来自:011600 > 馆藏分类
配色: 字号:
Biomass blended with coal combustion1
2016-03-09 | 阅:  转:  |  分享 
  
,

J

FUELCHARACTERISTICSOFSEWAGESLUDGEANDOTHER

COMBUSTIONPROCESSWITHCOAL

SUPPLEMENTALFUELSREGARDINGTHEIREFFECTONTHECO-

Th.Gerhardt,R.Cenni,V.Siegle,H.Spliethoff,K.R.G.Hein

UniversityofStuttgart,IVD,Pfaffenwaldring23,70569Stuttgart,Germany

Tel./fax:#49-711-685-3395/#49-711-685-3491

ABSTRACT

IntheEuropeancountries,andespeciallyinGermany,theco-combustionofbiomassandwaste

materialstogetherwithcoalinthepowerplantsisexpectedtofindwideapplicationinthenear

future.AttheIVDseveralkindsofsupplemental.fuelsaretestedtofindouttheircombustion

behaviourindifferentfiringsystemstogetherwiththeregularfuelshardcoalandlignitecoal.The

investigationsweredoneinbenchscalefacilitiesforbasicresearchbutalsouptopilotscale

combustionrigs.Inordertogetinformationaboutdestructionandformationofhazardousmatter

multiplevariationsofthecombustionparameterswereappliedunderconditionslikethosein

industrialfurnaces.Inthispapercharacteristicsofthefuelsarecomparedaccordingtoimmediate

analysis,elementaryanalysisandanalysisoftheashcomponents.Combustionexperiments

werecarriedoutwithvariousportionsofthermallydriedmunicipalsewagesludge.Theby-

productsofthecombustionprocesswerecollectedandbalanced.

INTRODUCTION

Theconversionofenergyfromfossilfuelsintoheatandelectricityinvolvesunavoidablythe

emissionofC02whichisknownasagreenhousegas.Theintentiontoreducetheamount

emittedtotheatmosphereleadsfirstofalltothereductionofenergyconsumption.Thenext

objectiveistoincreasetheefficiencyoftheenergyconversionprocesswhichissuccessfully

donebypowerplantdevelopmentforalongtimeanduptoahighstandardintodays

combustionsystems.Wecanusenowthishighefficientfacilitiesandsubstitutepartofthecoal

inputbyC02-neutralbiomasslikestrawandwood.

Alsowithco-fireingwastematerialsimilareffectscanbeobtained.Wasteincineratorplantshave

tobepreparedforvarioushazardousmattercomingalongwiththeinhomogeneousmixedwaste

material.Theexpensestocoverallpossiblecompositionsofwasteinthecombustionsystem

andespeciallyinthefluegascleaningsystemlowertheefficiencyfarbelowthestandardofthe

powerplants.Forspecialkindsofwastewhichoccurseparatelyandshowconstantand

homogeneouspropertiestheco-combustionwithcoalequivalenttobiomasscanachievehigher

yieldofenergycomparedtotheusualwasteincinerationsystems.Toensureadisposalwithout

higherrisksforenvironmentthecompositionofthiswastematerialshastobecarefullychecked

regardingthecontentsofhazardousmatter.Anotherreasontotreatwastematerialinexisting

combustionfacilitiesforpowergenerationisthecostsavingaspect.Additionalequipmenttoco-

firethesupplementalfuelscanbelimitedtothestorage,transportanddosingdevices.

FUELCHARACTERISTICS

AttheIVDseveralresearchprojectswithawidevarietyofexperimentswerecarriedoutonthis

topicinthelastyears.Havingstartedtheco-combustionwithbiomasslikestrawandfreshcut

woodthesupplementalfuelschangedtowastemateriallikewastewood,municipalsewage

sludgeandplasticgranulateetc.ThemainfuelswereinprincipalGermanhardcoalsandin

severalplacesalsoGermanlowrankcoals(browncoal)havebeenused.Table1showsan

overviewontheaveragefuelpropertiesofsupplementalfuelscomparedtothoseoftheregular

fuelsandthemixedwaste.Theresultsofimmediateanalysisandelementaryanalysisare

calculatedtothebaseofdrysubstanceinordertobecomparable.

Thetypicalmunicipalhouseholdwastedeliveredtotheincinerationplanthasabout30%

moisture.ThedrysubstanceconsistsofnearlySO%volatileswhichisalmostthecomplete

amountofcombustibles.Besidesasmallamountoffixedcarbontherestofthewastematerialis

mineralsubstancedeterminedasash.ThefuelcalledRDFisanabbreviationforrefusederived

fuelandmeansafractionofnormalhouseholdwastewhererecyclablematerialissortedoutand

whichisgroundtoahomogeneousparticlesizeforbetterhandlingindifferentcombustion

systems.Theportionofashdecreasedcomparedtothenormalwastetoalevelof14%and

thereforethelowerheatingvalue(LHV)isnearlydouble.Thisdifferenceisevenenlargedby

lowermoisturecontentsofabout15%oftheRDF.

197

Amaterialnormallyincludedinthemunicipalwasteisplastic.Duetoseparatewastecollection

orinindustrialproductionprocessesthismaterialsometimesoccursseparatelyKnowntohave

bigenergycontentcombustioncanbeareasonablepossibilitytodisposemixedorminorquality

fractionswhicharenotworthtorecycleintonewproducts.Thedifferentkindsofplasticare

verysimilarregardingtheircombustionproperties.Thehighdensitypolyethyleneistakenasa

sampletoshowthem.Noticeableisthatthecompletedrysubstanceconsistsofonlyvolatile

matter.Ashismissingtotallyexceptsomereinforcedmaterialswithfibreglass[I].

Asaby-productofthecokeovenprocessthetaroilofhardcoalswastestedintheIVDfurnace

concerningitsabilitytoreducenitrogeneoxidesasareductionfuelbyfuelstaging.Beingaliquid

fuelitofferedbestpossibilitiestooptimizethemixingconditionsinthereactionzones.SOit

showedverygoodresultsinminimizationofhazardousmatterwiththeprimarymeasure,fuel

staging[I].Ontheotherhandcombustionunderhightemperatureisasuitablemethodto

disposethiscarcinogenicorganicsubstance.

Comingtothesewagesludgeweseeasupplementalfuelwhichisverysimilarinthefuel

characteristicstostrawandwoodregardingonlytheorganicshare.Theanalysisshowsthe

typicaldataofsludgefrommunicipalwastewatertreatment.Anobviousdifferencetostrawand

woodisthehighashcontentalsoresponsibleforthereducedLHV.Asaproductofacleaning

processthevariationofsinglepropertiescanbehighandsothevaluesshownintablearean

averagefrom15differentsludges.Evenifextremedeviationsarepossiblethestandarddeviation

ismostlyinbetweenkIO%.Inthewastewatertreatmentthesewagesludgeisseparatedwitha

contentofdrysubstanceabout5%.Mechanicaldewateringbycentrifugeorfilterpressare

increasingthatuptorangebetween20and45%,accordingtoareductionofvolumeandweight

of80to90%.Foralongerstorageandabettersuitabilitytohandlethesludgeanadditional

thermaldryingupto90%ofdrysubstanceiscarriedoutinmoreandmorecases.

Theanalysisforstrawandwoodareonbehalfofadatabasewithmorethan100differentkinds

ofbiomasswhichcanberoughlydevidedinthistwogroups.Acloserdescriptionisgivenina

publicationofV.Siegleinthisconference[2].Aswellthesematerialsaretheoriginsoftheregular

fossilfuelsdiscussedasthemainfuelsinthiscontext.Duringthecoalificationthebiomass

turnedfirsttopeatthantoligniteandbrowncoalbeforehardcoalandanthraciteareformed.Due

tothisprocessthebigcontentofvolatilematterinbiomassistransformedmoreandmoreinto

fixedcarbonandthewatercontent,about50%inthebrowncoal,isreducedbyhighpressure

andtempcratureinthemines.

Figure1showstheenergycontentoftheorganicpartofthefuels.Atfirstsightanincreasing

fixedcarboncontent(Waf)correspondingtoadecreasingshareofvolatilematterinthe

combustiblesasshowninfigure2increasesalsothelowerheatingvalue.Thisiscorrectforthe

groupofbiomassbasedfuelsstartingfromstrawgoingfurthertobrowncoal,hardcoal,

anthraciteandchar.Iftheoriginoftheorganicsubstancehoweverisdifferentfromthebiomass

deviationsarenoticeable.Forthesewagesludgeforexamplethehighercontentofvolatilematter

comparedtothebiomassiscomingalongwithahigherenergycontent.Theplasticmaterialis

totallydifferentinitsbehaviourconsisting100%ofvolatilematteritshowsthemaximum

heatingvalueofmorethan40MJkg.

EXPERIMENTAL

\

\

.

TheIVDoperatesa500kWpilotscaletestfacilityforpulverizedcoalcombustion.Itisa

verticalfurnacewithaninternaldiameterof0.7mandanactivelengthof7m.Thechamberis

completelywatercooledandthefirst4mbeginningwiththepositionoftheburnerontopare

refractorylined.Intheteststobedescribedinthispaperespeciallytheashremovalsystemisof

interest.Accordingtotheindustrialplantsthereisabottomashhopperforcoarseparticlesand

slagdrops.Theairpreheaterwiththeneedofsmallflowratestorealizetheheattransferisthe

nextstepwhereparticlesareseparatedfromthefluegas.Therangeofparticlesizecollectedhere

isstartingfrom10pnupto1mm.Operationtemperaturethereinisabout500°Conthesideof

thefluegas.Thefirstseparationofflyashisdoneinacyclonecollectingparticlesinthemge

between5pmand100pmatthetemperatureabout350°C.Theflyashinherehassimilar

propertiestothatofelectrostaticprecipitators(ESP)inthepowerplant.Finallythefluegas

passesabagfilterwithanadjustabletemperatureupto200°C.Thefinedustfoundinthis

deviceisinseveralwayscomparabletoscrubberresiduesoflargescaleplants.

Thepurposeofthetestswastoobtainknowledgeaboutthechangesinoperationoftheplant

andinqualityofthesolidcombustionresiduesbyaddingthermallydriedmunicipalsewage

sludgeintothepulverizedcoalcombustionsystem.Startingfromthepurecoalcombustion

sewagesludgewasaddedinincreasingshareof5,IO,15,20,and25%ofthethermalinput.The

experimentswerecarriedoutforadurationofIOto20hoursateachadjustmentandash

198

\

I

b

i

balanceswereperformedevery4hours.Duetothehighashcontent,whichisnearly5timesthat

Ofthecoal,andonlyonethirdoftheenergycontent,everyMWproducedbysewagesludge

causesIStimestheashofthecoalcombustion.Figure3showstherelationbetweentheshare

Offuelmassflowandashmassflowindependenceontheshareofthermalpowerproducedby

thesewagesludgeinthegivencombinationoffuels.

RESULTSANDDISCUSSION

Figure4showsthe10mainelementsintheashofthecoalincomparisonwiththecontentsof

theminthesewagesludgeash.Tofindaninfluenceoftheco-combustionitisreasonabletolook

atthoseelementswithahigherconcentrationandwhatisevenmoreimportantwithadifference

inconcentrationbetweenthetwofuels.Asafirstexampletheironwaschosenbecauseitis

expectedtoshowonlysmalldeviationfromthetheoreticallycalculatedaverageconcentrationsin

theashfractions.Evennoenrichmentofironspeciesindependenceonparticlesizeor

separationtemperatureinthecollectingdevicesareassumed.Theresultsdrawninfigure5

demonstratethis.Theincreasinglinerepresentsthetheoreticalaverageconcentrationofironthe

combustionresidueshouldhaveandthescatteredpointsareshowingthemeasured

concentrations.Thesymbolsdistinguishbetweenbottomash,airpreheaterresidueandflyash

outofthecycloneandthebagfilter.Itisobviousthatthereisnosignificantenrichmentor

volatilizationofthiselementandthedeviationcharacterizesthereliabilityofthemeasureddata.

Twoelementswhicharetypicallyhigherconcentratedinthesewagesludgeashthaninthecoal

arethecalciumandthephosphorus.Inordertoavoidahigherriskofslaggingandfoulingthese

newcomponentsfortheplantareofmajorinterest.Thccalciumdescribedinfigure6followsas

wellthelineoftheoreticalavengeconcentration.Thetrianglesrepresentingthebagfilter

concentrationsareclearlybelowtheaverageandthebottomashtogetherwiththeairpreheater

retainsmostofthecalciuminthefrontpartofthefluegaspath.Intheorythecalciumisknown

tolowertheashmeltingpointwhichcangiveanexplanationforagglomerationofparticleswith

enrichedCa-contentsinthehotpartofthefacility.Adifferentbehaviourisdeterminedfor

phosphoruswhichoccursonlyinsewagesludge.Aswecanseeinfigure7themeasurementof

thefiltersamplesclearlyshowanenrichmentinthecolderendofthefluegasway.Furthermore

thecalculatedaverageconcentrationisnotachieved.Apossibleexplanationforthemissing

phosphoruscanbegivenbyspecieswhicharevolatilizingduringthecombustionandcondensate

inanypartofthepipesystem.Incaseslikethatthetimetoreachasteadyconditionregarding

inputandoutputmaybemuchlongerthanthe20hoursmaximumofthetests.Toconfirmthis

assumptionconcentrationsofphosphoruswillbemeasuredindependenceonthedurationof

oneexperimentaladjustment.

Thestrongesteffectofenrichmentinthecolderpartofthefluegaspathisobserved,as

expected,withthemercury.Alsotheeffectofvolatilizingisclearlyproofedbythisexample

showninfigure8.About50%ofthemercuryfedintotheplantwithfuelsisleavingitas

elementaryHginthefluegas.TheboilingpointofHgat358°Cishigherthenthefluegas

temperatureinthestack,butintherangedownto-39°Citisliquidandthereforeitvaporizes

partlyintothefluegasatmosphere.Amaximumsaturationofmercuryinairisgivenat100g/m3

ifthetemperatureis200°C.Sothereisnolimitationcausedbythiseffect.TheSO%ofmercury

capturedintheflyasharemainlyboundinHgSandHgCI.Theenrichmentonthesurfaceofthe

smallparticlesinthebagfilterishigherthanthatofanyothermeasuredcomponent.Evensothe

biggestamountoftheHgintheresidueswascapturedinthecycloneashbecausetherewas

foundthebiggestshareoftheashmassflow.

Figure9showsanoverviewoftheenrichmentbehaviourinthebagfilteroftheIVDplantforall

substancesmeasuredinthesolidresidues.Theyaresortedinorderofthecalculatedenrichment

factorwhichcomparestheelementconcentrationinthebagfiltertotheaverageconcentrationof

everyflameadjustment.Theconcentrationinthebagfilterisdevidedbytheaverage

concentrationand1issubstracted.So0meansnoenrichment,positivenumbersarestandingfor

ahigherconcentrationinthefilterandnegativeforalowerone.Finallythemeanvaluesoverall

oftheadjustmentsarecalculatedanddrawninthediagram.Therangeoff20%(-0.2to0.2)can

notproofasignificantenrichmentbecauseofthescatteringofthemeasurements.Butespecially

theheavymetalsfoundastraceelementsinthefuelsaredeterminedtobefoundinhigher

concentrationsinthefilter.Someofthemainashcomponentsdoalsoshowanyenrichment

howevernotsodistinct.Potassium,phosphorusandsodiumconcentrateinthefilterandthe

calciumasmentionedisfoundmoreinthefrontofthefluegaspath.

Thedistributionofashbetweenthevarioushopperswasabout20%inthebottomashhopper,

9%intheairpreheaterand16%inthebagfilter.Thebiggestamountwasfoundinthecyclone

199

with54%ofthewholeash.Thisdistributionwasconstanteveniftheashflowwiththehighest

shareofsewagesludgewasalmostfivetimesthatofthecoalcombustion.

CONCLUSIONS

Theanalysisofvariousmaterialsintendedtobeusedordisposedassupplementalfuelsincoal

firedpowerplantshasshownthatthereisalwaysarangeoftheresultssometimeswithabig

gapbetweenminimumandmaximum.Thisisconsistentespeciallywiththenaturalproductslike

biomassoranymixedwastematerial.Neverthelesstheinvestigatedfuels,biomassandmunicipal

sewagesludgeshowedquiteconstantandhomogeneouspropertiesexceptingsomeloadscoming

fromanyspecialtreatment.Adecreasingcontentofvolatilematterintheorganicpartwas

comingalongwithanincreasingheatingvalueatleastforthegroupofbiomassoriginatedfuels,

peatandcoal.

Mostnoticeableforthesewagesludgewasthehighestshareofash,nearly50%ofthedry

substance,comparedtoalltheotherfuels.Inthatscoreattentionwasturnedtothebehaviourof

thecompoundsinashduringthecombustionprocess.Theincreasingshareofsewagesludgeup

toalevelof25%ofthethermalinput,correspondingto80%sewagesludgeashinthewhole

ash,hadnosignificanteffectonthedistributionbetweenthedifferentashremovalsystems.

Eveniftheashamountis5timesbiggerthanthatofthecoalcombustion.TheheavymetalsHg,

Zn,Pb,Ni,CuandCdshowedanenrichmentinthebagfilterattheendofthefluegaspath

whichwasonlyforthemercuryclearlyproportionaltothesewagesludgeshare.The

concentrationsofthemainash-componentsaremoreconsistent.Thebiggestdifferencebetween

theashesofsewagesludgeandcoalaretheelementscalciumandphosphoruswhicharefound

onlyoratleastinahighershareinthesewagesludge.Onlypotassium,phosphorusandsodium

areenrichedinthefineashofthefilter.Thecalciumhoweverisfoundinhigherconcentrationsin

thehoppersofthehotpartofthefacility.

Forsomeelementssignificantamountscouldnotbemeasuredinthesolidresidues.Incaseofthe

highvolatiletraceelementmercuryitisobviousthatabout50%oftheinputisleavingtheplant

inanelementaryformviathestackwiththefluegas.Incaseofthephosphorusvaporizationand

condensationofsomespeciesaresuspectedtoholdbackthiselementinthepipesystemuntila

steadyconditionisachieved.Furthermeasurementswillhavetoconfirmthat,

REFERENCES

[l]

Th.Gerhardt,R.Cenni,H.Spliethoff,K.R.G.Hein,UniversityofStuttgart,IVD:

CombustionBehaviourofCoal-WasteFlamesinPulverizedFuelFiringSystems.Inflame-

MeasurementsinaPilotScaleFacilitywithHardCoalandDriedSewageSludge;

InternationalTechnicalConferenceonCoalUtilizationandFuelSystems;March,1997,

Clearwater,Florida,USA

[2]V.Siegle,H.Spliethoff,K.R.G.Hein,UniversityofStuttgart,IVD:Characterisationand

PreparationofBiomassforCo-CombustionwithCoal;AmericanChemicalSociety

DivisionofFuelChemistry,Spring1998MeetingMarch29-April2,Dallas,Texas,USA

Figure1:Energycontentoffuels(waf)

masssludgeRDFcoalcoalcarbonmaterial

Figure2:Contentofvolatilematterintheorganicsubstance

100

7

.-80

E

-f70

''060

s?

50

340

330

e

9

-.-

3-20

310

0

carboncoalcoalmassRDFsludgematerlal

Figure3:Relationbetweenshareoffuelmass,Figure4:Elementsintheashof

ashamountandshareofthermal

power

9090

8080

7070

6060

5050

4040

3030

2020

10

sha{$

00

sewagesludgeshare

ofthermalinputin%

051015202530

sewagesludgeandhardcoal.

Kpb

!NaKthardcoal

Rmsewaeslude

AI-

-.

05101520

shareintheash[%]

201

Figure5:Ironconcentrationintheash

Fig1

Zn

Pb

Ni

cu

K

Cd

P

Na

AI

ire9:Enrichmentofelementsin

thebagfilter

shareofthesewagesludgeashinX

Figure7:Phosphorusconcentrationintheash

shareofthesewagesludgeashin96

Figure8:Mercuryconcentrationintheash

18

16

14

12

10

8

6

4

2

0

0102030405060708090100

shareofthesewagesludgeashinX

202

献花(0)
+1
(本文系011600首藏)