配色: 字号:
The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached c
2016-09-29 | 阅:  转:  |  分享 
  
a

StateKeyLaboratoryofBioreactorEngineering,EastChinaUniversityofScienceandTechnology,Shanghai200237,PRChina

b

JiaxingZeyuanBio-productsCo.,Ltd.,Jiaxing314007,PR

Shanghai

astaxanthin

system

hinunder

resistprotozoan

saving

Haematococcuspluvialiswasculturedforcommercialproductionof

(Guerinetal.,2003;Higuera-Ciaparaetal.,2006;Lorenzand

Cysewski,2000).Untilnow,thesyntheticastaxanthindominates

currentcommercialastaxanthinmarket,ofwhichthetotalvalue

ismorethan$200Mperyear(Lietal.,2011;Milledge,2011).

However,naturalastaxanthinismorefavorableinthemarketthan

besynthesized

Asastaxanthin

al.,2007;

Haematococ

pluvialisisrecognizedasthebestbiologicalsourcefornatural

xanthin,andfarsurpassesanyotherreportedsources(Lorenz

Cysewski,2000).

Althoughtheresearchanddevelopmentofastaxanthinproduc-

tionfromH.pluvialishavebeencommittedintheseyears,the

successfulstrategyforthecommercialproductionisestablished

baseonthetwo-stepculture(Aflaloetal.,2007;Fábregasetal.,

2001;Saradaetal.,2002).Thefirststage,greenvegetativegrowth

phase,isperformedtoobtainalargequantityofgreenvegetative

cellsunderthefavorablecultureconditionintubular,bubble

?

Correspondingauthor.Address:Mailbox301,MeilongRoad130,Shanghai

200237,PRChina.Tel./fax:+862164250964.

E-mailaddresses:wanminxi@gmail.com(M.Wan),ygli@ecust.edu.cn(Y.Li).

1

Theseauthorscontributedequallytothiswork.

BioresourceTechnology163(2014)26–32

Contentslistsavailable

BioresourceTec

Astaxanthin(3,3

0

-dihydroxy-b,b-carotene-4,4

0

-dione)isared

ketocarotenoidwithextraordinaryantioxidantcapability.Ithas

widespreadapplicationsinaquacultureanddietarysupplements

xanthinisnotbeingmet.Naturalastaxanthincan

bysomeplants,bacteria,fungi,andgreenalgae.

contentupto1–5%ofcelldryweight(Heet

andCysewski,2000),theunicellulargreenalgae

http://dx.doi.org/10.1016/j.biortech.2014.04.017

0960-8524/C2112014ElsevierLtd.Allrightsreserved.

Lorenz

cus

asta-

and

Received24February2014

Receivedinrevisedform4April2014

Accepted5April2014

Availableonline16April2014

Keywords:

Haematococcuspluvialis

Astaxanthin

Biomass

Attachedcultivation

Photoinduction

astaxanthinthroughtwocontinuousphases:cellgrowthandastaxanthininduction.Inthisstudy,the

efficiencyofanattachedsystemforproducingastaxanthinfromH.pluvialiswasinvestigatedandcom-

paredtothatofthesuspendedsystem(bubblecolumnbioreactor)undervariousconditions.Results

showedthatthisattachedsystemismoresuitableforphotoinductionofH.pluvialisthanthesuspended

bioreactor.Undertheoptimalconditions,theastaxanthinproductivityoftheattachedsystemwas

65.8mgm

C02

d

C01

and2.4-foldofthatinthesuspendedsystem.Thisattachedapproachalsooffersother

advantagesoversuspendedsystems,suchas,producingastaxanthinunderawiderangeoflightintensi-

tiesandtemperatures,savingwater,easetoharvestcells,resistingcontamination.Therefore,the

attachedapproachcanbeconsideredaneconomical,environmentallyfriendlyandhighly-efficienttech-

nologyforproducingastaxanthinfromH.pluvialis.

C2112014ElsevierLtd.Allrightsreserved.

1.Introductionsyntheticastaxanthin,whilethemarketdemandfornaturalasta-

Articlehistory:

Astheoptimalsourceofastaxanthin,

c

ShanghaiZeyuanMarineBio-productsCo.,Ltd.,

highlights

C15H.pluvialiscanaccumulateeffectively

C15Astaxanthinproductivityoftheattached

C15Attachedcellscanaccumulateastaxant

C15Thisattachedcultivationcanstrongly

C15Thisattachedcultivationissuperioron

articleinfo

China

200237,PRChina

withthisattachedcultivation.

is2.4-foldofthatsuspended.

lowlightandtemperatureupto35C176C.

contamination.

water,easetoharvest.

abstract

MinxiWan,DongmeiHou,YuanguangLi,JianhuaFan,JiankeHuang,SongtaoLiang,

WeiliangWang

a

,RonghuaPan

b

,JunWang

b

,ShulanLi

c

TheeffectivephotoinductionofHaematococcus

astaxanthinwithattachedcultivation

a,1a,1a,?

journalhomepage:www.elsevier

pluvialisforaccumulating

aaa

atScienceDirect

hnology

.com/locate/biortech

column,airliftphotobioreactors,ortheracewayponds.Andthe

secondstage,reddishinductiveproductionphase,istheinduction

ofcellstoaccumulateastaxanthinwiththetransitionofgreenveg-

etativecellstoreddishcystcellsinvariousstressconditions,such

asnitrogenlimitation,excessacetateaddition,stronglightinten-

sity,saltstress,phosphatedeficiency,ortheadditionofspecificcell

divisioninhibitors(Hataetal.,2001;Huetal.,2008;Lietal.,2010;

Saradaetal.,2002;Wangetal.,2003).Therefore,inductionsys-

temshaveadirectcorrelationwiththeastaxanthincontentofcells

andtotalproductivityofastaxanthin.Attachedsystemshavebeen

successfullyusedforculturingalgaetoremovenutrientsfrom

wastewater(Kebede-Westheadetal.,2006;WilkieandMulbry,

2002),andaredevelopingtogrowmicroalgaewiththepurpose

ofproducingbiofuelfeedstockduetolowconsumptionsofwater

2.2.1.Photobioreactor

M.Wanetal./BioresourceTechnology

Asimplebioreactorwasusedtoinvestigatetheinductionfeasi-

bilityofattachedalgaecells(Fig.1).Agauzesupportedbywire

meshwasverticallyplacedinamediumreservoir.Filteredwitha

0.2lmmicrofiltrationmembrane(thediameterof33±0.5cm

2

),

suspendedcellsformedanalgalfilmonthemembrane.Thenthe

membranewithalgalfilmwasplacedontothegauze.Inorderto

Light

SpargerAlgal“disk”

Inductionmedium

reservoir

Pump

Circulationpipe

Medium

flow

Algalfilm

Microfiltration

membrane

Wiremesh

support

Gauze

A

B

andenergyusingattachedsystems(JohnsonandWen,2010;Liu

etal.,2013;Ozkanetal.,2012).

Here,anattachedtechnologywasusedintheastaxanthinaccu-

mulationofH.pluvialisandcomparedwiththetraditionalsus-

pendedtechnology,andtheefficiencyofattachedtechnologyfor

astaxanthinproductivitywasevaluatedundervariousconditions.

2.Methods

2.1.Microalgalstrainandcultureconditions

H.pluvialisNIES-144wasobtainedfromtheNationalInstitutefor

EnvironmentalStudies,Tsukuba,Japan.ThemediumwasNIES-C

mediumwith10mMsodiumacetateastheorganiccarbonsource

(Hataetal.,2001).Thegreencellswereculturedundercontinuous

illuminationof25lmolm

C02

s

C01

at25C176C,andweresubsequently

inducedwithcontinuousilluminationof150lmolm

C02

s

C01

at

25C176Cunlessotherwisestated.Thepeak,dominant,centroidand

centralwavelengthsofilluminationfromthecoldfluorescence

lampwere445,504,437and437nm,respectively.Furthermore,

thecolortemperaturewas6199k.Otherphotoinductionconditions

foreachexperimentweredescribedinthesectionofexperimental

design.

2.2.Photobioreactorandexperimentaldesignfortheattached

induction

Fig.1.TheattachedbioreactorfortheinductionofH.pluvialis.(A)Theoverviewof

theattachedinduction.(B)Thedetailsofthealgae‘disk’.

fixthealgalfilm,thesmallmagnetswereputontheedgeofmem-

brane,andbroughtmagneticforcewithwiremeshsupport.During

theinduction,theinductionmediumfloweddownfromasparger

onthetopbrimofgauzesothatmediumpermeatedthegauzeand

microfiltrationmembranetowetalgalfilm.Theflowrateforeach

algaldiskintheattachedsystemis5ml/min,andcanbecontrolled

attherangesof0.05–190ml/mintochangemoistureofattached

cells.Fornormalexperiment,Thecontrolexperimentwasper-

formedin1Lcolumnbioreactor(height:26cm,radius:3.5cm,

theverticalcrosssectionwas182cm

2

)underthesamecondition.

Aerationandmixingweredonebyspargingairwiththerateof

0.5vvm.

2.2.2.Experimentaldesignfortheattachedinduction

Allexperimentswererepeatedthreetimes.Theinductionmed-

iumwasNIES-Nmedium(Kangetal.,2005)forallinductionexper-

imentsinthisstudy.Thismediumwithoutnitrogenledtocells

undernitrogendeficiency.Exceptspecialrequirement,H.pluvialis

wasinducedundercontinuousilluminationof150lmolm

C02

s

C01

at25C176C.Temperaturesandinitialcellamountweresetrespec-

tivelyto15,25,35C176Cand10,20,40gm

C02

toinvestigatetheir

effectsoninduction.Illuminationwasinthehorizontaldirection,

thustheverticalcrosssectionofcolumnbioreactorwasconsidered

light-receivingareainordertocompareperformancesbetween

bothattachedandsuspendedinductionsystems.Thebiomassof

suspendedcellswastransformedtothatofalgaldiskaccording

tothefollowingformula:

m

disk

?m

suspend

C3V=S

wherethem

disk

(g/m

2

)isthebiomassconcentrationofalgaldisk,

them

suspend

(gL

C01

)isthebiomassconcentrationinthecolumnbio-

reactor,V(L)isthevolumeofthecolumnbioreactor,S(m

2

)wasthe

light-receivingareaofcells.

Therefore,thestartingcelldensitiesperliterinthecolumnbio-

reactorwere0.18,0.36and0.65gL

C01

correspondingtothe10,20

and40gm

C02

intheattachedbioreactor.Theinductionwas

exposedtocontinuousilluminationof50,70,90,120,160,and

230lmolphotonsm

C02

s

C01

,respectively,tostudytheeffectoflight

densityoninduction.Furthermore,theflowrateoftheinduction

mediumwasadjustedinordertoinvestigatetheeffectofmoisture

oninduction.

2.3.Analyticalmethods

2.3.1.Dryweight

Forthecolumnbioreactor,thealgalcellswerecollectedbycen-

trifugingtheinductionfluidat4000gfor10min,washedwithdis-

tilledwateranddriedat80C176Cfor24h.Whilethecellofalgaldisk

waswasheddownandre-suspendedwithavolumeofdistilled

water,andthenthedryweightofalgaldiskwasmeasuredassame

asabove.Thusthebiomassofalgaldiskwascalculatedas:

M

t

?m

t

=S

wherethem

t

wasthedryweightofalgaldiskafterinduction,andS

wasthelight-receivingareaofcells.

Netbiomassproductivity:eM

t

C0M

0

T=t

whereM

t

wasdryweightafterinduced,andM

0

wastheinitialdry

weight.

2.3.2.Moistureofalgaldisk

Theflowrateofmediumwasadjustedtochangemoistureof

algaldiskwhichwascalculatedbytheratioofdrycellweightto

163(2014)26–3227

wetcellweight.Firstly,wetcellswerescrapedfromalgaldisk,

andthenweredividedintotwogroupsandweighedseparately.

Group1wasdirectlydriedat80C176Cfor24htomeasurethetotal

astaxanthincontentwasachievedattheinitialcellamountof

10gm

C02

.Butthegrowthratesatinitialcellamountof20and

40gm

C02

weresimilar,andwerehigherthanthatof10gm

C02

.

Theinductioneffectoftheattachedbioreactorwascomparedwith

thatofthecolumnbioreactor.Astheresults,thevariationtrendof

theastaxanthininthecolumnbioreactorwassimilartothatinthe

attachedinduction,namely,theastaxanthincontentsincreased

withreducinginitialcellamounts.Attheinitialcellamountof

10and20gm

C02

,theastaxanthincontentintheattachedinduction

washigherthanthatinthecolumnbioreactor.Aninterestingphe-

nomenoninthesuspendedinductionsystemhasbeenobserved

widelythatcellsareeasytoattachonthewallsofbioreactors,

andtheseattachedcellsreddenmuchfasterthanthosesuspended

inliquid.H.pluvialiswithhighastaxanthincontentisusuallyfound

024681012

0.2

0.4

0.6

Astaxanthin(%,w/w)

Time(d)

024681012

0

10

20

30

40

50

60

70

80

90

100

Attachedinductionwithinitialcellamountof10gm

-2

Attachedinductionwithinitialcellamountof20gm

-2

Attachedinductionwithinitialcellamountof40gm

-2

Suspendedinductionwithinitialcellamountof10gm

-2

Suspendedinductionwithinitialcellamountof20gm

-2

Suspendedinductionwithinitialcellamountof40gm

-2

Biomass(gm

-2

)

Time(d)

(b)

Fig.2.Theastaxanthincontents(a)andbiomassconcentrations(b)ofH.pluvialis

withthreedifferentinitialcellamountsintheattachedbioreactorandthecolumn

bioreactor.

Technology

dryweightofcellsandsaltsinsideinductionmedium.Group2was

washedwithdistilledwater,andthencellswerecollectedbycen-

trifugingthefluidat4000gfor10min,anddriedat80C176Cfor24h

tomeasuredrycellweight.Thusthemoistureofthealgaldiskwas

calculatedas:

Moisture?e1C0m

d1

=m

w1

T=e1C0m

d1

=m

w1

C0m

d2

=m

w2

T

wherem

d1

wasdryweightofGroup1(includingcellsandsalts),

andM

w1

wasthewetweightofGroup1(includingcells,water,

andsalts),m

d2

wasdryweightofGroup2(onlyincludingcells),

andM

w1

wasthewetweightofGroup2(includingcells,water,

andsalts).

2.3.3.Determinationofastaxanthin

Thealgalcellsintheattachedsystemwerewasheddownand

re-suspendedwithdistilledwaterfortheastaxanthindetermina-

tion.TheastaxanthincontentwasmeasuredwithmodifiedBouss-

ibamethod(BoussibaandVonshak,1991).Forastaxanthin

determination,5mLculturesamplewascentrifugedfor10min

at4000g,andthepelletwasfirstsaponifiedbyusingasolution

of5%KOHin30%(v/v)methanolat65C176Cfor15mintodestroy

thechlorophyll.Andthenthesupernatantwasdiscarded,andthe

pelletwasthenwashedthreetimeswithde-ionizedwaterto

removetheresiduallye.Theremainingpelletwasextractedwith

5mLDMSO(LabkimA.R.,99.5%)usinganultrasonicprocessor

for10mintorecovertheastaxanthin.Theextractionprocedure

wasrepeatedatleastthreetimesuntilthecelldebriswasalmost

colorless.Theabsorbanceofthecombinedextractswasmeasured

at490nm.

Perunitvolumeastaxanthinconcentration(c,mg/L)calculated

as:

c?4:5C2A490C2V

a

=V

b

wheretheV

a

wasthevolumeofextracts,theV

b

wasthevolumeof

culturesample(Fortheattachedculture,theV

b

wasthevolumeof

distilledwaterforthealgalcellswasheddownandre-suspended.),

andA490wastheabsorbanceofextractsat490nm.

Astaxanthincontente%T:c

t

=m

t

wherec

t

wastheastaxanthinconcentrationafterinducedandm

t

wasthedryweight(Fortheattachedculture,them

t

wasthedry

weightindistilledwaterforthealgalcellswasheddownandre-

suspended.)afterinduced.

AstaxanthinyieldeCT:C?cC3V=S

wherethecwastheastaxanthinconcentrationofalgaldiskafter

induction,Vwasthevolumeofdistilledwaterforthealgalcells

washeddownandre-suspended,andSwasthelight-receivingarea

ofcells.

Netastaxanthinproductivity:eC

t

C0C

0

T=t

whereC

t

wastheastaxanthinyieldafterinduced,andC

0

wasthe

initialastaxanthinyield.

3.Resultsanddiscussion

3.1.Theeffectofinitialcellamountonthecellgrowthandastaxanthin

content

Inordertoassesswhethertheattachedcultivationapproach

wouldbesuitableforH.pluvialisinduction,andhowmuchofthe

initialcellamountwouldbebetterfortheinduction,H.pluvialis

wasinducedwithdifferentinitialcellamountintheattached

C02C01

28M.Wanetal./Bioresource

bioreactorundercontinuousilluminationof150lmolmsat

25C176C.AsindicatedinFig.2,thelowertheinitialcellamount

was,thehighertheastaxanthincontentwas.Themaximal

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Attachedinductionwithinitialcellamountof10gm

-2

Attachedinductionwithinitialcellamountof20gm

-2

Attachedinductionwithinitialcellamountof40gm

-2

Suspendedinductionwithinitialcellamountof10gm

-2

Suspendedinductionwithinitialcellamountof20gm

-2

Suspendedinductionwithinitialcellamountof40gm

-2

(a)

163(2014)26–32

inthebottomofdriedoutrockpoolsandbirdbaths(Pocock,1960),

whichprovideasemiaridnicheandaresimilarwiththeattached

system,implyingthenicheintheattachedbioreactormaybeis

consistentwithnaturalenvironmentwherecellsaccumulateasta-

xanthin.Therefore,theattachedinductionstrategymaybemore

suitabletoastaxanthinaccumulationforH.pluvialisintheterm

ofbioecologycomparedtoanotherinductiontechnologywithsus-

pendedliquid.Intheearlyperiodofinduction,biosyntheticrateof

astaxanthinintheattachedbioreactorwassignificantlyhigher

thanthatinthesuspendedbioreactor,whichiswellmatchedwith

theabovephenomenon.

Thecellgrowthinthecolumnbioreactorwasslightlyhigher

gressonfeedstockproductionforbiofuel(Grossetal.,2013;

wasslowestat15C176C.Theastaxanthinproductivitywas32.3,

65.8,43.6mgm

C02

d

C01

andthebiomassproductivitywas1.1,3.7,

2.6gm

C02

d

C01

,respectively.Thus,thebesttemperatureforthe

attachedinductionwasabout25C176Candsimilartootherreports

(Dom?



nguez-Bocanegraetal.,2004;Kangetal.,2010,2006,

2005;Yooetal.,2012).

Inthisstudy,theinductioninthecolumnreactorwascarried

outtoverifytheperformanceofattachedinductionunderdifferent

temperature.Inthecolumnphotobioreactor,theastaxanthincon-

centrationwassimilarat15C176Cand25C176C,butbiomassat25C176Cwas

slightlyhigherthanthatat15C176C.But,theastaxanthinaccumula-

tionintheattachedphotobioreactorwasstillfasterthanthatin

thecolumnphotobioreactor.Thecellgrowthinthecolumnbiore-

actorwasslightlyhigherthantheattachedinductionbeforethe

6daysinduction,thenthegrowthrateinthecolumnbioreactor

sloweddown,butthoseintheattachedinductionstillincreased

rapidly.

At35C176C,theastaxanthinaccumulationwassimilarbetween

columnbioreactorandattachedbioreactorbeforethe6thday.

02468101214

0

10

20

30

40

50

60

70

80

Attachedinductionat15

o

C

Attachedinductionat25

o

C

Attachedinductionat35

o

C

Suspendedinductionat15

o

C

Suspendedinductionat25

o

C

Suspendedinductionat35

o

C

Biomass(gm

-2

)

Time(d)

(b)

Fig.3.Theastaxanthincontents(a)andbiomassconcentrations(b)ofH.pluvialisat

temperaturesof15C176C,25C176Cand33C176Cintheattachedbioreactorandthecolumn

bioreactor.

M.Wanetal./BioresourceTechnology

JohnsonandWen,2010;Liuetal.,2013;Ozkanetal.,2012),this

studyshowedattachedsystemhasagoodperformanceforasta-

xanthinproductionfromH.pluvialis.Furthermore,allstandard

deviationsofexperimentsinthisstudyarelessthan10%,indicat-

ingallresultswerestatisticallysignificant.

3.2.Theeffectoftemperatureonthecellgrowthandastaxanthin

content

Thelarge-scalecommercialproductionofastaxanthinfromH.

pluvialisunderoutdoorconditionwasaffectedbytheseason,

mainlyinthelightintensityandtemperature.Moststudieshave

beenreportedthesuitabletemperaturefortheastaxanthinaccu-

mulationofH.pluvialiswasbetweenthe20C176Cand28C176C(Kang

etal.,2010,2006,2005;Lababpouretal.,2005;Yooetal.,2012).

Furthermore,itwasreportedthatH.pluvialiscanaccumulateasta-

xanthinat35C176C(Tjahjonoetal.,1994).Thismaybebecauseofthe

differenceofH.pluvialisspeciesandinductioncondition.Inorder

toassessthescopeoftemperaturefortheattachedinduction,

theinductiontemperaturesweresetat15C176C,25C176Cand35C176C,

respectively.Accordingtoourresults(Fig3),theastaxanthincon-

tentat15C176Cwasthehighest,followedbythoseat25C176Cand35C176C

after12daysinduction,whilethebiomasswasachievedthe

maximumatthe25C176C,followedbythatat35C176C,andthegrowth

Table1

ThenetastaxanthinandbiomassproductivitiesofH.pluvialiswith

differentinitialcellamount.

Induction

bioreactor

Initialcell

amount

(gm

C02

)

Astaxanthin

productivity

(mgm

C02

d

C01

)

Biomass

productivity

(gm

C02

d

C01

)

Attached1044.1±1.72.1±0.2

2065.8±1.73.7±0.3

4058.7±2.33.3±0.3

thanthatintheattachedinductionbeforethe6daysinduction,

thenthecellgrowthinthecolumnbioreactorsloweddownbut

thatintheattachedinductionwasstillkeptatarapidrate.

Besides,boththeastaxanthinproductivityandbiomassproduc-

tivitywerereachedthemaximumattheinitialcellamountof

20gm

C02

(Table1).Theastaxanthinproductivityandthebiomass

productivityofattachedinductionwereabout2.4-foldand2.8-fold

ofthatinthesuspendedinduction,respectively.Attheinitialcell

amountof20and40gm

C02

,theastaxanthinproductivityandthe

biomassproductivityofattachedinductionwerehigherthanthose

ofthecolumnbioreactoraswell.

Forthesamealgaespeciesandinductionmedium,theastaxan-

thincontentwas1%underatemperatureof23C176Candlightinten-

sityof200lmolm

C02

s

C01

intheotherreport(Kangetal.,2005),and

waslowerthanthatinthisattachedinduction.Also,biomassand

astaxanthinproductivitiesinthisattachedinductionweresimilar

orhigherthanthoseinotherreports(Dom?′nguez-Bocanegra

etal.,2004;Hataetal.,2001;Kangetal.,2010,2007).Although

attachedcultivationsystemformicroalgaehavemadeagreatpro-

Suspended1022.4±0.80.9±0.2

2027.3±1.71.3±0.2

4033.9±3.11.1±0.2

02468101214

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Attachedinductionat15

o

C

Attachedinductionat25

o

C

Attachedinductionat35

o

C

Traditionalinductionat15

o

C

Traditionalinductionat25

o

C

Traditionalinductionat35

o

C

Astaxanthin(%,w/w)

Time(d)

(a)

163(2014)26–3229

Then,cellsincolumnbioreactorweredeath,butthoseinattached

photobioreactorweregrowing,suggestingastaxanthininduction

ofH.pluvialisintheattachedsystemcanbeconductedatahigher

temperaturethanthatinconventionalbioreactors.Therefore,the

attachedsystemofH.pluvialismaybeabletoreducethecostof

temperaturecontrol,comparedtotheconventionalapproach.

3.3.Therelationshipsoflightintensitywithcellgrowthand

astaxanthinaccumulationintheattachedbioreactor

Lightisakeyfactorforinducingrapidlytheastaxanthinbiosyn-

thesis.Differedwithsuspendedsystem,thickalgalfilminthe

attachedsystemmaycauseinsufficientilluminationfortheinner-

mostcells.Thusinitialcellamountwassettoahighlevelof

40gm

C02

tostudytherelationshipsoflightintensitywithcell

growthandastaxanthinaccumulation.Asthelightintensity

increaseduntil120lmolm

C02

s

C01

,theastaxanthincontentofcells

inattachedinductionincreased(Fig4).Andtheastaxanthin

contentreachedthemaximumunderlightintensityof

120lmolm

C02

s

C01

,anddecreasedslightlywiththeincreasinglight

keepingcellsliving.Thecurvesofbiomassandastaxanthincontent

duringtheinductionofH.pluvialiswithdifferentmoisturewere

showninFig5.Inthefirst4days,theaccumulationrateofgrowth

andastaxanthincontentunderthe95%moistureisfasterthanoth-

ers.Thenthegrowthrateswith85%and75%moistureincreased,

andtheastaxanthinaccumulationrateunderthreemoisturesslo-

weddown.Atthe12day,astaxanthincontentandbiomasswere

closeamongthreemoistures.Hence,thewetofthealgaldiskcould

notcausethegreatdifferencesinthegrowthandtheastaxanthin

accumulation,suggestingH.pluvialiscantogrowandsynthesize

astaxanthininlittlewater,andisverysuitabletotheinduction

inattachedbioreactors.

3.5.Thewatersavingpotentialandothermeritsforattachedinduction

approach

ForalargescaleproductionofH.pluvialis,1000–1500tonsof

freshwater(withoutwaterrecycling)willberequiredtoproduce

1tonofH.pluvialisdrymassinsuspendedinductionsystems

(Aflaloetal.,2007;García-Maleaetal.,2009;Lopezetal.,2006;

Torzilloetal.,2003;Zhangetal.,2009).Inparticular,drainage

withouttreatmentaftercellcollectionwillbringaseriousenviron-

ment.Suchhugeamountofwaterconsumptionandeffluenttreat-

mentaretwoofmainreasonscausedhighcostforproducing

astaxanthin.Fortheattachedinductionapproach,however,only

alittlewaterwiththenutrientswasrequiredtokeepthealgalcell

0.8

1.0

1.2

1.4

1.6

1.8

Moisture95%

Moisture85%

Moisture75%

(a)

30M.Wanetal./BioresourceTechnology163(2014)26–32

intensity.Thebiomassproductivitiesweresimilarunderlight

intensitiesbelow90lmolm

C02

s

C01

.Intherangeoflightintensities

from90to160lmolm

C02

s

C01

,thebiomassincreasedwithlight

intensity.However,theincreaserateofbiomasssloweddown

whenthelightintensityexceeded160lmolm

C02

s

C01

.Theseresults

indicatedthatthe160lmolm

C02

s

C01

oflightdensitycouldbecon-

sideredasthelightsaturationpoint(LSP)forthisattachedinduc-

tionsysteminourinvestigatedconditions.Thisresultwas

differentthanthoseinsuspendedinductionthattheastaxanthin

contentwasreachedthemaximumatthelightintensity

300lmolm

C02

s

C01

(Lietal.,2010;Liang,2009).Therefore,the

attachedinductionofH.pluvialis,evenatinitialcellamountof

40gm

C02

,canworkwellunderlowerlightintensitythansus-

pendedapproach.Furthermore,theattachedinductioniseasyto

avoidharmfulhighlightintensitybytiltingattachedbioreactor

towardthelightdirection,whichmeansmoreinductionbioreac-

torsinthesameilluminationareacanbeoperated.

3.4.Therelationshipsofmoisturewithcellgrowthandastaxanthin

accumulationintheattachedbioreactor

Intheattachedphotobioreactor,attachedcellsmustkeepa

certainmoisturetoavoiddeathcausedbylacksofwater.However,

highmoisturemeansmoreelectronicpowercostforenhancingthe

flowrateofinductionmedium.Inthisstudy,theeffectsof

moistureoncellgrowthandastaxanthinaccumulationofH.pluvi-

aliswereinvestigated.Duetowaterincells,thelowestmoistureof

H.pluvialiscellsintheattachedphotobioreactorwas75%when

406080100120140160180200220240

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Astaxanthin

Astaxanthin(%,w/w)

Lightintensity(μmolm

-2

s

-1

)

0

10

20

30

40

50

60

70

80

Biomass

Biomass

(

gm

-2

)

Fig.4.TheastaxanthincontentsandbiomassconcentrationsofH.pluvialisinthe

attachedbioreactorunderdifferentlightintensitiesfor12daysofphotoinduction.

02468101214

0.0

0.2

0.4

0.6

Astaxanthin(%,w/w)

Time(d)

024681012

10

20

30

40

50

60

70

Moisture95%

Moisture85%

Moisture75%

Biomass(gm

-2

)

Time(d)

(b)

Fig.5.Theastaxanthincontents(a)andbiomassconcentrations(b)ofH.pluvialis

withdifferentmoisturesintheattachedbioreactor.

Technology

wet.Asbeeninourexperiments,thewaterconsumptionofthe

attachedinducewaslessthan30%ofthatintheopenpond.There-

fore,theattachedinductionapproachcandramaticallyreducethe

waterrequirementandtheamountofwastewater.

Thecontaminationbyprotozoandoesgreatharmtomicroalgae

masscultivation(Tangetal.,2011).Thecontaminationcontrolfor

conventionalopenaqueous-suspendedcultivationwasquitediffi-

cultduetothehugewaterbody.AsshowninTable2,thecontam-

inationbyprotozoan,mainlybeparamecium,intheattached

systemwaslessthanintheopencolumnreactors.Furthermore,

smalldoseofpesticidesorantibioticswouldbeenoughtoreadily

controlthecontaminationintheattachedsystemduetothesmall

waterbody.Thus,theeffectofcontaminationoncellcultivation

couldbeminimized.

Othermeritsofattachedinductioninclude:(1)powercost-

effective.Mixtureofmediumisrequiredandenergy-intensivein

suspendedinductionsystems,butisnotneededanymoreinthe

attachedinduction.Furthermore,algalbiomasspastesarecol-

lectedeasyandcost-effectivelybyscrapingdownthebiomass

directlywithoutfurtherdewatering(Grossetal.,2013;Liuetal.,

2013;Ozkanetal.,2012).(2)wideinductioncondition.Cellscan

beinducedwiththeattachedapproachtosynthesizeastaxanthin

underhigherorlowertemperatureandlightintensityresulting

fromcloudydayortheseason,comparedtothesuspended

approach.Itisoneofnoteworthyfeaturesofattachedtechnology

forthecommercialapplication,becausecontrollingcellsundera

smallrangeoftemperaturesandlightintensitiesishigh-costfor

outdoorculture.(3)Easytoscale-up.Thescale-upofconventional

cultivationdevicesmayreducetheperformanceofbioreactordue

tothechangesofmixingcharacteristics.Fortheattachedinduction

systemwithoutmixing,theconstraintsinconventionalbioreactor

designandscale-upwerereleasedgreatly.Themediumcanbe

cycledwithspraysinsteadofpumpstowettocells,andthewire

meshsupportcanbereplacedbycheaper,thinnerandwaterreten-

tivematerials.

4.Conclusions

Inthepresentstudy,anattachedcultivationapproachwassuc-

cessfullyappliedintheinductionofHaematococcuspluvialisfor

astaxanthinproduction.Undertheoptimalcondition,biomass

andastaxanthinproductivitiesintheattachedcultivationwere

2.8-fold(3.7gm

C02

d

C01

)and2.4-fold(65.8mgm

C02

d

C01

)ofthose

inthesuspendedbioreactor,respectively.Furthermore,the

attachedcultivationapproachissuperiortosuspendedinduction

Table2

Theamountofparameciumintheattachedbioreactorandthecolumnbioreactor.

InductionbioreactorThetotalamountofparamecium(cellsperdryalgal

cellweight,C210

7

cells/g)

3days12days

Attachedinduction7±135±2

Suspendedinduction51±5103±12

M.Wanetal./Bioresource

approachinotheraspects,suchas,lowerwaterconsumptionand

smallerriskofcontamination,indicatingthisapproachprovidesa

promisingwaytoboosteconomicbenefitandconsiderablyreduce

productioncostofastaxanthinfromH.pluvialis.

Acknowledgements

ThisresearchwasfundedbyNationalBasicResearchProgram

China(973Program:2011CB200903&2011CB200904),National

KeyTechnologiesR&DProgram(2011BAD23B04),China

PostdoctoralScienceFoundation(2013M530183).

References

Aflalo,C.,Meshulam,Y.,Zarka,A.,Boussiba,S.,2007.Ontherelativeefficiencyof

two-vs.one-stageproductionofastaxanthinbythegreenalgaHaematococcus

pluvialis.Biotechnol.Bioeng.98,300–305.

Boussiba,S.,Vonshak,A.,1991.Astaxanthinaccumulationinthegreenalga

Haematococcuspluvialis.PlantCellPhysiol.32,1077–1082.

Dom?



nguez-Bocanegra,A.R.,GuerreroLegarreta,I.,MartinezJeronimo,F.,Tomasini

Campocosio,A.,2004.Influenceofenvironmentalandnutritionalfactorsinthe

productionofastaxanthinfromHaematococcuspluvialis.Bioresour.Technol.92,

209–214.

Fábregas,J.,Otero,A.,Maseda,A.,Domínguez,A.,2001.Two-stageculturesforthe

productionofAstaxanthinfromHaematococcuspluvialis.J.Biotechnol.89,65–

71.

García-Malea,M.C.,Acién,F.G.,DelRío,E.,Fernández,J.M.,Cerón,M.C.,Guerrero,

M.G.,Molina-Grima,E.,2009.ProductionofastaxanthinbyHaematococcus

pluvialis:takingtheone-stepsystemoutdoors.Biotechnol.Bioeng.102,651–

657.

Gross,M.,Henry,W.,Michael,C.,Wen,Z.,2013.Developmentofarotatingalgal

biofilmgrowthsystemforattachedmicroalgaegrowthwithinsitubiomass

harvest.Biotechnol.Bioeng.150,195–201.

Guerin,M.,Huntley,M.E.,Olaizola,M.,2003.Haematococcusastaxanthin:

applicationsforhumanhealthandnutrition.TrendsBiotechnol.21,210–216.

Hata,N.,Ogbonna,J.C.,Hasegawa,Y.,Taroda,H.,Tanaka,H.,2001.Productionof

astaxanthinbyHaematococcuspluvialisinasequentialheterotrophic–

photoautotrophicculture.J.Appl.Phycol.13,395–402.

He,P.,Duncan,J.,Barber,J.,2007.Astaxanthinaccumulationinthegreenalga

Haematococcuspluvialis:effectsofcultivationparameters.J.Integr.PlantBiol.

49,447–451.

Higuera-Ciapara,I.,Felix-Valenzuela,L.,Goycoolea,F.,2006.Astaxanthin:areview

ofitschemistryandapplications.Crit.Rev.FoodSci.Nutr.46,185–196.

Hu,Z.,Li,Y.,Sommerfeld,M.,Chen,F.,Hu,Q.,2008.Enhancedprotectionagainst

oxidativestressinanastaxanthin-overproductionHaematococcusmutant

(Chlorophyceae).Eur.J.Phycol.43,365–376.

Johnson,M.B.,Wen,Z.,2010.Developmentofanattachedmicroalgalgrowthsystem

forbiofuelproduction.Appl.Microbiol.Biotechnol.85,525–534.

Kang,C.D.,Lee,J.S.,Park,T.H.,Sim,S.J.,2005.Comparisonofheterotrophicand

photoautotrophicinductiononastaxanthinproductionbyHaematococcus

pluvialis.Appl.Microbiol.Biotechnol.68,237–241.

Kang,C.D.,An,J.Y.,Park,T.H.,Sim,S.J.,2006.Astaxanthinbiosynthesisfrom

simultaneousNandPuptakebythegreenalgaHaematococcuspluvialisin

primary-treatedwastewater.Biochem.Eng.J.31,234–238.

Kang,C.D.,Lee,J.S.,Park,T.H.,Sim,S.J.,2007.Complementarylimitingfactorsof

astaxanthinsynthesisduringphotoautotrophicinductionofHaematococcus

pluvialis:C/Nratioandlightintensity.Appl.Microbiol.Biotechnol.74,987–994.

Kang,C.,Han,S.,Choi,S.,Sim,S.,2010.Fed-batchcultureofastaxanthin-rich

Haematococcuspluvialisbyexponentialnutrientfeedingandstepwiselight

supplementation.Bioproc.Biosyst.Eng.33,133–139.

Kebede-Westhead,E.,Pizarro,C.,Mulbry,W.W.,2006.Treatmentofswinemanure

effluentusingfreshwateralgae:production,nutrientrecovery,andelemental

compositionofalgalbiomassatfoureffluentloadingrates.J.Appl.Phycol.18,

41–46.

Lababpour,A.,Shimahara,K.,Hada,K.,Kyoui,Y.,Katsuda,T.,Katoh,S.,2005.Fed-

batchcultureunderilluminationwithbluelightemittingdiodes(LEDs)for

astaxanthinproductionbyHaematococcuspluvialis.J.Biosci.Bioeng.100,339–

342.

Li,Y.,Sommerfeld,M.,Chen,F.,Hu,Q.,2010.Effectofphotonfluxdensitieson

regulationofcarotenogenesisandcellviabilityofHaematococcuspluvialis

(Chlorophyceae).J.Appl.Phycol.22,253–263.

Li,J.,Zhu,D.,Niu,J.,Shen,S.,Wang,G.,2011.Aneconomicassessmentof

astaxanthinproductionbylargescalecultivationofHaematococcuspluvialis.

Biotechnol.Adv.29,568–574.

Liang,S.C.a.Y.,2009.Effectsofilluminationonthechlorophyllfluorescence

parametersandastaxanthincontentofHaematococcuspluvialis.SouthChina

FisheriesSci.5,1–8.

Liu,T.,Wang,J.,Hu,Q.,Cheng,P.,Ji,B.,Liu,J.,Chen,Y.,Zhang,W.,Chen,X.,Chen,

L.,Gao,L.,Ji,C.,Wang,H.,2013.Attachedcultivationtechnologyof

microalgaeforefficientbiomassfeedstockproduction.Bioresour.Technol.

127,216–222.

Lopez,M.C.,SanchezEdel,R.,Lopez,J.L.,Fernandez,F.G.,Sevilla,J.M.,Rivas,J.,

Guerrero,M.G.,Grima,E.M.,2006.Comparativeanalysisoftheoutdoorculture

ofHaematococcuspluvialisintubularandbubblecolumnphotobioreactors.J.

Biotechnol.123,329–342.

Lorenz,R.T.,Cysewski,G.R.,2000.CommercialpotentialforHaematococcus

microalgaeasanaturalsourceofastaxanthin.TrendsBiotechnol.18,160–167.

Milledge,J.J.,2011.Commercialapplicationofmicroalgaeotherthanasbiofuels:a

briefreview.Rev.Environ.Sci.Bio/Technol.10,31–41.

Ozkan,A.,Kinney,K.,Katz,L.,Berberoglu,H.,2012.Reductionofwaterandenergy

requirementofalgaecultivationusinganalgaebiofilmphotobioreactor.

Bioresour.Technol.114,542–548.

Pocock,M.,1960.HaematococcusinsouthernAfrica.Trans.R.Soc.SouthAfr.36,5–

55.

163(2014)26–3231

Sarada,R.,Tripathi,U.,Ravishankar,G.A.,2002.Influenceofstressonastaxanthin

productioninHaematococcuspluvialisgrownunderdifferentcultureconditions.

ProcessBiochem.37,623–627.

Tang,H.,Chen,M.,Garcia,M.,Abunasser,N.,Ng,K.,Salley,S.O.,2011.Cultureof

microalgaeChlorellaminutissimaforbiodieselfeedstockproduction.Biotechnol.

Bioeng.108,2280–2287.

Tjahjono,A.E.,Hayama,Y.,Kakizono,T.,Terada,Y.,Nishio,N.,Nagai,S.,1994.Hyper-

accumulationofastaxanthininagreenalgaHaematococcuspluvialisatelevated

temperatures.Biotechnol.Lett.16,133–138.

Torzillo,G.,Goksan,T.,Faraloni,C.,Kopecky,J.,Masojídek,J.,2003.Interplay

betweenphotochemicalactivitiesandpigmentcompositioninanoutdoor

cultureofHaematococcuspluvialisduringtheshiftfromthegreentoredstage.J.

Appl.Phycol.15,127–136.

Wang,B.,Zarka,A.,Trebst,A.,Boussiba,S.,2003.Astaxanthinaccumulationin

Haematococcuspluvialis(chlorophyceae)asanactivephotoprotectiveprocess

underhighirradiance.J.Phycol.39,1116–1124.

Wilkie,A.C.,Mulbry,W.W.,2002.Recoveryofdairymanurenutrientsbybenthic

freshwateralgae.Bioresour.Technol.84,81–91.

Yoo,J.,Choi,S.,Kim,B.,Sim,S.,2012.Optimaldesignofscalablephoto-bioreactor

forphototropicculturingofHaematococcuspluvialis.Bioproc.Biosyst.Eng.35,

309–315.

Zhang,B.Y.,Geng,Y.H.,Li,Z.K.,Hu,H.J.,Li,Y.G.,2009.Productionofastaxanthin

fromHaematococcusinopenpondbytwo-stagegrowthone-stepprocess.

Aquaculture295,275–281.

32M.Wanetal./BioresourceTechnology163(2014)26–32

献花(0)
+1
(本文系大山坡农民首藏)