配色: 字号:
A Fast Approximation of the Bilateral Filter using a Signal Processing Approach
2016-09-11 | 阅:  转:  |  分享 
  
AFastApproximationoftheBilateralFilter

usingaSignalProcessingApproach

SylvainParisandFr′edoDurand

MassachusettsInstituteofTechnology

ComputerScienceandArtificialIntelligenceLaboratory

Abstract.Thebilateralfilterisanonlinearfilterthatsmoothesasignal

whilepreservingstrongedges.Ithasdemonstratedgreate?ectivenessfor

avarietyofproblemsincomputervisionandcomputergraphics,anda

fastversionhasbeenproposed.Unfortunately,littleisknownaboutthe

accuracyofsuchacceleration.Inthispaper,weproposeanewsignal-

processinganalysisofthebilateralfilter,whichcomplementstherecent

studiesthatanalyzeditasaPDEorasarobuststatisticsestimator.

Importantly,thissignal-processingperspectiveallowsustodevelopa

novelbilateralfilteringaccelerationusingadownsamplinginspaceand

intensity.Thisa?ordsaprincipledexpressionoftheaccuracyintermsof

bandwidthandsampling.Thekeytoouranalysisistoexpressthefilter

inahigher-dimensionalspacewherethesignalintensityisaddedtothe

originaldomaindimensions.Thebilateralfiltercanthenbeexpressed

assimplelinearconvolutionsinthisaugmentedspacefollowedbytwo

simplenonlinearities.Thisallowsustoderivesimplecriteriafordown-

samplingthekeyoperationsandtoachieveimportantaccelerationofthe

bilateralfilter.Weshowthat,forthesamerunningtime,ourmethodis

significantlymoreaccuratethanpreviousaccelerationtechniques.

1Introduction

ThebilateralfilterisanonlinearfilterproposedbyTomasiandManduchito

smoothimages[1].Ithasbeenadoptedforseveralapplicationssuchastexture

removal[2],dynamicrangecompression[3],andphotographenhancement[4,5].

Ithasalsobeadaptedtootherdomainssuchasmeshfairing[6,7],volumetric

denoising[8]andexposurecorrectionofvideos[9].Thislargesuccessstemsfrom

severalorigins.First,itsformulationandimplementationaresimple:apixelis

simplyreplacedbyaweightedmeanofitsneighbors.Anditiseasytoadaptto

agivencontextaslongasadistancecanbecomputedbetweentwopixelvalues

(e.g.distancebetweenhairorientationsin[10]).Thebilateralfilterisalsonon-

iterative,i.e.itachievessatisfyingresultswithonlyasinglepass.Thismakes

thefilter’sparametersrelativelyintuitivesincetheiractiondoesnotdependon

thecumulatede?ectsofseveraliterations.

Ontheotherhand,thebilateralfilterisnonlinearanditsevaluationiscom-

putationallyexpensivesincetraditionalacceleration,suchasperformingconvolu-

tionafteranFFT,arenotapplicable.Elad[11]proposesanaccelerationmethod

usingGauss-Seideliterations,butitonlyapplieswhenmultipleiterationsofthe

2

filterarerequired.DurandandDorsey[3]describealinearizedversionofthe

filterthatachievesdramaticspeed-upsbydownsamplingthedata,achieving

runningtimesunderonesecond.Unfortunately,thistechniqueisnotgrounded

onfirmtheoreticalfoundations,anditisdi?culttoevaluatetheaccuracythat

issacrificed.Inthispaper,webuildonthisworkbutweinterpretthebilateral

filterintermsofsignalprocessinginahigher-dimensionalspace.Thisallowsus

toderiveanimprovedaccelerationschemethatyieldsequivalentrunningtimes

butdramaticallyimprovesnumericalaccuracy.

ContributionsThispaperintroducesthefollowingcontributions:

–Aninterpretationofthebilateralfilterinasignalprocessingframework.

Usingahigherdimensionalspace,weformulatethebilateralfilterasacon-

volutionfollowedbysimplenonlinearities.

–Usingthishigherdimensionalspace,wedemonstratethattheconvolution

computationcanbedownsampledwithoutsignificantlyimpactingtheresult

accuracy.Thisapproximationtechniqueenablesaspeed-upofseveralorders

ofmagnitudewhilecontrollingtheerrorinduced.

2RelatedWork

ThebilateralfilterwasfirstintroducedbySmithandBradyunderthename

“SUSAN”[12].ItwasrediscoveredlaterbyTomasiandManduchi[1]whocalled

itthe“bilateralfilter”whichisnowthemostcommonlyusedname.Thefilter

replaceseachpixelbyaweightedaverageofitsneighbors.Theweightassigned

toeachneighbordecreaseswithboththedistanceintheimageplane(thespatial

domainS)andthedistanceontheintensityaxis(therangedomainR).Using

aGaussianG

σ

asadecreasingfunction,andconsideringagrey-levelimageI,

theresultI

bf

ofthebilateralfilterisdefinedby:

I

bf

p

=

1

W

bf

p

summationdisplay

q∈S

G

σ

s

(||p?q||)G

σ

r

(|I

p

?I

q

|)I

q

(1a)

withW

bf

p

=

summationdisplay

q∈S

G

σ

s

(||p?q||)G

σ

r

(|I

p

?I

q

|)(1b)

Theparameterσ

s

definesthesizeofthespatialneighborhoodusedtofiltera

pixel,andσ

r

controlshowmuchanadjacentpixelisdownweightedbecauseof

theintensitydi?erence.W

bf

normalizesthesumoftheweights.

Barash[13]showsthatthetwoweightfunctionsareactuallyequivalentto

asingleweightfunctionbasedonadistancedefinedonS×R.Usingthisap-

proach,herelatesthebilateralfiltertoadaptivesmoothing.Ourworkfollowsa

similarideaandalsousesS×Rtodescribebilateralfiltering.Ourformulationis

nonethelesssignificantlydi?erentbecausewenotonlyusethehigher-dimensional

spaceforthedefinitionofadistance,butwealsouseconvolutioninthisspace.

Elad[11]demonstratesthatthebilateralfilterissimilartotheJacobialgorithm,

withthespecificitythatitaccountsforalargerneighborhoodinsteadoftheclos-

estadjacentpixelsusuallyconsidered.Buadesetal.[14]exposeanasymptotic

analysisoftheYaroslavskyfilter[15]whichisaspecialcaseofthebilateralfil-

terwithastepfunctionasspatialweight.Theyprovethatasymptotically,the

3

YaroslavskyfilterbehavesasthePerona-Malikfilter,i.e.italternatesbetween

smoothingandshockformationdependingonthegradientintensity.Durandand

Dorsey[3]casttheirstudyintotherobuststatisticsframework[16,17].They

showthatthebilateralfilterisaw-estimator[17](p.116).Thisexplainsthe

roleoftherangeweightintermsofsensitivitytooutliers.Theyalsopointout

thatthebilateralfiltercanbeseenasanextensionofthePerona-Malikfilter

usingalargerneighborhood.Mr′azeketal.[18]relatebilateralfilteringtoalarge

familyofnonlinearfilters.Fromasingleequation,theyexpressfilterssuchas

anisotropicdi?usionandstatisticalestimatorsbyvaryingtheneighborhoodsize

andtheinvolvedfunctions.Themaindi?erencebetweenourstudyandexisting

workisthatthepreviousapproacheslinkbilateralfilteringtoanothernonlinear

filterbasedonPDEsorstatisticswhereaswecastourstudyintoasignalprocess-

ingframework.Wedemonstratethatthebilateralfiltercanbemainlycomputed

withlinearoperations,thenonlinearitiesbeinggroupedinafinalstep.

Severalarticles[11,14,19]improvethebilateralfilter.Theysharethesame

idea:Byexploitingthelocal“slope”oftheimageintensity,itispossibletobetter

representthelocalshapeofthesignal.Thus,theydefineamodifiedfilterthat

betterpreservetheimagecharacteristicse.g.theyavoidtheformationofshocks.

Wehavenotexploredthisdirectionsincetheformulationbecomessignificantly

morecomplex.Itishoweveraninterestingavenueforfuturework.

Theworkmostrelatedtooursarethespeed-uptechniquesproposedby

Elad[11]andDurandandDorsey[3].Elad[11]usesGauss-Seideliterationsto

acceleratetheconvergenceofiterativefiltering.Unfortunately,noresultsare

shown–andthistechniqueisonlyusefulwhenthefilterisiteratedtoreachthe

stablepoint,whichisnotitsstandarduseofthebilateralfilter(oneiteration

oronlyafew).DurandandDorsey[3]linearizethebilateralfilterandpropose

adownsamplingschemetoacceleratethecomputationdowntofewsecondsor

less.However,notheoreticalstudyisproposed,andtheaccuracyoftheapprox-

imationisunclear.Incomparison,webaseourtechniqueonsignalprocessing

groundswhichhelpustodefineanewandmeaningfulnumericalscheme.Our

algorithmperformslow-passfilteringinahigher-dimensionalspacethanDurand

andDorsey’s[3].Thecostofahigher-dimensionalconvolutioniso?setbythe

accuracygain,whichyieldsbetterperformanceforthesameaccuracy.

3SignalProcessingApproach

Wedecomposethebilateralfilterintoaconvolutionfollowedbytwononlineari-

ties.Tocastthefilterasaconvolution,wedefineahomogeneousintensitythat

willallowustoobtainthenormalizationtermW

bf

p

asanhomogeneouscompo-

nentafterconvolution.Wealsoneedtoperformthisconvolutionintheproduct

spaceofthedomainandtherangeoftheinputsignal.ObservingEquations(1),

thenonlinearitycomesfromthedivisionbyW

bf

andfromthedependencyon

thepixelintensitiesthroughG

σ

r

(|I

p

?I

q

|).Westudyeachpointseparatelyand

isolatetheminthecomputationflow.

4

3.1HomogeneousIntensity

AdirectsolutiontohandlethedivisionistomultiplybothsidesofEquation(1a)

byW

bf

p

.Thetwoequationsarethenalmostsimilar.Weunderlinethispointby

rewritingEquations(1)usingtwo-dimensionalvectors:

?

?

W

bf

p

I

bf

p

W

bf

p

?

?

=

summationdisplay

q∈S

G

σ

s

(||p?q||)G

σ

r

(|I

p

?I

q

|)

?

?

I

q

1

?

?

(2)

Tomaintainthepropertythatthebilateralfilterisaweightedmean,weintro-

duceafunctionWwhosevalueis1everywhere:

?

?

W

bf

p

I

bf

p

W

bf

p

?

?

=

summationdisplay

q∈S

G

σ

s

(||p?q||)G

σ

r

(|I

p

?I

q

|)

?

?

W

q

I

q

W

q

?

?

(3)

Byassigningacouple(W

q

I

q

,W

q

)toeachpixelq,weexpressthefiltered

pixelsaslinearcombinationsoftheiradjacentpixels.Ofcourse,wehavenot

“removed”thedivisionsincetoaccesstheactualvalueoftheintensity,the

firstcoordinate(WI)hasstilltobedividedbythesecondone(W).Thiscanbe

comparedwithhomogeneouscoordinatesusedinprojectivegeometry.Addingan

extracoordinatetoourdatamakesmostofthecomputationpipelinecomputable

withlinearoperations;adivisionismadeonlyatthefinalstage.Inspiredbythis

parallel,wecallthecouple(WI,W)thehomogeneousintensity.

AlthoughEquation(3)isalinearcombination,thisdoesnotdefinealinear

filteryetsincetheweightsdependontheactualvaluesofthepixels.Thenext

sectionaddressesthisissue.

3.2TheBilateralFilterasaConvolution

IfweignorethetermG

σ

r

(|I

p

?I

q

|),Equation(3)isaclassicalconvolutionbya

Gaussiankernel:(W

bf

I

bf

,W

bf

)=G

σ

s

?(WI,W).Buttherangeweightdepends

onI

p

?I

q

andthereisnosummationonI.Toovercomethispoint,weintroduce

anadditionaldimensionζandsumoverit.WiththeKroneckersymbolδ(ζ)

(1ifζ=0,0otherwise)andRtheintervalonwhichtheintensityisdefined,we

rewriteEquation(3)using

bracketleftbig

δ(ζ?I

q

)=1

bracketrightbig

?

bracketleftbig

ζ=I

q

bracketrightbig

:

?

?

W

bf

p

I

bf

p

W

bf

p

?

?

=

summationdisplay

q∈S

summationdisplay

ζ∈R

G

σ

s

(||p?q||)G

σ

r

(|I

p

?ζ|)δ(ζ?I

q

)

?

?

W

q

I

q

W

q

?

?

(4)

Equation(4)isasumovertheproductspaceS×R.Wenowfocusonthisspace.

WeuselowercasenamesforthefunctionsdefinedonS×R.TheproductG

σ

s

G

σ

r

definesaGaussiankernelg

σ

s



r

onS×R:

g

σ

s



r

:(x∈S,ζ∈R)mapsto→G

σ

s

(||x||)G

σ

r

(|ζ|)(5)

FromtheremainingpartofEquation(4),webuildtwofunctionsiandw:

i:(x∈S,ζ∈R)mapsto→I

x

(6a)

w:(x∈S,ζ∈R)mapsto→δ(ζ?I

x

)W

x

(6b)

5

Thefollowingrelationsstemdirectlyfromthetwopreviousdefinitions:

I

x

=i(x,I

x

)andW

x

=w(x,I

x

)and?ζnegationslash=I

x

,w(x,ζ)=0(7)

ThenEquation(4)isrewrittenas:

?

?

W

bf

p

I

bf

p

W

bf

p

?

?

=

summationdisplay

(q,ζ)∈S×R

g

σ

s



r

(p?q,I

p

?ζ)

?

?

w(q,ζ)i(q,ζ)

w(q,ζ)

?

?

(8)

Theaboveformulacorrespondstothevalueatpoint(p,I

p

)ofaconvolution

betweeng

σ

s



r

andthetwo-dimensionalfunction(wi,w):

?

?

W

bf

p

I

bf

p

W

bf

p

?

?

=

?

?

g

σ

s



r

?

?

?

wi

w

?

?

?

?

(p,I

p

)(9)

Accordingtotheaboveequation,weintroducethefunctionsi

bf

andw

bf

:

(w

bf

i

bf

,w

bf

)=g

σ

s



r

?(wi,w)(10)

Thus,wehavereachedourgoal.Thebilateralfilterisexpressedasaconvolution

followedbynonlinearoperations:

linear:(w

bf

i

bf

,w

bf

)=g

σ

s



r

?(wi,w)(11a)

nonlinear:I

bf

p

=

w

bf

(p,I

p

)i

bf

(p,I

p

)

w

bf

(p,I

p

)

(11b)

Thenonlinearsectionisactuallycomposedoftwooperations.Thefunctions

w

bf

i

bf

andw

bf

areevaluatedatpoint(p,I

p

).Wenamethisoperationslicing.

Thesecondnonlinearoperationisthedivision.Inourcase,slicinganddivision

commutei.e.theresultisindependentoftheirorderbecauseg

σ

s



r

ispositive

andwvaluesare0and1,whichensuresthatw

bf

ispositive.

3.3Intuition

Togainmoreintuitionaboutourformulationofthebilateralfilter,wepropose

aninformaldescriptionoftheprocessbeforediscussingfurtheritsconsequences.

ThespatialdomainSisaclassicalxyimageplaneandtherangedomain

Risasimpleaxislabelledζ.Thewfunctioncanbeinterpretedasthe“plot

inthexyζspaceofζ=I(x,y)”i.e.wisnulleverywhereexceptonthepoints

(x,y,I(x,y))whereitisequalto1.Thewiproductissimilartow.Insteadof

usingbinaryvalues0or1to“plotI”,weuse0orI(x,y)i.e.itisaplotwitha

penwhosebrightnessequalstheplottedvalue.

Thenusingthesetwofunctionswiandw,thebilateralfilteriscomputedas

follows.First,we“blur”wiandwi.e.weconvolvewiandwwithaGaussian

definedonxyζ.Thisresultsinthefunctionsw

bf

i

bf

andw

bf

.Foreachpoint

6

x

ζ

x

ζ

x

ζ

x

ζ

x

ζ

samplinginthexζspace

space(x)

range(

ζ

)

Gaussianconvolution

division

slicing

0

0.2

0.4

0.6

0.8

1

020406080100120

w

w

bf

i

bf

w

bf



wi

0

0.2

0.4

0.6

0.8

1

020406080100120

Fig.1.Ourcomputationpipelineappliedtoa1Dsignal.Theoriginaldata(toprow)

arerepresentedbyatwo-dimensionalfunction(wi,w)(secondrow).Thisfunctionis

convolvedwithaGaussiankerneltoform(w

bf

i

bf

,w

bf

)(thirdrow).Thefirstcomponent

isthendividedbythesecond(fourthrow,blueareaisundefinedbecauseofnumerical

limitation,w

bf

≈0).Thenthefinalresult(lastrow)isextractedbysamplingthe

formerresultatthelocationoftheoriginaldata(showninredonthefourthrow).

ofthexyζspace,wecomputei

bf

(x,y,ζ)bydividingw

bf

(x,y,ζ)i

bf

(x,y,ζ)by

w

bf

(x,y,ζ).Thefinalstepistogetthevalueofthepixel(x,y)ofthefiltered

imageI

bf

.Thisdirectlycorrespondstothevalueofi

bf

at(x,y,I(x,y))which

isthepointwheretheinputimageIwas“plotted”.Figure1illustratesthis

processonasimple1Dimage.

4FastApproximation

WehaveshownthatthebilateralfiltercanbeinterpretedasaGaussianfilterin

aproductspace.Ouraccelerationschemedirectlyfollowsfromthefactthatthis

operationisalow-passfilter.(w

bf

i

bf

,w

bf

)isthereforeessentiallyaband-limited

functionwhichiswellapproximatedbyitslowfrequencies.

Usingthesamplingtheorem[20](p.35),itissu?cienttosamplewitharate

atleasttwiceshorterthanthesmallestwavelengthconsidered.Inpractice,we

downsample(wi,w),performtheconvolution,andupsampletheresult:

(w



i



,w



)=downsample(wi,w)(12a)

(w

bf



i

bf



,w

bf



)=g

σ

s



r

?(w



i



,w



)(12b)

(w

bf

↓↑

i

bf

↓↑

,w

bf

↓↑

)=upsample(w

bf



i

bf



,w

bf



)(12c)

7

Therestofthecomputationremainsthesameexceptthatwesliceanddivide

(w

bf

↓↑

i

bf

↓↑

,w

bf

↓↑

)insteadof(w

bf

i

bf

,w

bf

),usingthesame(p,I

p

)points.Sinceslicing

occursatpointswherew=1,itguaranteesw

bf

≥g

σ

s



r

(0),whichensuresthat

wedonotdividebysmallnumbersthatwoulddegradeourapproximation.

Weusebox-filteringfortheprefilterofthedownsampling(a.k.a.average

downsampling),andlinearupsampling.Whilethesefiltersdonothaveperfect

frequencyresponses,theyo?ermuchbetterperformancesthanschemessuchas

tri-cubicfilters.

4.1Evaluation

Toevaluatetheerrorinducedbyourapproximation,wecomparetheresult

I

bf

↓↑

fromthefastalgorithmtoI

bf

obtainedfromEquations(1).Forthispur-

pose,wecomputethepeaksignal-to-noiseratio(PSNR)consideringR=[0;1]:

PSNR(I

bf

↓↑

)=?10log

10

parenleftbigg

1

|S|

summationtext

p∈S

vextendsingle

vextendsingle

vextendsingleI

bf

↓↑

(p)?I

bf

(p)

vextendsingle

vextendsingle

vextendsingle

2

parenrightbigg

.

Wehavechosenthreeimagesasdi?erentaspossibletocoverabroadspec-

trumofcontent.Weuse(seeFigure4):

–Anartificialimagewithvariousedgesandfrequencies,andwhitenoise.

–Anarchitecturalpicturestructuredalongtwomaindirections.

–Andaphotographofanaturalscenewithamorestochasticstructure.

Theboxdownsamplingandlinearupsamplingschemesyieldverysatisfying

resultswhilebeingcomputationallye?cient.Weexperimentedseveralsampling

rates(s

s

,s

r

)forS×R.Themeaningfulquantitiestoconsideraretheratios

parenleftBig

s

s

σ

s

,

s

r

σ

r

parenrightBig

thatindicatehowmanyhighfrequenciesweignorecomparedtothe

bandwidthofthefilterweapply.Smallratioscorrespondtolimitedapproxima-

tionsandhighratiostomoreaggressivedownsamplings.Aconsistentapproxi-

mationisasamplingrateproportionaltotheGaussianbandwidth(i.e.

s

s

σ

s



s

r

σ

r

)

toachievesimilaraccuracyonthewholeS×Rdomain.Theresultsplottedin

Figure2showthatthisremarkisgloballyvalidinpractice.Acloserlookat

theplotsrevealsthatScanbeslightlymoreaggressivelydownsampledthanR.

Thisisprobablyduetothenonlinearitiesandtheanisotropyofthesignal.

0.40.20.10.050.025

64

32

16

8

4

0.40.20.10.050.025

64

32

16

8

4

0.40.20.10.050.025

64

32

16

8

4

intensitysampling

spacesampling

intensitysamplingintensitysampling

spacesamplingspacesampling

(a)artificial(b)architectural(c)natural

50dB

50dB

50dB

40dB

40dB

40dB

30dB30dB

30dB

Fig.2.Accuracyevaluation.Alltheimagesarefilteredwith(σ

s

=16,σ

r

=0.1).The

PSNRindBisevaluatedatvarioussamplingofSandR(greaterisbetter).Ourap-

proximationschemeismorerobusttospacedownsamplingthanrangedownsampling.

Itisalsoslightlymoreaccurateonstructuredscenes(a,b)thanstochasticones(c).

8

15

20

25

30

35

40

45

50

55

60

110100

PSNR(indB)

Durand-Dorseyapproximation

ourapproximation

0.4

time(ins)

0.40.20.10.050.025

64

32

16

8

4

intensitysampling

spacesampling

40s

20s

10s

5s

2s

1s

0.8s

0.6s

Fig.3.Left:Runningtimesonthearchitecturalpicturewith(σ

s

=16,σ

r

=0.1).

ThePSNRisolinesareplottedingray.Exactcomputationtakesabout1h.?Right:

Accuracy-versus-timecomparison.Bothmethodsaretestedonthearchitecturalpicture

(1600×1200)withthesamesamplingratesofS×R(fromlefttoright):(4;0.025)(8;0.05)

(16;0.1)(32,0.2)(64,0.4).

Figure3-leftshowstherunningtimesforthearchitecturalpicturewiththe

samesettings.Intheory,thegainfromspacedownsamplingshouldbetwicethe

onefromrangedownsamplingsinceSistwo-dimensionalandRone-dimensional.

Inpractice,thenonlinearitiesandcachingissuesinduceminordeviations.Com-

biningthisplotwiththePSNRplot(ingrayundertherunningtimes)allows

forselectingthebestsamplingparametersforagivenerrortoleranceoragiven

timebudget.Asasimpleguideline,usingsamplingstepsequaltoσ

s

andσ

r

pro-

duceresultswithoutvisualdi?erencewiththeexactcomputation(seeFig.4).

Ourschemeachievesaspeed-upoftwoordersofmagnitude:Directcomputation

ofEquations(1)lastsaboutonehourwhereasourapproximationrequiresone

second.Thisdramaticimprovementopensavenuesforinteractiveapplications.

4.2ComparisonwiththeDurand-Dorseyspeed-up

DurandandDorseyalsodescribealinearapproximationofthebilateralfilter[3].

UsingevenlyspacedintensityvaluesI

1

..I

n

thatcoverR,theirschemecanbe

summarizedas(forconvenience,wealsonameG

σ

s

the2DGaussiankernel):

ι



=downsample(I)[imagedownsampling](13a)

?ζ∈{1..n}ω

↓ζ

(p)=G

σ

r

(|ι



(p)?I

ζ

|)[rangeweightevaluation](13b)

?ζ∈{1..n}ωι

↓ζ

(p)=ω

↓ζ

(p)ι



(p)[intensitymultiplication](13c)

?ζ∈{1..n}(ωι

bf

↓ζ



bf

↓ζ

)=G

σ

s

?(ωι

↓ζ



↓ζ

)[convolutiononS](13d)

?ζ∈{1..n}ι

bf

↓ζ

=ωι

bf

↓ζ



bf

↓ζ

[normalization](13e)

?ζ∈{1..n}ι

bf

↓↑ζ

=upsample(ι

bf

↓ζ

)[layerupsampling](13f)

I

DD

(p)=interpolation(ι

bf

↓↑ζ

)(p)[nearestlayerinterpolation](13g)

Withoutdownsampling(i.e.{I

i

}=RandSteps13a,fignored),theDurand-

DorseyschemeisequivalenttooursbecauseSteps13b,c,dcorrespondtoacon-

volutiononS×R.Indeed,Step(13b)computesthevaluesofaGaussiankernel

onR.Step(13c)actuallyevaluatestheconvolutiononR,consideringthatι



(p)

istheonlynonzerovalueontheζaxis.WithStep(13d),theconvolutiononS,

thesethreestepsperforma3DconvolutionusingaseparationbetweenRandS.

9

Thedi?erencescomesfromthedownsamplingapproach.DurandandDorsey

interleavelinearandnonlinearoperations:Thedivisionisdoneaftertheconvo-

lution13dbutbeforetheupsampling13f.Thereisnosimpletheoreticalbaseto

estimatetheerror.Moreimportantly,theDurand-Dorseystrategyissuchthat

theintensityιandtheweightωarefunctionsdefinedonSonly.Agivenpixel

hasonlyoneintensityandoneweight.Afterdownsampling,bothsidesofthe

discontinuitymayberepresentedbythesamevaluesofιandω.Thisisapoor

representationofthediscontinuitiessincetheyinherentlyinvolveseveralvalues.

Incomparison,wedefinefunctionsonS×R.ForagivenimagepointinS,we

canhandleseveralvaluesontheRdomain.TheadvantageofworkinginS×R

isthatthischaracteristicisnotalteredbydownsampling.Itisthemajorreason

whyourschemeismoreaccuratethantheDurand-Dorseytechnique,especially

ondiscontinuities.

Figure3-rightshowstheprecisionachievedbybothapproachesrelativelyto

theirrunningtime,andFigure4illustratestheirvisualdi?erences.Thereisno

gaininextremedownsamplingsincenonlinearitiesarenomorenegligible.Both

approachesalsohaveaplateauintheiraccuracyi.e.beyondacertainpoint,pre-

cisiongainsincreaseslowlywithsamplingrefinementbutoursreachesahigher

accuracy(≈55dBcomparedto≈40dB).Inaddition,forthesamerunningtime,

ourapproachisalwaysmoreaccurate(exceptforextremedownsampling).

4.3Implementation

AlltheexperimentshavebeendoneanIntelXeon2.8GHzusingthesamecode

baseinC++.WehaveimplementedtheDurand-Dorseytechniquewiththe

samelibrariesasourtechnique.2Dand3DconvolutionsaremadeusingFFT.

Thedomainsarepaddedwithzerosover2σtoavoidcross-boundaryartefacts.

Therearenoothersignificantoptimizationstoavoidbiasinthecomparisons.

Aproductionimplementationcouldthereforebeimprovedwithtechniquessuch

asseparableconvolution.Ourcodeispubliclyavailableonourwebpage.The

softwareisopen-source,undertheMITlicense.

5Discussion

DimensionalityOurseparationintolinearandnonlinearpartscomesatthe

costoftheadditionalζdimension.Onehastobecarefulbeforeincreasingthe

dimensionalityofaproblemsincetheincurredperformanceoverheadmayexceed

thegains,restrictingourstudytoatheoreticaldiscussion.Wehavehowever

demonstratedthatthisformalismallowsforacomputationschemethatisseveral

ordersofmagnitudefasterthanastraightforwardapplicationofEquation(1).

ThisadvocatesperformingthecomputationintheS×Rspaceinsteadofthe

imageplane.Inthisrespect,ourapproachcanbecomparedtothelevelsets[21]

whichalsodescribeabettercomputationschemeusingahigherdimensionspace.

Notethatusingthetwo-dimensionalhomogeneousintensitydoesnotincrease

thedimensionalitysinceEquation(1)alsocomputestwofunctions:W

bf

andI

bf

.

ComparisonwithGeneralizedIntensityBarashalsousespointsintheS×R

spacethathenamesgeneralizedintensities[13].Ourtwoapproacheshavein

commontheglobalmeaningofSandR:Theformerisrelatedtopixelpositions

10

sampling(σ

s



r

)(4,0.025)(8,0.05)(16,0.1)(32,0.2)(64,0.4)

downsampling1.3s0.23s0.09s0.07s0.06s

convolution63s2.8s0.38s0.02s0.01s

nonlinearity0.48s0.47s0.46s0.47s0.46s

Table1.Timeusedbyeachstepatdi?erentsamplingratesofthearchitecturalimage.

Upsamplingisincludedinthenonlinearitytimebecauseourimplementationcomputes

i

bf

↓↑

onlyatthe(x,I

x

)pointsratherthanupsamplingthewholeS×Rspace.

andthelattertopixelintensities.Itisneverthelessimportanttohighlightthe

di?erences.BarashhandlesS×Rtocomputedistances.Thus,hecanexpress

thedi?erencebetweenadaptivesmoothingandbilateralfilteringasadi?erence

ofdistancedefinitions.Buttheactualcomputationremainsthesame.Ouruse

ofS×Rismoreinvolved.Wenotonlymanipulatepointsinthisspacebut

alsodefinefunctionsandperformconvolutionsandslicing.Anotherdi?erence

isourdefinitionoftheintensitythroughafunction(iori

bf

).Barashassociates

directlytheintensityofapointtoitsRcomponentwhereasinourframework,

theintensityofapoint(x,ζ)isnotitsζcoordinatee.g.ingenerali

bf

(x,ζ)negationslash=ζ.

Inaddition,ourapproachleadstoamoree?cientimplementation.

ComplexityOneoftheadvantageofourseparationisthattheconvolutionis

themostcomplexpartofthealgorithm.Using|·|forthecardinalofaset,the

convolutioncanbedoneinO(|S||R|log(|S||R|))withfastFouriertransform

andmultiplicationinthefrequencydomain.Thentheslicingandthedivision

aredonepixelbypixel.Thustheyarelinearintheimagesizei.e.O(|S|).Hence,

thealgorithmcomplexityisdominatedbytheconvolution.Thisresultisverified

inpracticeasshownbyTable1.Theconvolutiontimerapidlyincreasesasthe

samplingbecomesfiner.Thisvalidatesourchoiceoffocussingontheconvolution.

6Conclusions

Wehavepresentedafastapproximationtechniqueofthebilateralfilterbased

onasignalprocessinginterpretation.Fromatheoreticalpointofview,wehave

introducedthenotionofhomogeneousintensityanddemonstratedanewap-

proachofthespace-intensitydomain.Webelievethattheseconceptscanbe

appliedbeyondbilateralfiltering,andwehopethatthesecontributionswillin-

spirenewstudies.Fromapracticalpointofview,ourapproximationtechnique

yieldsresultsvisuallysimilartotheexactcomputationwithinteractiverun-

ningtimes.Thistechniquepavesthewayforinteractiveapplicationsrelyingon

qualityimagesmoothing.

FutureWorkOurstudytranslatesalmostdirectlytohigherdimensionaldata

(e.g.colorimagesorvideos).Analyzingtheperformanceinthesecaseswill

providevaluablestatistics.ExploringdeeperthefrequencystructureoftheS×R

domainseemsanexcitingresearchdirection.

AcknowledgementWethankSoonminBae,SamuelHornus,ThouisJones,and

SaraSufortheirhelpwiththepaper.ThisworkwassupportedbyaNational

ScienceFoundationCAREERaward0447561“TransientSignalProcessingfor

11

RealisticImagery,”anNSFGrantNo.0429739“ParametricAnalysisandTrans-

ferofPictorialStyle,”agrantfromRoyalDutch/ShellGroupandtheOxygen

consortium.Fr′edoDurandacknowledgesaMicrosoftResearchNewFacultyFel-

lowship,andSylvainPariswaspartiallysupportedbyaLavoisierFellowship

fromtheFrench“Minist`eredesA?aires



Etrang`eres.”

References

1.Tomasi,C.,Manduchi,R.:Bilateralfilteringforgrayandcolorimages.In:Proc.

ofInternationalConferenceonComputerVision,IEEE(1998)839–846

2.Oh,B.M.,Chen,M.,Dorsey,J.,Durand,F.:Image-basedmodelingandphoto

editing.In:Proc.ofSIGGRAPHconference,ACM(2001)

3.Durand,F.,Dorsey,J.:Fastbilateralfilteringforthedisplayofhigh-dynamic-range

images.ACMTrans.onGraphics21(2002)Proc.ofSIGGRAPHconference.

4.Eisemann,E.,Durand,F.:Flashphotographyenhancementviaintrinsicrelighting.

ACMTrans.onGraphics23(2004)Proc.ofSIGGRAPHconference.

5.Petschnigg,G.,Agrawala,M.,Hoppe,H.,Szeliski,R.,Cohen,M.,Toyama,K.:

Digitalphotographywithflashandno-flashimagepairs.ACMTrans.onGraphics

23(2004)Proc.ofSIGGRAPHconference.

6.Jones,T.R.,Durand,F.,Desbrun,M.:Non-iterative,feature-preservingmesh

smoothing.ACMTrans.onGraphics22(2003)Proc.ofSIGGRAPHconference.

7.Fleishman,S.,Drori,I.,Cohen-Or,D.:Bilateralmeshdenoising.ACMTrans.on

Graphics22(2003)Proc.ofSIGGRAPHconference.

8.Wong,W.C.K.,Chung,A.C.S.,Yu,S.C.H.:Trilateralfilteringforbiomedicalim-

ages.In:Proc.ofInternationalSymposiumonBiomedicalImaging,IEEE(2004)

9.Bennett,E.P.,McMillan,L.:Videoenhancementusingper-pixelvirtualexposures.

ACMTrans.onGraphics24(2005)845–852Proc.ofSIGGRAPHconference.

10.Paris,S.,Brice?no,H.,Sillion,F.:Captureofhairgeometryfrommultipleimages.

ACMTrans.onGraphics23(2004)Proc.ofSIGGRAPHconference.

11.Elad,M.:Onthebilateralfilterandwaystoimproveit.IEEETrans.OnImage

Processing11(2002)1141–1151

12.Smith,S.M.,Brady,J.M.:SUSAN–anewapproachtolowlevelimageprocessing.

InternationalJournalofComputerVision23(1997)45–78

13.Barash,D.:Afundamentalrelationshipbetweenbilateralfiltering,adaptive

smoothingandthenonlineardi?usionequation.IEEETrans.onPatternAnalysis

andMachineIntelligence24(2002)844

14.Buades,A.,Coll,B.,Morel,J.M.:NeighborhoodfiltersandPDE’s.Technical

Report2005-04,CMLA(2005)

15.Yaroslavsky,L.P.:DigitalPictureProcessing.SpringerVerlag(1985)

16.Huber,P.J.:RobustStatistics.Wiley-Interscience(1981)

17.Hampel,F.R.,Ronchetti,E.M.,Rousseeuw,P.M.,Stahel,W.A.:RobustStatistics

–TheApproachBasedonInfluenceFunctions.WileyInterscience(1986)

18.Mr′azek,P.,Weickert,J.,Bruhn,A.:OnRobustEstimationandSmoothing

withSpatialandTonalKernels.In:GeometricPropertiesfromIncompleteData.

Springer(toappear)

19.Choudhury,P.,Tumblin,J.E.:Thetrilateralfilterforhighcontrastimagesand

meshes.In:Proc.ofEurographicsSymposiumonRendering.(2003)

20.Smith,S.:DigitalSignalProcessing.Newnes(2002)

21.Osher,S.,Sethian,J.A.:Frontspropagatingwithcurvature-dependentspeed:Al-

gorithmsbasedonHamilton-Jacobiformulations.J.ofComp.Physics.(1988)

12

originalimage

exactbilateralfilter

approximatedbilateralfilter

dif

ference

Durand-Dorsey

approximation

artificialarchitecturalnatural

Fig.4.Wehavetestedourapproximatedschemeonthreeimages(firstrow):anar-

tificialimage(512×512)withdi?erenttypesofedgesandawhitenoiseregion,an

architecturalpicture(1600×1200)withstrongandorientedfeatures,andanatural

photograph(800×600)withmorestochastictextures.Forclarity,wepresentrepresen-

tativeclose-ups(secondrow).Fullresolutionimagesareavailableonourwebsite.Our

approximationproducesresults(fourthrow)visuallysimilartotheexactcomputation

(thirdrow).Acolorcodedsubtraction(fifthrow)revealssubtledi?erencesattheedges

(red:negative,black:0,andblue:positive).Incomparison,theDurand-Dorseyapprox-

imationintroduceslargevisualdiscrepancies:thedetailsarewashedout(bottomrow).

Allthefiltersarecomputedwithσ

s

=16andσ

r

=0.1.Ourfilterusesasamplingrate

of(16,0.1).ThesamplingrateoftheDurand-Dorseyfilterischoseninordertoachieve

thesame(orslightlysuperior)runningtime.Thus,thecomparisonisdonefairly,using

thesametimebudget.

献花(0)
+1
(本文系zhynapo首藏)