-1ahasbeenassociatedwith

eitherapoororfavorableprognosis,dependingonthe

methodsusedtoevaluateHIF-1alevels[34,35].Inmouse

cancermodels,recentstudiessuggestthat,whilelocal

deletionofHif1ainlungtissuehadnoimpactonKRas-

drivenlungcancer,deletionofHif2aparadoxicallyaccel-

eratedlungcancerdevelopment[36].Morerecently,broad

deletionofHif1ainadultmice,includinginthecellsthat

giverisetoleukemia,promoted,ratherthansuppressed

Mll-AF9a-inducedleukemia[37].Thesecontradicting

observationsmaybeexplainedbythebroadspectrumof

HIFtargetgenes:thecancer-promotingeffectisexempli-

fiedbyHIF-mediatedinductionandfunctionofPKM2,

vascularendothelialcellgrowthfactor(VEGF),andmulti-

drugresistancegene(MDR1),whileitsfunctionasatumor

suppressorcanbeexplainedbybothitstranscriptionaland

nontranscriptionalactivity.

PKM2andmetabolicswitchesincancercells

PKM2isthefinalenzymeinglycolysisandcomprisestwo

isoformsthatarisefromalternativesplicing.Mosttissues

expressthePKM1isoformwithproductsdirectedinto

oxidativephosphorylationtoefficientlyproduceATP.By

contrast,PKM2mayexisteitherintetramericordimeric

formstodirectoxidativephosphorylationorglycolysis,

respectively.GiventhatPKM2existspredominantlyin

itsdimericformincancercells,itcontributestoahigh

rateofaerobicglycolysisincancercellsregardlessof

hypoxia,aphenomenonknownastheWarburgeffect.

HIFregulatesPKM2throughtwomechanisms[17]:first,

HIF-1acanstimulateexpressionofPKM2.Second,

PKM2andHIF-1aformheterodimersandmigrateinto

thenuclei,wheretheyactasamasterswitchtoover-

expressgenescrucialforarobustglycolysisthatproduces

bothenergyandmetabolicintermediatesforbiosynthe-

sis.Therefore,HIF-1ahasacriticalroleinmetabolic

switchesincancercells.InadditiontoPKM2,HIF-1ahas

beenshowntoantagonizecMycactivitybyinducing

expressionofMXl1,thusreducingmitochondrialbiogen-

esis[38].

VEGFandcancerneoangiogenesis

Theincreaseintumorvolumedemandsacorresponding

increaseinangiogenesis.ByregulatingVEGFexpression,

bothcellularandviraloncogenesnotonlyregulatethe

growthofcancercells,butalsoallowcancerprogressionin

thehost.OptimalVEGFexpressionwasfoundtodepend

onbothhypoxiaandoncogenes[39].Theseobservations

ledtotheidentificationofHIF-1aasamajorregulator

ofVEGFexpression[40,41].TheHIF-1a–p300/CREB-

bindingprotein(CBP)complexbindstoaHIF-responsive

0

TrendsinPharmacologicalSciencesxxxxxxx,Vol.xxx,No.x

elementinthe5promoterregionofthegeneencoding

VEGF[40,41].ThisHREsequencewasspecificallytar-

getedbyechinomycin[9,42].

TIPS-1218;No.ofPages10

MDR1

ThelinkbetweenHIFandMDR1wasfirstreportedin

nontransformedendothelialandepithelialcelllines

[43].TheauthorsshowedthatHIF1awasresponsible

forhypoxia-inducedMDR1expressionthroughstimula-

tionoftheMDR1promotersequence.Subsequently,itwas

showninheadandneckcancercelllinesthatinhibitionof

HIF-1aincreasedcancercellsensitivitytopaclitaxel

[44].ThecontributionofHIFtomultidrugresistanceis

nowsubstantiatedinmanytypesofcancer,including

gastriccancer,coloncancer,multiplemyeloma,AML,

laryngealcancer,andsacralchordoma[45–51].These

observationsexplainthepoorprognosisofpatientswith

canceroverexpressingHIFandsuggestanimportantrole

forHIFinhibitorsincombinatorialcancertherapy.

TumorgrowthinhibitionbyHIF-1a

DespitecompellingevidencefortheoncogeniceffectofHIF

familymembers,overactivationofHIFmaycausegrowth

arrestand/orapoptosis.Atleastthreemechanismshave

beenproposedtoexplainthetumorsuppressoractivityof

HIF-1a.First,HIF-1ahasbeenshowntostabilizep53,

perhapsbybindingtoMousedoubleminute2homolog

(MDM2)[52].Second,amongHIF-1atargetsaregenes

capableofinducingapoptosis,includingRPT801[53],

NIP3[54,55],andNIX[55].Third,HIF-1ahasbeenshown

toantagonizeMycbypreventingitsrepressionofp21

[56].Incombination,thesemechanismsmayreconcile

theinconsistenciesinthemousegeneticdatathatsuggest

thatHif1aeitherpromotesorsuppressestumorgrowth

dependingonthetumortypesinvestigated[33,37].

HIFandCSCs

Animportantadvanceincancerbiologywasmadewiththe

demonstrationthatsomaticallytransformedcancercells

areheterogeneousinestablishingcancerinanewhost.In

manysolidandhematologicalcancers,asmallsubsetof

cancer-initiatingcellscanbeprospectivelyisolatedbased

oneithercellsurfacephenotypesortheirabilitytoexclude

fluorescentdyes(sidepopulation).Althoughithasbeen

suggestedthattherapeuticeliminationofCSCsholdsthe

keytoreducingcancerrelapseanddrugresistance,few

druggabletargetshavebeenidentifiedthatprovidea

meansfortheselectiveeliminationofCSCs[57–60].As

reviewedbelow,accumulatingdatasuggestthatHIFwill

emergeasalong-soughttarget.

GliomastemcellsandHIF

TheinvolvementoftheHIFpathwayingliomastemcells

wasfirstreportedbyLietal.[8].Usingxenograftglioma-

initiatingandinvitrotumorosphereformationassaysand

CD133astheCSCmarkers,theseauthorsobservedsig-

nificantenhancementofstemcellactivitywhenthestem

cellswereculturedunderahypoxicenvironment.Inter-

estingly,stemcellactivityunderbothnormoxicandhyp-

oxicenvironmentsisreducedwheneitherHIF1aorHIF2a

aresilencedbyshRNA.GiventhatHIF2amRNAlevels

correlatewithgliomaactivity,progression,andprognosis,

Review

theauthorsemphasizedthatHIF2aiscriticalforglioma

stemcellactivity.However,shRNAsilencingshowedan

equallyimportantroleforHIF1ainCSCactivity.Thelack

ofcorrelationbetweenHIF1amRNAlevelsandstemcell

activitymaysimplyreflectthefactthatHIF-1aprotein

levelsareregulatedbypost-transcriptionalmechanisms.

TheHIFtargetsresponsibleforCSCactivityremaintobe

identified.

Acutelymphocyticleukemia

EarlyworkonCSCswascriticizedforusingxenograft

transplantationbecausetheCSCactivity(i.e.,tumor-

initiatingactivity)assayedinthexenogeneichostmay

beartificiallyaffectedbyrejectionofhumancellsbythe

innateimmunityoftherecipientmice[61].Wangand

colleaguesusedasyngeneictransplantationmodeltodem-

onstratethatthec-Kit

+

Sca-1

+

populationintheirmouse

modelofacutelymphocyticleukemia(ALL)wereleuke-

mia-initiatingcells[9].Giventhatc-Kit

+

Sca-1

+

cellsarea

necessaryandsufficientpopulationforaninvitrocolony-

formingunit(CFU),theauthorsusedthismodeltoidentify

inhibitorsthatmaytargetALLstemcells.Theyfoundthat

echinomycin,anaturalproductthatbindstoHREand,

thus,inhibitsHIFactivity,efficientlyeliminatedCFUwith

anIC

50

of30–100pM.Invivo,low-doseadministrationof

echinomycin(10mg/kgor30mg/m

2

)cured100%ofsynge-

neicmicethathadreceivedlethaldosesofleukemiacells.

TheinvolvementofHIF-1aissubstantiatedbythreelines

ofevidence.First,Hif1a,butnotHif2a,isexpressedat

substantiallyhigherlevelsintheleukemiastemcell(LSC)

populationcomparedwiththebulkofleukemiablasts.

Second,shRNAsilencingofHif1areducedCFUandleu-

kemia-initiatingactivity.Third,Hif-1awasfoundtoen-

hanceNotchsignalingbypreventingnegativefeedback

regulationoftheHesfamilybHLHtranscriptionfactor1

(Hes1)gene,akeyNotchtargetknowntobeinvolvedin

stemcellself-renewal.However,itremainstobeestab-

lishedwhetherupregulationofHes1isresponsibleforHIF-

mediatedmaintenanceofLSC.

UsingaHIFreporter,Wangetal.showedthat,under

normoxicconditions,HIFisactiveexclusivelywithinthe

c-Kit

+

Sca-1

+

LSCsubset[9].ThishighHIFactivitywas

duetotheselectivelossofVHLexpressioninthestemcell

subset,whichiscriticalforLSCfunction,giventhatectopic

expressionofVhleliminatesLSC[9].

AML

Historically,theprospectiveidentificationofAMLstem

cellsbyJohnDickandcolleaguesin1994markedthe

revivaloftheCSCconcept[4].Severalgroupshaveshown

thattheabundanceofAMLstemcellsisabiomarkerfor

poorprognosis[62–64].Geneexpressionsignaturesde-

rivedfromthecomparisonofAMLstemcellsandAML

blastshaveprovenvaluableinpredictingtheoutcomeof

newlydiagnosedpatients[65].Animportantpredictionof

theCSCconceptisthattherapeuticsthatselectivelyelim-

inatestemcellsshouldpreventdrugresistanceandcancer

relapse,thetwomostpressingissuesincancertherapy.

GiventhatechinomycincanselectivelyeliminateAML

stemcells[9],theplannedclinicaltrialsusingechinomycin

[66]mayprovideanopportunitytotestthisconcept.

TrendsinPharmacologicalSciencesxxxxxxx,Vol.xxx,No.x

UsingtheAMLstemcellmarkersidentifiedbyDick’s

group,Wangandcolleagues[9]showedthatHIF1amRNA

andproteinareoverexpressedinhumanAMLstemcells

3

TIPS-1218;No.ofPages10

comparedwiththebulkofAMLblasts.Inbothna?¨veand

treatedAMLsamples,echinomycinefficientlyinhibited

CFUactivity,withanIC

50

ofapproximately100pM.More

importantly,echinomycinwas100–1000-foldmoreeffi-

cientininducingapoptosisofCD34

+

CD8

C0

AMLstemcells

comparedwiththebulkofAMLblasts.Totestthethera-

peuticpotential,theauthorsestablishedhumanAMLin

NOD.SCIDmiceaccordingtomethodsdescribedbythe

Dicklaboratory[4]andtreatedthemicewithalowdoseof

echinomycin[9].Short-termtreatmentwithechinomycin

notonlyreducedleukemiablastburden,butalsoprefer-

entiallyreducedthefrequencyofAMLstemcellswithin

theleukemiacells,markingamajordifferencecompared

withconventionaltherapeutics.Asevidenceoffunctional

inactivatingAMLstemcells,theremainingAMLblast(s)

couldnolongerinitiateAMLinthenewhost.

Totestwhetherechinomycincanbeusedtotreatre-

lapsedAML,Wangandcoworkers[67]usedtherelapsed

AMLfrommicewithheterozygousknock-insoftwogenes

thatarefrequentlymutatedinhumanAML:FLT3

ITD

and

MLL

PTD

(Mll

PTD/WT

:Flt3

ITD/WT

).TheMll

PTD/WT

:Flt3

ITD/WT

micedevelopedspontaneousAMLandrespondedtotreat-

mentwithaDNAhypomethylatingagentand/orahistone

deacetylase(HDAC)inhibitor;however,theAMLinvari-

ablyrelapsed[68].Theauthorstransplantedtherelapsed

AMLfromCD45.2miceintoCD45.1miceandfollowedthe

expansionandtherapeuticresponseusingCD45.2asa

leukemiamarker[64].Theyobservedthatshort-term

treatmentwithechinomycincured40–60%ofmicewith

ahighburdenofrelapsedAMLatthetimeoftreatment.

Again,thebonemarrowfromthecuredmicedidnot

harbordormantAMLstemcells,asevidencedbytheir

inabilitytoinitiateAMLinthenewhosts.Surprisingly,

echinomycin-treatedbonemarrowcellsarefullycompe-

tentinhematopoiesisintransplantation.Therefore,ther-

apeuticeliminationofCSCscanbeachievedinrelapsed

AMLwithoutsignificantadverseeffectsontissuestem

cells.Thus,althoughCSCsandtissuestemcellsmayshare

self-renewalprograms,thetherapeuticeliminationofCSCs

canbeachievedwithoutharmingtissuehomeostasis.

Chronicmyeloidleukemia

Chronicmyeloidleukemia(CML)isaclonalmyeloprolif-

erativedisorderthatresultsfromanacquiredgenetic

changeinasinglehemopoieticstemcell.Thehallmark

ofCMListhegenerationoftheBCR-ABLchimeraprotein,

aconstitutivelyactivetyrosinekinase,asaresultofgene

translocation[69].InductionofBCR-ABLinducesexpres-

sionofHIF-1aanditstargetgeneVEGF[70].Kinase

inhibitors(suchasimatinib)failtoeradicateCMLLSCs.

Instead,thetargetedtherapyselectedforimatinib-

resistantcellswithhighlevelsofBCR-ABLandactive

HIF-1a,resultinginanaerobicglycolysisandincreased

survivalinvitro[71].UsingamousemodelofCML,Zhang

etal.showedthatHif1a-deficientHSPCsexpressing

BCR-ABLfailedtogenerateCMLinsecondaryrecipients.

DeletionofHif1apreventsthepropagationofCMLby

impairingcellcycleprogressionandinducingapoptosis

Review

ofLSCs[72].Inaddition,recentstudiesalsoshowedthat

HIF-1asupportsthemaintenanceofCMLLSCsdespite

effectiveBCR-ABL1inhibitioninhypoxicenvironments

4

[73].TheseobservationsindicatedthatHif-1aiscrucialfor

themaintenanceofCMLLSCs.

Takentogether,theaboveexamplesillustratethatHIF

hasacriticalroleinstemcellsforbothsolidtumorsand

hematologicalmalignancies,servingasadruggabletarget

forthetherapeuticeliminationofCSCs.ThefactthatHIF

isactiveinCSCsregardlessofhypoxiasuggeststhatthese

cellshaveacquiredmechanismstoprotectHIFunder

normoxicconditions.

BreastCSCs

BreastcanceristhefirstsolidtumorinwhichCSCswere

prospectivelyisolated[3].Usingaxenograftmodelof

humanbreastcancercelllines,Conleyetal.observedthat

antiangiogenicagentsincreasedtheproportionofbreast

CSCs(BCSCs)byinducinghypoxia.Theimpactofhypoxia

ismediatedbyHIF-1a,butnotHIF-2a,andcorrelateswith

WntsignalinginBCSC[74].Usingthemousemammary

tumorviruspolyomavirusmiddleT(MMTV-PyMT)

oncogene-inducedbreastcancermodel,Schwabetal.[75]

demonstratedthatconditionaldeletionofHif1ainmamma-

ryepithelialcellscausesreducedtumorgrowthandmetas-

tasis.Interestingly,thisdepressedtumorgrowthand

metastasiscorrespondedtoareductioninthenumberand

functionofBCSC[75].

AkeyissueishowHIF-1ainducesBCSC.Onekey

regulatorofBCSCactivityisaHippopathwayeffector

moleculecalledTAZ[76].Bycomparinggeneexpression

profilesamong1600casesofhumanbreastcancersamples,

Xiangetal.[77]showedasignificantcorrelationbetween

knownHIFtargetgenesandTAZ,raisingtheintriguing

possibilitythatTAZisadirecttargetofHIF-1a.This

hypothesisisvalidatedbyshRNAsilencing,chromatin-

immunoprecipitation,promoteractivity,TAZtargetgene

co-expression,andhypoxiaresponses.Inadditiontocon-

trollingTAZexpression,HIF-1aalsoactivatestranscrip-

tionoftheSiahE3ubiquitinproteinligase1(SIAH1)gene,

whichencodesaubiquitinligasethatisrequiredfor

proteasome-dependentdegradationoflargetumorsup-

pressorkinase2(LATS2).DegradationofLATS2allowed

nuclearlocalizationofTAZ.Apartfromtheexpressionand

functionofTAZ,hypoxiaalsoregulatestheinteraction

betweenBCSCandmesenchymalstemcells(MSC)and

tumor-associatedmacrophages(TAM)throughtwofeed-

forwardmechanisms[78].First,HIF-1ainducesexpres-

sionofchemokine(C-X-Cmotif)ligand16(CXCL16)to

recruitMSC.Second,MSCsproducechemokine(C-Cmo-

tif)ligand5(CCL5)torecruitTAM.Therefore,BCSC-

intrinsicsignalingnotonlymaintainsthenumberand

functionoftheBCSC,butalsodrivesformationofthe

tumormicroenvironment.

HIFinadaptiveandinnateinflammation

Hypoxia-resistantHIFactivityisnotlimitedtocancer

cells.AccumulatingevidenceshowsthatHIFshavearole

intheregulationofinnateandadaptiveimmunecellsthat

normallyresideinnormoxicenvironments.Activated

TcellsexpresstwoisoformsofHIF-1a:ashortformcalled

TrendsinPharmacologicalSciencesxxxxxxx,Vol.xxx,No.x

1.1andalongerformcalled1.2[79].Theshorter1.1form

appearstosuppresstheproductionofinflammatorycyto-

kinesbyTcells[80].Accumulatingdatademonstratethat

TIPS-1218;No.ofPages10

HIFisakeyregulatorofregulatoryTcell(Treg)/Thelper

(TH)-17development,thedifferentiationandfunctionof

cytotoxicTlymphocytes,(CTL),andinnateimmuneeffec-

tors,suchasdendriticcells,neutrophils,andmyeloid-

derivedsuppressorcells(MDSCs).

Treg/TH17celldifferentiation

AlthoughTh17andTregcellsshareimportantpathwaysin

theirdifferentiationfromna?¨veTcells,theyeventually

bifurcateintodistinctphenotypeswithoppositeactivities,

withTH17cellsbeingpro-inflammatoryandTregsbeing

anti-inflammatory.Recentstudiessuggestthatthefunc-

tionalswitchbetweenthesecelltypesismediatedbyHIF-

1a.

HIF-1aactivatesRetinoid-AcidReceptor-relatedOr-

phanReceptor(ROR)-gttranscriptionandformsatertiary

complexwithRORgtandp300toactivatetheIL-17Agene.

Bycontrast,Hif-1abindstoforkheadboxP3(Foxp3)and

causesitsdegradation,resultinginablockadeofTreg

differentiation.AsaresultofalteredTh17/Tregdifferenti-

ation,micewithHIF-1a-deficientTregareresistantto

experimentalautoimmuneencephalomyelitis[81].When

na?¨veTcellswereculturedinthepresenceoftransforming

growthfactor(TGF)bandIL6,theyshowedupregulation

oftheglycolyticactivityandinductionofglycolytic

enzymes.AcriticalroleforglycolysisinTh17development

isalsosuggested,giventhatblockingglycolysiswith

2-dexoglucoseinhibitedTH17celldevelopment.Consis-

tentwithacriticalroleforHIFinTh17differentiation,

HIF-1awasselectivelyexpressedinTH17cells,while

Hif1adeficiencyinhibitedTH17differentiation[82].The

functionofHIF-1ainTH17wasnotrestrictedtoregulation

ofthemetabolicswitch.HIF-1aalsocontrolledtheexpres-

sionofantiapoptoticBcl-2familygenesincollaboration

withNotchsignalingand,thus,supportsTH17survivalin

humansamples[83].Takentogether,thesedatahighlight

HIF-1a-dependentpathwaysinregulatingthebalance

betweenthedifferentiationofTH17andTregcells.

DespitetheinvitroeffectofHIF-1aonTregdifferenti-

ation,theinhibitoryfunctionofHIFonTregfunctioninthe

tumormicroenvironmentremainstobesubstantiated.

Surprisingly,HIFpromotesdifferentiationofCD4

+

/

CD25

+

Tregcellsinthecaseofhypoxiacausedbyrapid

tumorprogression[84].Tregsmaybeenrichedincancer

tissuebyHIF-1a-dependentproductionofchemokines,

suchasCCL28[85].Additionalstudiesareneededto

determinewhethertheapparentcontradictionwasattrib-

utabletothetumormicroenvironment,andifso,howthe

tumormicroenvironmentalterstheroleofHIF-1ainTreg

differentiation.

CTLdifferentiationandfunction

CTLsarekeyadaptiveeffectorsintheeliminationof

intracellularpathogensandtumorcells.HIF-1adeter-

minesCTLfatebyregulatingtranscriptionofgenesencod-

ingglucosetransporters,rate-limitingglycolyticenzymes,

cytolyticeffectormolecules,andessentialchemokineand

adhesionreceptorsthatregulateTcelltrafficking[86].Ac-

Review

tivatedTcellsexpresshighlevelsofHIF-1aproteinseven

undernormoxia,althoughhypoxiafurtherelevatesHIF-1a

levels[86,87].TheinductionofHIF-1aiscontrolledby

mammaliantargetofrapamycincomplex1(mTORC1)

[86].Geneticstudiesinmicedemonstratedthatdeletion

ofVhlinCTLsinhibitedpersistentviralinfectionand

neoplasticgrowth,whilethatofHif1aattenuatedCTL

effectorfunctionduringviralinfection[87].Surprisingly,

deletionofHif1ainactivatedTcellsalsoenhancedpro-

ductionofinflammatorycytokines.Thesedataarguefora

negativeregulatoryroleforHIF-1ainTcell-mediated

inflammatoryresponses[80,88].Furtherstudiesareneed-

edtoshedlightonTcell-intrinsicHIF-1afunctioninthe

tumormicroenvironment.

Dendriticcellactivation

Astheprimaryantigen-presentingcells,dendriticcells

(DCs)haveacrucialroleinlinkingtheinnateandthe

adaptiveimmunesystems.LPSandhypoxialeadtoin-

creasedglycolyticactivityandincreasedDCmaturation.

TheroleforHIF-1ahasbeenconfirmed,giventhatknock-

ingdownofHIF-1ainDCssignificantlyreducedglucose

utilityandinhibitedDCmaturation,asevidencedby

reducedstimulationofallogeneicTcells[89].Whilearole

forHIF-1aintumor-infiltratingDChasnotbeeninvesti-

gated,theinductionofB7homolog1(B7H1/PD-L1)by

HIF-1a[90,91]andimmunesuppressionbyB7H1-expres-

singmyeloidDCinhumancancer[92]suggestthatHIF-1a

expressedintumor-infiltratingDCcontributestotheim-

mune-suppressivetumormicroenvironment.

Tumor-associatedmyeloidsuppressorcells

Tumorgrowthaltersmyeloiddevelopmentinthehost,

withsignificantphenotypicandfunctionalchangesin

themyeloidcompartment[93].Amajorchangeinthe

tumor-bearinghostandthetumormicroenvironmentis

theexpansionofmyeloidsuppressorcells,includingtu-

mor-associatedmacrophages(TAM),MDSC,andmyeloid

dendriticcells(mDC)[93].Accumulatingdatademonstrate

thatHIF-1acontributestotheexpansion,differentiation,

andeffectorfunctionofmyeloidsuppressorcellswithinthe

tumormicroenvironment.

Asdiscussedabove,HIF-1amaycontributetomDC-

mediatedimmunesuppressionbyregulatingtheexpres-

sionofB7H1/PD-L1.BothTAMandMDSCsuppresstumor

immunitybyproducingsolublefactorssuchasnitricoxide

(NO)andROS[93,94],andthroughexpressionofcell

surfaceproteins,suchasB7H1/PD-L1.HIF-1a,butnot

HIF-2a,upregulatestheexpressionofB7H1/PD-L1by

bindingtotheHREofthePD-L1proximalpromoterto

enhanceexpressionofPD-L1[90].Inaddition,HIF-1ais

necessaryfortheoptimalexpressionofarginaseandin-

duciblenitricoxidesynthase(iNOs)inbothTAMand

MDSCand,thus,isresponsibleforNOproduction[95].In-

terestingly,MDSChavebeenshowntodifferentiateinto

TAMinthetumormicroenvironment,andthisprocessis

requiresexpressionofHIF-1aMDSC[95].

ThecontributionofHIFtothetumormicroenvironment

hasbeendemonstratedmostlyusingtransplantabletumor

models.Asanotableexception,myeloid-specificHIF-1a

deletioninatransgenicmodelofbreastcancerreduced

TrendsinPharmacologicalSciencesxxxxxxx,Vol.xxx,No.x

tumorgrowthandprogression[96].Thiswasachieved

withoutalternationofVEGF-Alevelsandvascularization.

Totestwhetherthisdeletionaffectsmacrophagefunctions,

5

theauthorscomparedwildtypeandHif1a

C0/C0

bonemar-

row-derivedmacrophagesundernormoxicandhypoxic

cultureconditions.Theauthorsobservedthathypoxia

exacerbatedinhibitionofTcellproliferationandthatsuch

exacerbationwasHif1adependent.GiventhatTAMare

knowntoinhibitTcellfunction[93],itwouldbeofinterest

todeterminewhetherthedelayintumorgrowthwas

attributabletoHif1adeletioninTAM.

EpigeneticandgeneticmechanismsforHIFactivities

undernormoxia:cross-fertilizationbetweencancer

biologyandimmunology

ThecriticalroleforHIFincancercellmetabolism,CSC

function,andimmunityraisedafundamentalbutlargely

unansweredquestion:howisHIFactivitymaintainedin

circulatingLSCs,cancercells,andhematopoieticcellsina

normoxicenvironment?Accumulatingdataindicatethat

HIFactivationisstimulatedbyincreasedtranscription

andtranslationofHIF1aandinactivationofoxygen-

mediatedHIFdegradation,throughbothgeneticandepi-

geneticmechanisms.

Geneticmechanismstaughtbycancer:theAML

example

Review

TIPS-1218;No.ofPages10

TheaccumulationofHIF1aproteinanditstranscriptional

activityarestrictlyregulated.AsshowninFigure2,many

ofthesemechanismsaretargetedinAML,andseveral

genomicalterationsinAMLhaveeitherbeenshown,or

havethepotential,toenhanceHIFactivity.First,AML-

associatedmutationsseemtotargetthecanonicalHIF

degradationpathway.Undernormoxia,HIF-1aisdegrad-

edbyVHL,whichrecognizesHIF-1awhenitishydroxyl-

atedatPro402and/orPro562byPHD[24].Mutationsof

geneencodingPHDhavebeenobservedinAMLonlyatlow

Ub–HIF1α

Degradag415on

IHD

VHL

mIHD

2–HG

mTOR

PI3K/AKT

O2+

α

–KG

PhD

HIF1α

HydroxylatedHIF1α

p53MDM2

FLT3–ITD/TKD

NPM/p14ARF

10%

30%NCAML

25–35%

10–15%

Hd

HI

F1

mIH

Ub

2

d

ITD

TRENDSinPharmacologicalSciences

Figure2.Prevalentmutationsinacutemyeloidleukemia(AML)potentiallyaffect

hypoxia-induciblefactor(HIF)levelsincancercells.Mutationsofgenesencoding

isocitratedehydrogenase(IDH)1and2,whicharemutatedin10–15%ofAML

cases,inactivateprolylhydroxylasedomainprotein(PHD)tosuppressHIF

hydroxylation.Fms-relatedtyrosinekinase3(FLT3)mutations(foundin25–35%

ofAMLcases)stimulatesthephosphatidylinositol3-kinase(PI3K)/AKTpathwayto

enhanceHIFtranslation.Nucleophosmin(NPM)mutation,whichwasfoundin30%

ofAMLwithnormalkaryotype(NC),reducesp14ARF,andHIFinhibitors.TP53

mutationreducesexpressionofMousedoubleminute2homolog(MDM2),an

alternativeE3ubiquitinylation(Ub)ligaseE3forHIF.ThisinturnmayreduceHIF

ubiquitinylation.

6

frequency.However,thefunctionofPHDisenhancedby

IDH1and/orIDH2[25,26],whicharemutatedatacom-

binedfrequencyofapproximately15%inpatientswith

AML[27–30].OnestudyshowedthatIDHmutations

increaseHIF1aaccumulation[25,26],whilealaterstudy

suggestedanoppositeeffect[32].Thedifferencesbetween

thetworemaintobereconciled.Second,fms-relatedtyro-

sinekinase3(FLT3)-internaltandemrepeats(ITD)and

tyrosinekinasedomain(TKD)mutationsactivateFLT3

[97,98].GiventhatFLT3signalingactivatesthephospha-

tidylinositol3-kinase(PI3K)–mTORpathway[99]andthat

mTORactivationincreasesHIF1aproteinaccumulation

[100–103],itwouldbeintriguingtotestwhetherFLT3

mutationscauseHIFactivationinAML.Third,lossof

TP53functionintumorcellshasbeenshowntocause

defectiveMDM2-mediateddegradationofHIF-1a[104].

Inaddition,becausep53mutationsareobservedinap-

proximately10%ofAMLsamples,andthismutationis

associatedwithadevastatingprognosis[105],itwouldbe

ofinteresttodeterminewhetherthismutationcontributes

toincreasedHIF-1aaccumulationinAML.Giventhat

MDM2isanE3ligaseforHIF-1a[106,107],p53mutations

mayincreaseHIF-1alevelsbydecreasingMDM2.Fourth,

Nucleophosmin1(NPM1)ismutatedin30–40%ofAML

samplesthathaveanormalkaryotype[108,109].Inaddi-

tion,sinceNPM1sequestersandprotectsp14ARFagainst

degradation[110],NPMmutationsmaystimulateHIF

activitiesbyinactivatingthep14ARF-mediatedaberrant

delocalizationofHIF1a[111].

EpigeneticmechanismofHIF1aactivation:unanswered

questionsfromCSCsandimmuneeffectorcells

AstheoffspringofCSCs,cancercellsshouldhaveinherited

geneticalterationsthatenableoxygen-resistantHIFac-

tivity.Therefore,forcancersthatshowselectiveactivation

ofHIFwithintheCSCcompartment,includingAML,ALL,

CLL,andglioma,geneticalterationsinHIFregulatorsdo

notprovideafullexplanation.Thereareatleasttwo

mechanismsforselectiveHIF-1aactivationinmouseLSCs

[9]:increasedHif1amRNAaccumulationandlackofex-

pressionofVhl.BothHif1aupregulationandVhldown-

regulationarenecessaryforthemaintenanceofLSC.

GiventhatLSCsareaself-renewingpopulationthatalso

‘differentiates’intocancercells,itisofinteresttodeter-

minetheepigeneticmechanismthatensurestheheritable

geneexpressionpatternofHif1aandVhlandhowthis

patternislostwhentheLSCs‘differentiate’intocancer

cells.Elucidationofthismechanismwillalsohelpto

formallydemonstratetheexistenceofepigeneticprograms

thatmaintainLSCactivitybyselectiveactivationofHIF-

1ainthiscompartment.

Similarly,howoxygen-resistantHIF-1aactivityisin-

ducedintheimmuneeffectorcellsremainslargelyunex-

plained.Accumulatingdatasuggestthatactivationof

eitherTcellreceptor[81,82,112]orToll-likereceptors

(TLR)[113]induceaccumulationofHif1amRNA,perhaps

throughsuppressionofmiR-200[112].However,addition-

almechanismsareneededtoexplainoxygen-resistant

TrendsinPharmacologicalSciencesxxxxxxx,Vol.xxx,No.x

HIF-1aactivity.TheAKT-PI3Kpathwayinducesaccumu-

lationofHIF-1athroughactivationofmTORtoincrease

translationofHIF-1a[114].Inaddition,mTORactivation

ReviewTrendsinPharmacologicalSciencesxxxxxxx,Vol.xxx,No.x

TIPS-1218;No.ofPages10

HIF

CTL

Treg

Th17

DC

MDSC

TAM

CSC

CaC

EC

HIF

TRENDSinPharmacologicalSciences

Figure3.Acentralroleforhypoxia-induciblefactor(HIF)inthetumor

microenvironment.Inadditiontoitscriticalroleformaintenanceandproliferation

ofcancerstemcells(CSC)andcancercells(CaC),HIFpromotesthedifferentiation

and/orproliferationofhostcellswithinthetumormicroenvironment,including

endothelialcells(EC),dendriticcells(DC),tumor-associatedmacrophages(TAM),

andmyeloid-derivedsuppressorcells(MDSC).Apartfromregulatingcellsthataffect

Tcellfunction,HIFalsodirectlyregulatestheactivationanddifferentiationofvarious

functionalsubsetsofTcells,includingcytolyticTlymphocytes(CTL),regulatoryT

cells(Treg),andinterleukin(IL)-17-producingTcells(Th17).

preventsoxygen-inducedHIF-1adegradation[102].Inthe

lattercase,mTOR-inducedHIFprotectionagainstdegra-

dationrequiresfunctionalinteractionbetweenmTORand

theHIF-1adomainthatisalsoinvolvedinhydroxylationof

HIF-1a.Therefore,mTORmayinhibitHIFdegradation

throughanasyetundefinedmechanism.

Recentstudiesdemonstratedthat,similartoadaptive

immunity,innateeffectorcellsmaybealsocapableof

immunememory,thatis,theycanbetrainedtomount

amorerobustormuchreducedrecallresponse[12,13].For

instance,stimulationofmonocyteswithglucantrainedthe

monocytestomountamorerobustinnateimmunere-

sponsetosecondarystimulationinvitroandincreased

hostresistancetoinfectionsbyCandidaalbicansand

Staphylococcusaureus[12].Thistrainingisassociated

withextensiveepigeneticalterationsinthemonocytes

[13].Surprisingly,thetrainingisalsoassociatedwitha

metabolicswitchfromoxidativephosphorylationtoglycol-

ysis[12].GiventhecriticalroleofHIF-1ainthemetabolic

switch,researchersusedageneticmodeltodetermine

theinvolvementofHIF-1aintherecallresponseofinnate

effectors[12].Indeed,targetedmutationofHif1ain

myeloidcellswassufficienttoablatetrainedimmunity.

ThecriticalroleforHIF-1aintrainedimmunityandthe

extensiveepigeneticreprogrammingduringtheprocess

raisedaninterestingissueastowhetherepigeneticmech-

anismsmaybedirectlyresponsibleforoxygen-resistant

HIFactivationinmonocytes.

Takentogether,inbothimmuneeffectorsandCSCs,a

steadystateofoxygen-resistantHIF-1aaccumulationhas

beenachieved.Amajorchallengeremainsindefininghow

thiscrucialstateisachievedthroughnongenetic,perhaps

epigenetic,mechanisms.

Concludingremarks

HIFwasdiscoveredintheprocessofinvestigatinghow

livingorganismsadjusttoavaryingoxygenenvironment

[15].Morerecentstudieshavedemonstratedthatthis

pathwayisoperativeevenundernormoxicenvironment

andthatsuchoxygen-resistantfunctioniscriticalincancer

biologyandimmunology.HIFactivationisresponsiblefor

ametabolicswitchthatallowsmoresustainedprolifera-

tionwithlessDNAdamage.Thesefeaturesareimportant

forthemaintenanceofCSCs.Intheimmunesystem,

activationand/orfunctionreprogrammingofimmune

effectorsisoftenimprintedthroughoxygen-resistant

HIFaccumulation.Theconvergingfeaturesuggeststhat

cross-fertilizationbetweencancerbiologistsandimmunol-

ogistsmaybringnewinsightsintothemechanismofHIF

regulationandnewapproachesforcancertherapy.

AssummarizedinFigure3,cancercellsandimmune

effectorsaremajorcomponentsofthetumormicroenviron-

ment.Inthisenvironment,theimmunesystemnotonly

failstodefendthehostagainstcancer,butalsooften

activelyaidscarcinogenesis,withfunctionsrangingfrom

promotingCSCactivity[115,116]andangiogenesis[117],

tofacilitatingmalignanttransformation[118]andmetas-

tasis[119].Therefore,effectivecontrolofthetumormicro-

environmentwilllikelycomplementthetraditional

approachofcancertherapy,aimingateliminatingcancer

cells.Giventhatmostcontributorstothetumor-promoting

microenvironmentrelyonHIF,itislikelythattargeting

HIFwillnotonlyaidinthetherapeuticeliminationof

CSCs,butalsoresultindeprivingcancercellsofahabit-

ablemicroenvironment.

Acknowledgments

WethankChristopherBaileyforeditorialassistance.Thisworkis

supportedbyJilinUniversityFirstHospitalandgrantsfromNational

CancerInstitute,USA(CA183030andCA171972toY.L.).

References

1Hanahan,D.andWeinberg,R.A.(2000)Thehallmarksofcancer.Cell

100,57–70

2Hanahan,D.andWeinberg,R.A.(2011)Hallmarksofcancer:thenext

generation.Cell144,646–674

3Al-Hajj,M.etal.(2003)Prospectiveidentificationoftumorigenic

breastcancercells.Proc.Natl.Acad.Sci.U.S.A.100,3983–3988

4Lapidot,T.etal.(1994)Acellinitiatinghumanacute

myeloidleukaemiaaftertransplantationintoSCIDmice.Nature

367,645–648

5Bao,S.etal.(2006)Gliomastemcellspromoteradioresistance

bypreferentialactivationoftheDNAdamageresponse.Nature

444,756–760

6Terpstra,W.etal.(1996)Fluorouracilselectivelysparesacutemyeloid

leukemiacellswithlong-termgrowthabilitiesinimmunodeficient

miceandinculture.Blood88,1944–1950

7Wicha,M.S.etal.(2006)Cancerstemcells:anoldidea–aparadigm

shift.CancerRes.66,1883–1890discussion1895–1886

8Li,Z.etal.(2009)Hypoxia-induciblefactorsregulatetumorigenic

capacityofgliomastemcells.CancerCell15,501–513

9Wang,Y.etal.(2011)TargetingHIF1alphaeliminatescancerstem

cellsinhematologicalmalignancies.CellStemCell8,399–411

10Wang,Y.H.etal.(2014)Cell-state-specificmetabolicdependencyin

hematopoiesisandleukemogenesis.Cell158,1309–1323

7

ReviewTrendsinPharmacologicalSciencesxxxxxxx,Vol.xxx,No.x

TIPS-1218;No.ofPages10

11Palazon,A.etal.(2014)HIFtranscriptionfactors,inflammation,and

immunity.Immunity41,518–528

12Cheng,S.C.etal.(2014)mTOR-andHIF-1alpha–mediatedaerobic

glycolysisasmetabolicbasisfortrainedimmunity.Science345,

1250684

13Saeed,S.etal.(2014)Epigeneticprogrammingofmonocyte-to–

macrophagedifferentiationandtrainedinnateimmunity.Science

345,1251086

14Keith,B.etal.(2012)HIF1alphaandHIF2alpha:siblingrivalryin

hypoxictumourgrowthandprogression.Nat.Rev.Cancer12,9–22

15Semenza,G.L.(2012)Hypoxia-induciblefactorsinphysiologyand

medicine.Cell148,399–408

16Wang,G.L.etal.(1995)Hypoxia-induciblefactor1isabasic-helix-

loop-helix-PASheterodimerregulatedbycellularO2tension.Proc.

Natl.Acad.Sci.U.S.A.92,5510–5514

17Luo,W.etal.(2011)PyruvatekinaseM2isaPHD3-stimulated

coactivatorforhypoxia-induciblefactor1.Cell145,732–744

18Zhang,P.etal.(2014)Hypoxia-induciblefactor3isanoxygen-

dependenttranscriptionactivatorandregulatesadistinct

transcriptionalresponsetohypoxia.CellRep.6,1110–1121

19Kondo,K.etal.(2002)InhibitionofHIFisnecessaryfor

tumorsuppressionbythevonHippel-Lindauprotein.CancerCell1,

237–246

20Latif,F.etal.(1993)IdentificationofthevonHippel-Lindaudisease

tumorsuppressorgene.Science260,1317–1320

21Maranchie,J.K.etal.(2002)ThecontributionofVHLsubstrate

bindingandHIF1-alphatothephenotypeofVHLlossinrenalcell

carcinoma.CancerCell1,247–255

22Pereira,T.etal.(2003)Identificationofresiduescriticalforregulation

ofproteinstabilityandthetransactivationfunctionofthehypoxia-

induciblefactor-1alphabythevonHippel-Lindautumorsuppressor

geneproduct.J.Biol.Chem.278,6816–6823

23Zbar,B.(1995)VonHippel-Lindaudiseaseandsporadicrenalcell

carcinoma.CancerSurv.25,219–232

24Semenza,G.L.(2010)HIF-1:upstreamanddownstreamofcancer

metabolism.Curr.Opin.Genet.Dev.20,51–56

25Xu,W.etal.(2011)Oncometabolite2-hydroxyglutarateisa

competitiveinhibitorofalpha-ketoglutarate-dependentdioxygenases.

CancerCell19,17–30

26Zhao,S.etal.(2009)Glioma-derivedmutationsinIDH1dominantly

inhibitIDH1catalyticactivityandinduceHIF-1alpha.Science324,

261–265

27Ward,P.S.etal.(2010)Thecommonfeatureofleukemia-associated

IDH1andIDH2mutationsisaneomorphicenzymeactivity

convertingalpha-ketoglutarateto2-hydroxyglutarate.CancerCell

17,225–234

28Pardanani,A.etal.(2010)IDH1andIDH2mutationanalysisin

chronic-andblast-phasemyeloproliferativeneoplasms.Leukemia24,

1146–1151

29Abbas,S.etal.(2010)AcquiredmutationsinthegenesencodingIDH1

andIDH2botharerecurrentaberrationsinacutemyeloidleukemia:

prevalenceandprognosticvalue.Blood116,2122–2126

30Paschka,P.etal.(2010)IDH1andIDH2mutationsarefrequent

geneticalterationsinacutemyeloidleukemiaandconferadverse

prognosisincytogeneticallynormalacutemyeloidleukemiawith

NPM1mutationwithoutFLT3internaltandemduplication.

J.Clin.Oncol.28,3636–3643

31Yan,H.etal.(2009)IDH1andIDH2mutationsingliomas.N.Engl.J.

Med.360,765–773

32Koivunen,P.etal.(2012)Transformationbythe(R)-enantiomerof

2-hydroxyglutaratelinkedtoEGLNactivation.Nature483,484–488

33Bertout,J.A.etal.(2009)Heterozygosityforhypoxiainduciblefactor

1alphadecreasestheincidenceofthymiclymphomasinap53mutant

mousemodel.CancerRes.69,3213–3220

34Lidgren,A.etal.(2005)Theexpressionofhypoxia-induciblefactor

1alphaisafavorableindependentprognosticfactorinrenalcell

carcinoma.Clin.CancerRes.11,1129–1135

35Klatte,T.etal.(2007)Hypoxia-induciblefactor1alphainclearcell

renalcellcarcinoma.Clin.CancerRes.13,7388–7393

36Mazumdar,J.etal.(2010)HIF-2alphadeletionpromotesKras-driven

lungtumordevelopment.Proc.Natl.Acad.Sci.U.S.A.107,

14182–14187

8

37Velasco-Hernandez,T.etal.(2014)HIF-1alphacanactasa

tumorsuppressorgeneinmurineacutemyeloidleukemia.Blood124,

3597–3607

38Zhang,H.etal.(2007)HIF-1inhibitsmitochondrialbiogenesisand

cellularrespirationinVHL-deficientrenalcellcarcinomaby

repressionofC-MYCactivity.CancerCell11,407–420

39Mazure,N.M.etal.(1996)Oncogenictransformationandhypoxia

synergisticallyacttomodulatevascularendothelialgrowthfactor

expression.CancerRes.56,3436–3440

40Arany,Z.etal.(1996)Anessentialroleforp300/CBPinthe

cellularresponsetohypoxia.Proc.Natl.Acad.Sci.U.S.A.93,

12969–12973

41Forsythe,J.A.etal.(1996)Activationofvascularendothelialgrowth

factorgenetranscriptionbyhypoxia-induciblefactor1.Mol.Cell.Biol.

16,4604–4613

42Kong,D.etal.(2005)Echinomycin,asmall-moleculeinhibitorof

hypoxia-induciblefactor-1DNA-bindingactivity.CancerRes.65,

9047–9055

43Comerford,K.M.etal.(2002)Hypoxia-induciblefactor-1-dependent

regulationofthemultidrugresistance(MDR1)gene.CancerRes.62,

3387–3394

44Ricker,J.L.etal.(2004)2-methoxyestradiolinhibitshypoxia-

induciblefactor1alpha,tumorgrowth,andangiogenesisand

augmentspaclitaxelefficacyinheadandnecksquamouscell

carcinoma.Clin.CancerRes.10,8665–8673

45Zhang,H.etal.(2014)Kruppel-likefactor8contributestohypoxia-

inducedMDRingastriccancercells.CancerSci.105,1109–1115

46Ria,R.etal.(2014)HIF-1alphaofbonemarrowendothelialcells

impliesrelapseanddrugresistanceinpatientswithmultiple

myelomaandmayactasatherapeutictarget.Clin.CancerRes.

20,847–858

47Li,D.W.etal.(2013)Hypoxiainducedmultidrugresistanceof

laryngealcancercellsviahypoxia-induciblefactor-1alpha.Asian

Pac.J.CancerPrev.14,4853–4858

48Wang,H.etal.(2014)Wogoninreverseshypoxiaresistanceofhuman

coloncancerHCT116cellsviadownregulationofHIF-1alphaand

glycolysis,byinhibitingPI3K/Aktsignalingpathway.Mol.Carcinog.

53(Suppl.1),E107–E118

49Cui,X.Y.etal.(2013)Hypoxiainfluencesstemcell-likepropertiesin

multidrugresistantK562leukemiccells.BloodCells.Mol.Dis.51,

177–184

50Ji,Z.etal.(2010)ExpressionofMDR1,HIF-1alphaandMRP1in

sacralchordomaandchordomacelllineCM–319.J.Exp.Clin.Cancer

Res.29,158

51Ding,Z.etal.(2010)Expressionandsignificanceofhypoxia-inducible

factor-1alphaandMDR1/P-glycoproteininhumancoloncarcinoma

tissueandcells.J.CancerRes.Clin.Oncol.136,1697–1707

52An,W.G.etal.(1998)Stabilizationofwild-typep53byhypoxia-

induciblefactor1alpha.Nature392,405–408

53Shoshani,T.etal.(2002)Identificationofanovelhypoxia-inducible

factor1-responsivegene,RTP801,involvedinapoptosis.Mol.Cell.

Biol.22,2283–2293

54Bruick,R.K.(2000)Expressionofthegeneencodingtheproapoptotic

Nip3proteinisinducedbyhypoxia.Proc.Natl.Acad.Sci.U.S.A.97,

9082–9087

55Sowter,H.M.etal.(2001)HIF-1-dependentregulationofhypoxic

inductionofthecelldeathfactorsBNIP3andNIXinhuman

tumors.CancerRes.61,6669–6673

56Koshiji,M.etal.(2004)HIF-1alphainducescellcyclearrestby

functionallycounteractingMyc.EMBOJ.23,1949–1956

57Jin,L.etal.(2006)TargetingofCD44eradicateshumanacute

myeloidleukemicstemcells.Nat.Med.12,1167–1174

58Jin,L.etal.(2009)Monoclonalantibody-mediatedtargetingof

CD123,IL-3receptoralphachain,eliminateshumanacutemyeloid

leukemicstemcells.CellStemCell5,31–42

59Kikushige,Y.etal.(2010)TIM-3isapromisingtargettoselectively

killacutemyeloidleukemiastemcells.CellStemCell7,708–717

60Guzman,M.L.etal.(2007)Anorallybioavailableparthenolideanalog

selectivelyeradicatesacutemyelogenousleukemiastemand

progenitorcells.Blood110,4427–4435

61Kelly,P.N.etal.(2007)Tumorgrowthneednotbedrivenbyrare

cancerstemcells.Science317,337

ReviewTrendsinPharmacologicalSciencesxxxxxxx,Vol.xxx,No.x

TIPS-1218;No.ofPages10

62Wang,L.etal.(2013)FISH+CD34+CD38–cellsdetectedinnewly

diagnosedacutemyeloidleukemiapatientscanpredicttheclinical

outcome.J.Hematol.Oncol.6,85

63Witte,K.E.etal.(2011)Highproportionofleukemicstemcellsat

diagnosisiscorrelatedwithunfavorableprognosisinchildhoodacute

myeloidleukemia.Pediatr.Hematol.Oncol.28,91–99

64vanRhenen,A.etal.(2005)Highstemcellfrequencyinacutemyeloid

leukemiaatdiagnosispredictshighminimalresidualdiseaseand

poorsurvival.Clin.CancerRes.11,6520–6527

65Gentles,A.J.etal.(2010)Associationofaleukemicstemcellgene

expressionsignaturewithclinicaloutcomesinacutemyeloid

leukemia.JAMA304,2706–2715

66(2014)NIHClinicalCenteropentocoll-aboration.CancerDiscovery4,

752

67Wang,Y.etal.(2014)Echinomycinprotectsmiceagainstrelapsed

acutemyeloidleukemiawithoutadverseeffectonhematopoieticstem

cells.Blood124,1127–1135

68Bernot,K.M.etal.(2013)TowardpersonalizedtherapyinAML:in

vivobenefitoftargetingaberrantepigeneticsinMLL-PTD-associated

AML.Leukemia27,2379–2382

69Sloma,I.etal.(2010)Insightsintothestemcellsofchronicmyeloid

leukemia.Leukemia24,1823–1833

70Mayerhofer,M.etal.(2002)BCR/ABLinducesexpressionofvascular

endothelialgrowthfactoranditstranscriptionalactivator,hypoxia

induciblefactor-1alpha,throughapathwayinvolvingphosphoinositide

3-kinaseandthemammaliantargetofrapamycin.Blood100,

3767–3775

71Zhao,F.etal.(2010)ImatinibresistanceassociatedwithBCR-ABL

upregulationisdependentonHIF-1alpha-inducedmetabolic

reprograming.Oncogene29,2962–2972

72Zhang,H.etal.(2012)HIF1alphaisrequiredforsurvival

maintenanceofchronicmyeloidleukemiastemcells.Blood119,

2595–2607

73Ng,K.P.etal.(2014)Physiologichypoxiapromotesmaintenanceof

CMLstemcellsdespiteeffectiveBCR-ABL1inhibition.Blood123,

3316–3326

74Conley,S.J.etal.(2012)Antiangiogenicagentsincreasebreastcancer

stemcellsviathegenerationoftumorhypoxia.Proc.Natl.Acad.Sci.

U.S.A.109,2784–2789

75Schwab,L.P.etal.(2012)Hypoxia-induciblefactor1alphapromotes

primarytumorgrowthandtumor–initiatingcellactivityinbreast

cancer.BreastCancerRes.14,R6

76Cordenonsi,M.etal.(2011)TheHippotransducerTAZconfers

cancerstemcell-relatedtraitsonbreastcancercells.Cell147,

759–772

77Xiang,L.etal.(2014)Hypoxia-induciblefactor1mediatesTAZ

expressionandnuclearlocalizationtoinducethebreastcancer

stemcellphenotype.Oncotarget5,12509–12527

78Chaturvedi,P.etal.(2014)Hypoxia-induciblefactor-dependent

signalingbetweentriple-negativebreastcancercellsand

mesenchymalstemcellspromotesmacrophagerecruitment.Proc.

Natl.Acad.Sci.U.S.A.111,E2120–E2129

79Lukashev,D.etal.(2001)Differentialregulationoftwoalternatively

splicedisoformsofhypoxia-induciblefactor-1alphainactivated

Tlymphocytes.J.Biol.Chem.276,48754–48763

80Lukashev,D.etal.(2006)Cuttingedge:hypoxia-induciblefactor

1alphaanditsactivation-inducibleshortisoformI.1negatively

regulatefunctionsofCD4+andCD8+Tlymphocytes.J.Immunol.

177,4962–4965

81Dang,E.V.etal.(2011)ControlofT(H)17/T(reg)balancebyhypoxia-

induciblefactor1.Cell146,772–784

82Shi,L.Z.etal.(2011)HIF1alpha-dependentglycolyticpathway

orchestratesametaboliccheckpointforthedifferentiationofTH17

andTregcells.J.Exp.Med.208,1367–1376

83Kryczek,I.etal.(2011)HumanTH17cellsarelong–livedeffector

memorycells.Sci.Transl.Med.3,104ra100

84Ben-Shoshan,J.etal.(2008)HypoxiacontrolsCD4+CD25+

regulatoryT-cellhomeostasisviahypoxia-induciblefactor-1alpha.

Eur.J.Immunol.38,2412–2418

85Facciabene,A.etal.(2011)Tumourhypoxiapromotestolerance

andangiogenesisviaCCL28andT(reg)cells.Nature475,

226–230

86Finlay,D.K.etal.(2012)PDK1regulationofmTORandhypoxia-

induciblefactor1integratemetabolismandmigrationofCD8+Tcells.

J.Exp.Med.209,2441–2453

87Doedens,A.L.etal.(2013)Hypoxia-induciblefactorsenhancethe

effectorresponsesofCD8(+)Tcellstopersistentantigen.Nat.

Immunol.14,1173–1182

88Thiel,M.etal.(2007)TargeteddeletionofHIF–1alphageneinTcells

preventstheirinhibitioninhypoxicinflamedtissuesandimproves

septicmicesurvival.PLoSONE2,e853

89Jantsch,J.etal.(2008)Hypoxiaandhypoxia-induciblefactor-1alpha

modulatelipopolysaccharide-induceddendriticcellactivationand

function.J.Immunol.180,4697–4705

90Noman,M.Z.etal.(2014)PD-L1isanoveldirecttargetofHIF-1alpha,

anditsblockadeunderhypoxiaenhancedMDSC-mediatedTcell

activation.J.Exp.Med.211,781–790

91Barsoum,I.B.etal.(2014)Amechanismofhypoxia-mediatedescape

fromadaptiveimmunityincancercells.CancerRes.74,665–674

92Curiel,T.J.etal.(2003)BlockadeofB7-H1improvesmyeloid

dendriticcell-mediatedantitumorimmunity.Nat.Med.9,562–567

93Gabrilovich,D.I.andNagaraj,S.(2009)Myeloid-derivedsuppressor

cellsasregulatorsoftheimmunesystem.Nat.Rev.Immunol.9,162–174

94Talmadge,J.E.andGabrilovich,D.I.(2013)Historyofmyeloid-

derivedsuppressorcells.Nat.Rev.Cancer13,739–752

95Corzo,C.A.etal.(2010)HIF-1alpharegulatesfunctionand

differentiationofmyeloid-derivedsuppressorcellsinthetumor

microenvironment.J.Exp.Med.207,2439–2453

96Doedens,A.L.etal.(2010)Macrophageexpressionofhypoxia-

induciblefactor-1alphasuppressesT-cellfunctionandpromotes

tumorprogression.CancerRes.70,7465–7475

97Chen,W.etal.(2010)mTORsignalingisactivatedbyFLT3kinase

andpromotessurvivalofFLT3–mutatedacutemyeloidleukemia

cells.Mol.Cancer9,292

98Gilliland,D.G.andGriffin,J.D.(2002)TherolesofFLT3in

hematopoiesisandleukemia.Blood100,1532–1542

99Sathaliyawala,T.etal.(2010)Mammaliantargetofrapamycin

controlsdendriticcelldevelopmentdownstreamofFlt3ligand

signaling.Immunity33,597–606

100Brugarolas,J.etal.(2004)RegulationofmTORfunctioninresponse

tohypoxiabyREDD1andtheTSC1/TSC2tumorsuppressorcomplex.

GenesDev.18,2893–2904

101Brugarolas,J.B.etal.(2003)TSC2regulatesVEGFthroughmTOR-

dependentand-independentpathways.CancerCell4,147–158

102Hudson,C.C.etal.(2002)Regulationofhypoxia-induciblefactor

1alphaexpressionandfunctionbythemammaliantargetof

rapamycin.Mol.Cell.Biol.22,7004–7014

103VandeVelde,S.etal.(2011)mTORlinksincretinsignalingtoHIF

inductioninpancreaticbetacells.Proc.Natl.Acad.Sci.U.S.A.108,

16876–16882

104Huang,J.etal.(2009)Pivotalroleforglycogensynthasekinase-3in

hematopoieticstemcellhomeostasisinmice.J.Clin.Invest.119,

3519–3529

105Parkin,B.etal.(2010)Acquiredgenomiccopynumberaberrationsand

survivalinadultacutemyelogenousleukemia.Blood116,4958–4967

106Joshi,S.etal.(2014)MDM2regulateshypoxichypoxia-inducible

factor1alphastabilityinanE3ligase,proteasome,andPTEN-

phosphatidylinositol3-kinase-AKT-dependentmanner.J.Biol.

Chem.289,22785–22797

107Ravi,R.etal.(2000)Regulationoftumorangiogenesisbyp53-induced

degradationofhypoxia-induciblefactor1alpha.GenesDev.14,34–44

108Falini,B.etal.(2005)Cytoplasmicnucleophosmininacutemyelogenous

leukemiawithanormalkaryotype.N.Engl.J.Med.352,254–266

109Grisendi,S.andPandolfi,P.P.(2005)NPMmutationsinacute

myelogenousleukemia.N.Engl.J.Med.352,291–292

110Chen,D.etal.(2010)Transcription-independentARFregulationin

oncogenicstress-mediatedp53responses.Nature464,624–627

111Fatyol,K.andSzalay,A.A.(2001)Thep14ARFtumorsuppressor

proteinfacilitatesnucleolarsequestrationofhypoxia-induciblefactor-

1alpha(HIF-1alpha)andinhibitsHIF-1-mediatedtranscription.

J.Biol.Chem.276,28421–28429

112Wang,H.etal.(2014)NegativeregulationofHif1aexpressionand

TH17differentiationbythehypoxia-regulatedmicroRNAmiR-210.

Nat.Immunol.15,393–401

9

113Blouin,C.C.etal.(2004)Hypoxicgeneactivationbylipopolysaccharide

inmacrophages:implicationofhypoxia-induciblefactor1alpha.Blood

103,1124–1130

114Laughner,E.etal.(2001)HER2(neu)signalingincreasestherateof

hypoxia-induciblefactor1alpha(HIF-1alpha)synthesis:novel

mechanismforHIF-1-mediatedvascularendothelialgrowthfactor

expression.Mol.Cell.Biol.21,3995–4004

115Cui,T.X.etal.(2013)Myeloid-derivedsuppressorcellsenhance

stemnessofcancercellsbyinducingmicroRNA101andsuppressing

thecorepressorCtBP2.Immunity39,611–621

116Kryczek,I.etal.(2014)IL-22(+)CD4(+)Tcellspromotecolorectal

cancerstemnessviaSTAT3transcriptionfactoractivationand

inductionofthemethyltransferaseDOT1L.Immunity40,772–784

117Lin,E.Y.etal.(2006)Macrophagesregulatetheangiogenicswitchina

mousemodelofbreastcancer.CancerRes.66,11238–11246

118Ben-Neriah,Y.andKarin,M.(2011)Inflammationmeetscancer,with

NF-kappaBasthematchmaker.Nat.Immunol.12,715–723

119Lin,E.Y.andPollard,J.W.(2007)Tumor-associatedmacrophages

presstheangiogenicswitchinbreastcancer.CancerRes.67,

5064–5066

ReviewTrendsinPharmacologicalSciencesxxxxxxx,Vol.xxx,No.x

TIPS-1218;No.ofPages10

10

献花(0)
+1
(本文系一世秋缘首藏)