配色: 字号:
体内转染siRNA研究相关性骨坏死(Entranster),方法简单,新颖
2017-06-22 | 阅:  转:  |  分享 
  


Thisarticleisprotectedbycopyright.Allrightsreserved1

OriginalArticle



TET3mediatesalterationsintheepigeneticmarker5hmCandAktpathwayin

steroid-associatedosteonecrosis?



JieZhao1,2,MD,Xin-longMa1,2,,MD,Jian-xiongMa2,,PhD,LeiSun2,BS,BinLu2,BS,Ying

Wang2,MS,Guo-shengXing3,MS,YanWang2,BS,Ben-chaoDong2,MS,Li-yanXu1,2,MS,

Ming-JieKuang1,2,MS,LinFu1,2,MS,Hao-haoBai2,MS,YueMa3,4,MS,Wei-linJin3,4,MD&PhD



1.TianjinMedicalUniversityGeneralHospital,154,AnshanStreet,HepingDistrict,Tianjin

300052,China

2.InstituteofOrthopedics,TianjinHospital,122,MuNanStreet,HepingDistrict,Tianjin300050,

China

3.DepartmentofInstrumentScienceandEngineering,KeyLab.forThinFilmand

MicrofabricationTechnologyofMinistryofEducation,SchoolofElectronicInformationand

ElectronicEngineering,ShanghaiJiaoTongUniversity,Shanghai200240,China

4.NationalCentersforTranslationalMedicine,ShanghaiJiaoTongUniversity,Shanghai200240,

China



Correspondenceto:Xin-longMa,TianjinMedicalUniversityGeneralHospital,154,Anshan

Street,HepingDistrict,Tianjin300052,China.Phone:86.23197199;Email:

xinlongma2016@163.com;

Jian-xiongMa,InstituteofOrthopedics,TianjinHospital,122,MuNanStreet,HepingDistrict,

Tianjin300050,China.Phone:86.23197122;Email:mjx969@163.com



Runningtitle:TET3-5hmC-AktmediatesGC-inducedosteocyteapoptosisandSAON

















?Thisarticlehasbeenacceptedforpublicationandundergonefullpeerreviewbuthasnotbeen

throughthecopyediting,typesetting,paginationandproofreadingprocess,whichmayleadto

differencesbetweenthisversionandtheVersionofRecord.Pleasecitethisarticleasdoi:

[10.1002/jbmr.2992]



AdditionalSupportingInformationmaybefoundintheonlineversionofthisarticle.



InitialDateSubmittedMay10,2016;DateRevisionSubmittedSeptember1,2016;DateFinalDispositionSetSeptember9,2016



JournalofBoneandMineralResearch

Thisarticleisprotectedbycopyright.Allrightsreserved

DOI10.1002/jbmr.2992



Thisarticleisprotectedbycopyright.Allrightsreserved2

Abstract

Steroid-associatedosteonecrosis(SAON)isoneofthecommoncomplicationsofclinical

glucocorticoid(GC)administration,withosteocyteapoptosisappearingastheprimary

histopathologicallesion.However,theprecisemechanismunderlyingSAONremainsunknown.

EpigeneticmodificationmaybeamajorcauseofSAON.Recently,cumulativeresearchrevealed

thatTen-ElevenTranslocation(TET)proteinscancatalyzetheconversionof5-methylcytosine

(5mC)to5-hydroxymethylcytosine(5hmC)andthenaltertheepigeneticstateofDNA.Here,we

reportthatTET3-5hmCwasup-regulatedinthefemoralheadtissuesofSAONpatientsand

MLO-Y4cellswithdexamethasone(Dex)treatment.KnockdownofTET3inMLO-Y4cells

decreased5hmCenrichmentandrescuedDex-inducedapoptosis.Meanwhile,thelocal

intramedullaryinjectionofTET3siRNAinSprague-DawleyratsabrogatedGC-inducedosteocyte

apoptosis,histopathologicalchanges,abnormalMRIsignalsandbonemicrostructuredeclinesinthe

femoralheadinvivo.Moreover,ahydroxymethylatedDNAimmunoprecipitation(hMeDIP)-chip

analysisofDex-treatedosteocytesrevealed456different5hmC-enrichedgenes.TheAktpathway

wasfoundtomediatethefunctionaleffectofDex-induceddynamic5hmCchange;thiswasfurther

verifiedinclinicalsamples.ThelossofTET3inMLO-Y4cellsabrogatedDex-inducedAkt

signalingpathwayinhibition.Therefore,ourdataforthefirsttimeidentifytheeffectofTET3-5hmC

ontheAktpathwayandthenecessityofthissignalingcascadeinSAON,identifyinganew

potentialtherapeutictarget.Thisarticleisprotectedbycopyright.Allrightsreserved



Keywords:osteonecrosis,epigenetics,DNAdemethylation,TET3,apoptosis





Thisarticleisprotectedbycopyright.Allrightsreserved3



Introduction

SAONisconsideredamultifactorialdiseasethatleadstosubchondralcollapsesandtotaljoint

replacementduringlaterstages(1,2).SAONranksfirstamongtheknownriskfactorsof

nontraumaticfemoralheadnecrosis,whichisassociatedwiththewideuseofglucocorticoids(GCs)

totreatmanydiseasesintheclinic(e.g.,rheumatoidarthritisandsystemiclupuserythematosus)(3).

ThereareseveralalternativemechanismsunderlyingSAON,suchasfatembolization,

intramedullarypressurechanges,modifiedarteryconstriction,circulatoryimpairment,coagulation

disordersandcelldysfunction(4,5).However,osteocyteapoptosishasrecentlybeenshowntobethe

primaryhistopathologicalchangeinosteonecrosis(1,6-8).GCsinduceosteocyteapoptosis,which

disruptsthemechanosensoryfunctionoftheosteocytelacunar–canalicularsystemandultimately

leadstothecollapseofthefemoralhead(1),butthemolecularmechanismofosteocyteapoptosis

remainselusive.

Epigenetics,aneffectivemethodforstudyingtheinterplaybetweenenvironmentalsignalsand

thegenome,hasreceivedagreatdealofattentionrecently(9).Itisbecomingapparentthat

methylationmodificationplaysanimportantroleinSAON.AberrantmethylationoftheABCB1

genehasbeenshowntoberesponsibleforthepathogenesisofSAON(4),andicariinmaybenefitthe

mesenchymalstemcellsofpatientswithSAONthroughABCB1promoterdemethylation(10).

However,inthepastfewyears,ithasbecomeapparentthatDNAmethylationisnotastatic

epigeneticmarkbutishighlydynamicandisgovernedbyaprecisemolecularnetworkof

regulators(11).5mCcanbefurtheroxidizedto5hmC,5-formylcytosines(5fC)and

5-carboxylcytosines(5caC)bytheTETproteinfamilyincludingTET1,TET2andTET3,resulting

inactivedemethylation(12,13).Thedysregulationof5hmClevelsmayleadtoneurologicaldiseases,



Thisarticleisprotectedbycopyright.Allrightsreserved4

cancer,arthritisandsomeotherdiseases(14).

InviewoftherecentadvancesintheunderstandingofDNAdemethylationpathwaysand

increasingevidenceofthefunctionofstable5hmCanditsderivativesintheepigenome,wesought

toinvestigatetheeffectofTETand5hmCinSAON.Inthisstudy,wethereforefirstmeasuredthe

expressionofTET1,TET2,TET3and5hmCinbonetissuesfromSAONandfemoralneckfracture

patients.Then,weexaminedthechangesin5hmCandtheTETfamilyinDex-treatedMLO-Y4

cells.AhMeDIP-chipanalysiswasperformedtoexplorethefunctionaleffectsofdynamic5hmC

change,whichwerefurtherstudiedinclinicalsamples.KnockdownofTETinMLO-Y4cellsorin

vivosiRNAtechnologywereusedtoverifytheeffectofTET-5hmConDex-inducedosteocyte

apoptosisandSAON.WeaimedtodeterminetheeffectsofGCsontheepigenomeofosteocyteand

definetheroleofTET-5hmCinaSAONmodel.

Materialsandmethods

1.SAONandfemoralneckfracturebonetissuepreparation

HumanSAONandfemoralneckfracturesampleswereobtainedfromsurgicalproceduresinthe

DepartmentofJointSurgeryandDepartmentofTraumaticOrthopedicsatTianjinHospital,

respectively.Allproceduresregardingobtainingpatientsampleswereapprovedbytheethics

committeeoftheTianjinHospitalInstitutionalReviewBoardandcompliedwiththeWorldMedical

AssociationDeclarationofHelsinki.SixSAONand6femoralneckfracturepatientswererecruited.

TheseverityofSAONandfemoralneckfracturewasevaluatedusingtheFicatandGardenstaging

system,respectively(15,16).SAONoperativeindicationsincludedacollapsednecroticfemoralhead

withintractablepain.Patientswithademonstrablehistoryofdirecttraumaorwiththepossibilityof

acombinationofcauseswereexcluded(17).Duringsurgery,thefemoralheadwasextractedandthen

thenecroticbonearoundthecenteroffemoralheadwasharvestedforstudy.Bonespecimensfrom



Thisarticleisprotectedbycopyright.Allrightsreserved5

6patientswhounderwenthiparthroplastyforfemoralneckfractureswereharvestedfromthesame

placeandusedascontrols.Noage-matchedcontrolscouldbeobtainedbecauseoftheabsenceofa

surgicalindicationforhiparthroplastyinyoungpatientswithfemoralneckfractures.

2.Cellcultures,Dextreatmentandtransfection

MLO-Y4osteocyte-likecells(agiftfromDr.LyndaBonewald,UniversityofMissouri-KansasCity)

wereculturedaspreviouslydescribed(18).Fordose-dependentexperiments,cellsweretreatedwith

varyingconcentrations(10-8Mto10-5M)ofDex(Sigma-Aldrich,USA).Fortime-dependent

experiments,cellsweretreatedwith10-6MDexforvariousdurationsoftime(19,20).Toactivatethe

Aktsignalingpathway,cellswereexposedtothePTENinhibitorbpV(phen)(10-6M,

Sigma-Aldrich)for30min.Afterwards,thecellswereincubatedwith10-6MDexforupto12h.

ForknockdownofTET,TET1specificsiRNA(TET1-1GCAGATGGCCGTGACACAAAT,

TET1-2GCAGCTAGCTATAGAGTATAG),TET2specificsiRNA(TET2-1

CTCAGGGATGTCCTATTGCTAAA,TET2-2GGATGTAAGTTTGCCAGAAGC),TET3specific

siRNA(TET3-1GCTCCAACGAGAAGCTATTTG,TET3-2AAGCGCAACCTATTCTTGGAA)

andcontrolscramblesiRNA(ACGUGACACGUUCGGAGAATT)weresynthesizedbyBiotend

(BiotendBiotechnologyCo.,Ltd,China)basedonpublishedstudies(21).Transfectionswere

performedusingLipofectamine2000TransfectionReagent(Invitrogen,USA)accordingtothe

manufacturer’sprotocol.Twenty-fourhoursthereafter,cellsweretreatedwith10-6MDexforan

additional12h.

3.hMeDIP-chipanddataprocessing

MLO-Y4cellsweretreatedwith10-6MDexfor0h,4hand12h.Thereafter,genomicDNA

(gDNA)wasextractedandsonicatedtorandomfragmentsof200-1000bp.Onemicrogramof

sonicatedgDNAwasimmunoprecipitatedwith1μlof5hmCantibodyovernightat4°Cwith



Thisarticleisprotectedbycopyright.Allrightsreserved6

rockingagitation.Then,antibody-DNAcomplexeswerecapturedwithproteinA/Gbeads

(ThermoFisherScienti?c,USA).Then,5hmC-containingDNAfragmentswerepurifiedusing

QiagenMinElutecolumns(Qiagen,Germany).ForDNAlabeling,theNimbleGenDual-ColorDNA

LabelingKitwasusedaccordingtothemanufacturer’sguidelines(Nimblegen,USA),andthe

labeledDNAwaspurifiedusingisopropanol/ethanolprecipitation.AmouseRefSeqPromoterArray

(Arraystarlnc,Rockville,USA)washybridizedwiththelabeledDNAat42°Cfor16to20hina

hybridizationchamber(Nimblegen)(22).

ThehMeDIPchipdatawereanalyzedwithNimbleScanv2.5(NimbleGen).Anormalized

peakMvalue(peakMvalue=log2hMeDIP/Input)wascreatedforeachsampletoquantifytherelative

valueof5hmC,whichisproportionalto5hmCexpression.ThethresholdsetofpeakMvalue

changes≥0representedthedifferent5hmC-enrichedgenes(DEG).KEGGpathwayandGOanalysis

ofDEGwereperformedusingthedatabaseforannotation,visualizationandintegrateddiscovery

(DAVID)website(23).The-log10(pValue)wasusedasameasureofthesignificanceofthepathway

associatedwiththe5hmCchange.AheatmapandVenndiagramshowingthedynamicchangein

5hmCwereconstructedwithMultiExperimentViewerv4.9andVenny2.1website,respectively.

4.EstablishmentoftheSAONmodelandknockdownofTET3invivo

TheanimalprocedureswereconductedaccordingtotheGuidefortheCareandUseofLaboratory

Animals:EighthEdition,andthestudyprotocolwasapprovedbytheEthicalCommitteeofthe

TianjinMedicalUniversityGeneralHospitalandTianjinHospital.

Twenty-four3-month-oldadultmaleweight-matchedSpragueDawley(SD)rats(203±14g)were

randomlydividedinto4experimentalgroupsof6ratseachandkeptunderthesamestandard

conditions;waterandfoodwereavailableadlibitum.

TheSAONmodelwasestablishedbasedonaprotocolreportedpreviously(24);



Thisarticleisprotectedbycopyright.Allrightsreserved7

methylprednisolonesodium(MPS,Pharmacia&Upjohn,Peapack,USA)wassubcutaneously

injectedatadoseof21mg/kgperdayfor4weeks.ThesiRNAtransfectioncomplexwasprepared

accordingtothemanufacturer''sinstructions.Briefly,5nmolsiRNA(Biotend),40μlEntranster-in

vivotransfectionreagent(Engreen,China),and40?μlof10%glucoseweremixedfor15minsat

roomtemperature.TET3orscramblesiRNA-Entranster-invivocomplexwasinjectedinto

medullarycavityofbilateraldistalfemurtwiceoverthecourseof4weeks(2,25,26).Euthanasiawas

performedatweek4.TheleftfemoralheadswereusedforMicro-CTscan(n=6/group),histological

evaluation(n=6/group)andTUNELanalysis(n=6/group)(27,28).Therightfemoralheadswere

separatedintotwopartsforwesternblot(n=4/group)anddotblotanalysis(n=4/group).

5.Micro-CT-basedtrabeculararchitectureassessment

ThefemoralheadswerescannedwithanInveonmicroPET/CTmanufacturedbySiemens(Berlin,

Germany)atavoltageof80kVandacurrentof500μA,withanentirescanlengthof20mmfrom

thetopofthefemoralheadtothefemoralshaftinaspatialresolutionof10μm.3-Dstructureswere

reconstructedusingtheInveonanalysisworkstation.TheROIwasdeterminedasanirregular

anatomiccontouradjacenttotheendocorticalsurfaceandepiphyseallineinproximalepiphysis.

Thecorticalboneandspongybonewereseparatedmanuallybyautotrace;later,thetrabeculaeand

thebonemarrowwereseparatedusingthethresholdfunction(29).Thebonevolume/totalvolume

(BV/TV),bonesurfacearea/bonevolume(BS/BV),trabecularthickness,trabecularnumber,

trabecularseparationwerecalculated(30).

6.Statisticalanalysis

Osteonecrosiswasde?nedaspreviouslydescribedandtheincidenceofSAONinratswasdefined

asthenumberoffemoralheadswithpredominantemptylacunaedividedby6femoralheadsin

eachgroup(27,28).Numberdatawereexpressedasthemean±SDwithANOVA(Fisher''sleast



Thisarticleisprotectedbycopyright.Allrightsreserved8

significantdifference,LSD)methodtoassesssignificantdifferencesbetweengroups.Analysisof

covariance(ANCOVA)wasusedtocorrecttheagebiasbetweenSAONandfracturepatients.All

experimentswererepeatedatleastthreetimes.StatisticalanalysiswasperformedusingSPSS20.0

software(Chicago,USA).p<0.05wasconsideredsignificant.

Results

TET3-5hmClevelwasup-regulatedinSAONfemoralheads.

ThepatientcharacteristicsarelistedinSupplementaltables1and2.IntheSAONgroup,6SAON

patientsrangingfrom59to77yearsold(66.2±6.6years)wereenrolled.Inthecontrolgroup,6

patientsrangingfrom68to85yearsold(76.2±5.5years)wereincluded.Therepresentative

radiographsshowedprominentfemoralheaderosionandcollapseintheSAONgroupandevident

femoralneckfractureinthecontrolgroup(Figure1A).TUNELanalysiswasperformedtomeasure

cellapoptosisinthebonetissues.IntheSAONgroup,osteocytesembeddedinthetrabecula

displayedstrongTUNELstaining,whichisconsistentwithpreviousstudies(Figure1B,1C)(31).It

hasbeenreportedthatTET3mediatesGC-inducedharmfulneurodevelopmentaleffects(32).To

exploretheroleofTETinthepathogenesisofSAON,TET1,TET2andTET3levelswereanalyzed.

Real-timePCRshowedthatthelevelsofTET1andTET2wereunchanged,whiletheexpressionof

TET3wasincreasedinSAONtissues(Figure1D-1F),whichwasconfirmedbywesternblot

(Figure1G,1H).TET3mediates5mCconversionto5hmC,5fC,and5caC.Asthesteady-statelevel

of5hmCisconsideredmuchhigherthanthepoolof5fCand5caC(33),weevaluatedonlythe5hmC

level.DNAdotblotindicatedstrongenrichmentof5hmCinSAON(Figure1I,1J).

TheTET3-5hmCincreasewasinvolvedinDex-inducedosteocyteapoptosis.

TodeterminetheeffectofGCtreatmentonosteocyteviability,wefirstperformedaninvitro

analysisinMLO-Y4cells.ATUNELassayindicatedthatMLO-Y4cellstreatedwithDex



Thisarticleisprotectedbycopyright.Allrightsreserved9

demonstratedadose-dependentincreaseinapoptosis(Figure2A,2B).Furthermore,MLO-Y4cells

treatedwithatimecourseof10-6MDex(arangefrom2h,4h,8hto12h)showedincreased

apoptosis(Figure2C,2D).ToexplorethemechanismofDex-inducedapoptosis,Bcl-2,Baxand

cleavedcaspase-3proteinlevelswerequantified.Thedatashowedthatpro-apoptoticBaxand

cleavedcaspase-3wereup-regulated,whiletheanti-apoptoticBcl-2proteinlevelwaslowerat8h

and12h(Figure2F).IntheCCK-8andtrypanblueexclusionassay,thenumberofMLO-Y4

normalcellswasfoundtobereducedbyDextreatmentinbothadose-dependentanda

time-dependentmanner(SupplementalFigure1A,1B,2A,2B).Inaddition,anethynyl

deoxyuridine(EdU)incorporationassayindicatedthatDNAreplicationandcellproliferationwere

suppressedbyDex(SupplementalFigure1C,1D,2C,2D).

TostudywhetherTETand5hmCwereinvolvedinDex-inducedapoptosisinvitro,genome-wide

5hmClevelsandtheexpressionofTET1,TET2andTET3werequantified.IFanddotblotshowed

thatglobal5hmCwasup-regulatedbyDexinatime-dependentmanner(Figure2E,2G).Real-time

PCRrevealedthatTET3increasedafterDextreatmentwhileTET2remainedunchanged.Although

TET1increasedslightly,itwasnotassignificantasTET3(Figure2H-2J),whichwassimilartothe

resultsoftheproteinexpressionanalysis(Figure2K).Theup-regulationwasobservedinbothtotal

andnuclearTET3,asrevealedbysubcellularextractionanalysis(Figure2L).Thesedataindicated

thatTET3maylocalizeinnucleusafterDextreatmenttoinduce5hmCenrichmentandinitiate

osteocyteapoptosis.

TheAktpathwaymediatedthefunctionaleffectofDex-induceddynamicchangesin5hmC.

Tounderstandthefunctionaleffectofthe5hmCchange,weperformedahMeDIP-chipassayto

examinethe5hmCepigenomeinMLO-Y4cellsoverthecourseofDextreatment.Followingthe

hMeDIP-chipassayandpurificationof5hmC-enrichedDNAfragments,theArrayStarMouse



Thisarticleisprotectedbycopyright.Allrightsreserved10

RefSeqPromoterArraywasusedtocharacterizethedistributionof5hmCwithinpromoters.Aheat

mapandVenndiagramswereusedtodepictthedynamicchangeinDex-induced5hmCexpression.

Fourhundredfifty-sixgenespredictedtohavedifferentenrichmentlevelsof5hmCwereselected.

Ofthesegenes,92geneswere5hmC-upregulatedand98geneswere5hmC-downregulatedinall

Dex-treatedMLO-Y4cells(4hand12h).Moreover,1225hmC-upregulatedgenesand144

5hmC-downregulatedgenesoccurringinDextreatmentfor12hwerealsoidentified(Figure3A).

Then,weusedVenndiagramstofurthershowthedynamic5hmCchangeindifferenttypesofgenes.

ThegeneswereclassifiedashighCpGgenes(HCG),intermediateCpGgenes(ICG)andlowCpG

genes(LCG)basedontheCpGcontentinthepromoter.Thenumberofgeneswithdifferential

5hmCenrichmentislistedinFigure3B.GOanalysisrevealedsignificantaccumulationofDEG

involvedinseveralimportantcellularprocesses,suchasdevelopment,localization,metabolismand

differentiation(Figure3C).

KEGGpathwayanalysisshowedthatsignalingpathways,includingthePI3K-Aktpathway,

Notchpathway,apoptosispathwayandWntpathway,exhibiteddynamicchangesin5hmClevels

(Figure4A,4B).ThePI3K-AktandNotcharesignalingpathwaysshowedthemostsignificant

5hmCup-regulationanddown-regulation,respectively.ElevengenesassociatedwiththePI3K-Akt

signalingpathwayandthecorrespondingpeakMvaluesarelistedintable1,whichshowsthe5hmC

expressioninthesegenepromoters.Then,weusedreal-timePCRtoquantifythemRNAexpression

ofthesegenes.TheresultsshowedthatPTEN,Ppp2r5dandJAK3wereup-regulatedwithdifferent

patternsinDex-treatedcellsrelativetocontrolcells,whilePIK3r5,PIK3cd,TCL1andPDK2were

down-regulated(Figure4C-4M).ThemRNAlevelsofPIK3c2b,Itga1,Itga11andTlr4remained

almostunchanged,thoughthehMeDIP-chipassayrevealeddifferentenrichmentwith5hmC(Figure

4C-4M).Accordingtothewesternblotassay,PTENwasup-regulatedandp-Aktwas



Thisarticleisprotectedbycopyright.Allrightsreserved11

down-regulatedinallDex-treatedcells.Meanwhile,thetotalAktleveldidnotchangesignificantly

(Figure4N).TofurtherexplorewhethertheAktpathwaymediatesthefunctionaleffectof

Dex-induced5hmCchange,bpV(phen)wasusedtoactivatetheAktpathway.Wefoundthatthe

osteocyteapoptosisinducedbyDexwasreversedsignificantlybyactivatingAktsignaling,and

westernblotrevealedthesamepattern(Figure5A-5C).Significantly,thelevelsofAktand

apoptosiswerealsochangedinSAONtissues.TheexpressionofPTENwasincreasedinSAON,

whilep-Aktandp-PI3Kdecreased.Meanwhile,Bcl-2decreasedattheproteinlevelinSAON,but

Baxandactivecaspase-3increased(Figure5D).ThesedataverifiedthatthePTEN-Aktpathway

mediatesthefunctionaleffectofDex-inducedTET-5hmCchangeinosteocyteandiscriticalfor

osteocyteapoptosisandSAON.

Additionally,wealsofoundchangesinNotch4(notNotch2)expressioninSAONtissues

(SupplementalFigure3).Thus,Notchsignalingmayalsopartiallymediatethefunctionaleffectof

5hmCchangeandcouldbefurtherexploredinthefuture.

KnockdownofTET3abrogatedDex-inducedosteocyteapoptosisandAktpathwayinhibition.

TofurtherconfirmtheeffectofTET-5hmConDex-inducedosteocyteapoptosis,weperformed

siRNA-mediatedknockdownofTET1-3expressioninMLO-Y4cells.Wefirsttestedtheefficacyof

severalreportedTET1-3sequencesinknockingdownTETexpression.After24hoftransfection,

real-timePCRdatashowedthatfivesequences(siTET1-1,siTET2-1,siTET2-2,siTET3-1and

siTET3-2)decreasedTETmRNAexpression(Figure6A).ThecellstransfectedwithsiTET1-1,

siTET2-2andsiTET3-1wereusedinthesubsequentexperiments.Significantly,onlyknockdownof

TET3reversedDex-inducedapoptosis,whileknockdownofTET1orTET2hadnoeffect(Figure

6B).TwelvehoursAfterDextreatment,30.00±1.91%oftransfectedcontrolcells,30.05±2.47%of

siTET1-transfectedcells,and30.75±3.46%ofsiTET2-transfectedcellswereTUNELpositive.In



Thisarticleisprotectedbycopyright.Allrightsreserved12

contrast,thenumberofapoptoticcellsdecreasedto17.14±1.06%insiTET3-transfectedcells

(Figure6C).WesternblotindicatedthatonlyknockdownofTET3inhibitedcaspase-3activation,

althoughknockdownofTET1andTET2hadaslighteffectonBcl-2(Figure6D).Inaddition,

transfectionofsiTET3reversedDex-inducedTET3up-regulationattheproteinlevel.Subcellular

extractionanalysisindicatedthatnuclearTET3wasalsodown-regulated(Figure6E,Supplemental

Figure4A).Meanwhile,dotblotandIFshowedthattheglobalenrichmentof5hmCwasabrogated

afterknockdownofTET3(Figure6F,6G).TheseresultsfurtherverifiedthatTET3isspecificand

indispensableforDex-induced5hmCenrichmentandosteocyteapoptosis.

WefurtherexploredtheactivityoftheAktsignalingpathway.ComparedwiththeDex-treated

group,knockdownofTET3reversedthephosphorylationofAktanddown-regulatedPTENlevels;

thus,thesuppressionoftheAktsignalingpathwaydecreased(Figure6H).

ThedatashowedthatthenumberofnormalMLO-Y4cellsinthesiTET3groupwaslargerthan

thatintheDex-treatedgroup(SupplementalFigure4B,4C).FurtherEdUincorporationassays

showedthatthenumberofEdUpositivecellsincreasedsignificantlyafterTET3knockdown

comparedwithDextreatment(SupplementalFigure4D,4E).

KnockdownofTET3alleviatedSAONinvivo

TET3siRNAtransfectioninvivowasperformedasillustratedinFigure7A.Westernblotshowed

thatsiTET3treatment,whichdidnotalterthelevelsofTET1andTET2,abrogatedMPS-induced

TET3expressioninfemoralheadbonetissues(Figure7B)andfurtherreversedMPSinductionof

global5hmCaccumulation(Figure7C).

WenextexploredthetherapeuticeffectofTET3knockdownonSAONbyperformingHE

staining,TUNELassay,Micro-CTandMRIscansinrats.HEstainingshowedobviousemptybone

lacunaeandadipocytesinthebonemarrowoftheSAONgroup;theseeffectswererescuedby



Thisarticleisprotectedbycopyright.Allrightsreserved13

siTET3treatment.Theincidenceofosteonecrosisatweek4was83.3%(5/6)intheSAONgroup

and0(0/6)inthesiTET3groupbythestandardofHEstainedhistologicalexamination(Figure7D).

TUNELanalysisshowedthattheosteocytesembeddedinthetrabeculaeattheproximalepiphysis

ofthefemoralheaddisplayedintensestainingintheSAONgroup,whilefewosteocytesdisplayed

positivestainingwithsiTET3treatment(Figure7E,7F).

Micro-CTshowedthatMPStreatmentdecreasedtheBV/TV,trabecularnumberandtrabecular

thicknessandincreasedtrabecularseparation,indicatingapparenttrabecularbonelossinSAON

femoralheads;thischangewassignificantlyrescuedbysiTET3treatment(Figure7G,7H).

Moreover,MRIscansshowedheterogeneousT1W1signalsandhigh-intensityT2W1signalsinthe

femoralheadintheSAONandscramblegroups.Incontrast,thesiTET3groupshoweda

homogeneousT1W1signalandalow-intensityT2W1signal,similartotheresultsobservedina

normalfemoralhead(Figure7I).Collectively,thesedatasuggestthatknockdownofTET3

alleviatedosteocyteapoptosisandSAONinvivo.

Discussion

OurresultsuncoveredadirectimpactoftheTET3-5hmC-Aktpathwayonthepathogenesisof

SAON(Figure8).Thisdeductionisbasedonthefollowing.First,weobservedthataglobal

enrichmentof5hmCandTET3increaseinSAONbonespecimens.Second,wefoundthat

Dex-inducedTET3-5hmCup-regulationinMLO-Y4osteocytes.Third,ahMeDIP-chipanalysis

exhibiteddynamic5hmCchangeinthepromoterofgenesassociatedwiththeAktpathway,and

pharmacologicalactivationoftheAktpathwayrescuedDex-inducedosteocyteapoptosis.Fourth,

AktandapoptosissignalswerealteredinSAONsamples.Fifth,knockdownofTET3withspecific

siRNAreversedtheGC-inducedinhibitionofAktsignalingandosteocyteapoptosisinvitroand

SAONinvivo.AnearlierstudyreportedthatGCselicitstrongandpersistenteffectsonDNA



Thisarticleisprotectedbycopyright.Allrightsreserved14

hydroxymethylationinneuralstemcells,withTET3beingakeyfactorforharmful

neurodevelopmentaleffects(32),therebyimplicatingalterationsintheTET3-5hmCpathwayin

SAON.

ThepatternofDNAmethylationatcytosinebasesinthegenomeistightlylinkedtogene

expression,andDNAmethylationabnormalitiesareoftenobservedindiseases.TheTETproteins

promotethereversalofDNAmethylation(33).TET1isindispensableformaintainingembryonic

stemcellpluripotencyandexertstumorsuppressingfunctionsingastriccancer(34,35).TET2was

positivelycorrelatedwiththeregulationofneuronsurvival(36).TET3isrequiredforthenormal

survival,proliferationanddifferentiationofneuralprogenitorcells(32).Nevertheless,theexpression

patternandexactfunctionofthesethreeimportantproteinshavenotbeenreportedinbonetissues

previously.Inourstudy,wefirstfoundtheexpressionofTET1,TET2andTET3inbonetissues.

TET3functionappearstobedistinctfromthatofTET1andTET2inSAONpathogenesis,asour

datashowedthatonlyTET3expressionwassignificantlyup-regulatedandaccompaniedby5hmC

accumulationinSAON.TET1wasalsoslightlyincreasedbyDextreatmentinvitro,butnotas

obviouslyasTET3.Inaddition,onlyknockdownofTET3couldreverseDex-inducedMLO-Y4cell

apoptosis;thus,TET3isspecificallyinvolvedinDex-inducedosteocyteapoptosisandSAON.

ApartfromaconservedcorecatalyticregionintheCterminusofeachTETprotein,TET1and

TET3haveanN-terminalCXXCzincfingerdomainthatcanbindDNAandfacilitaterecruitment

totargetgenesinthegenome(37,38).Thus,GC-inducedTET,especiallyTET3expression,mayaid

inthedemethylationoftargetgenes.Inadditiontoenzymaticroles,TETproteinsserveas

transcriptionalco-activators/co-repressorsbyinteractingwithsometranscriptionalregulatorsand

scaffoldingproteins(39).Furtherstudiesareneededtoclarifytheeffectsofsuchnon-enzymatic

activityofTETproteinsinducedbyGCs.



Thisarticleisprotectedbycopyright.Allrightsreserved15

GCs,includingcortisolasthepredominantGCinhuman,regulatetheexpressionofawidearray

oftargetgenesthroughbindingtoglucocorticoidreceptorα(GRα)andGRβ.Botharemembersof

thenuclearreceptorsuperfamilyandpresentinosteocytes(40,41).GCsleadtomultiplechangesof

osteocytes;however,studiesregardingtherolesofGRsinmediatingtheseeffectsarescarce(41).It

hasbeenreportedthatGRsmediateGCpromotionofosteocyteapoptosisbyactivatingPyk2and

JNK,followedbyinside-outsignalingthatleadstoanoikis(42).OurdemonstrationthatGCsinduce

osteocyteapoptosisisconsistentwithpreviousstudies(18,43-45).WefoundthatGCsinducedTET3

up-regulationandlocalizationtothenucleus,aswellas5hmCenrichmentinatime-dependent

manner,inosteocytes.Thus,itissuspectedthatGRshavethepotentialtomediatetheexpressionof

TET3,initiategenomichydroxymethylationandosteocyteapoptosis.However,howTET3is

modulatedbyGRsandrecruitedintothenucleustomodifymethylationneedstobefurtherstudied.

AhMeDIP-chipassaywasperformedtounderstandthefunctionaleffectof5hmCenrichment.

Thedynamicchangesin5hmCdistributionwithDextreatmentaresimilartothe5hmCdistribution

inprogenitordifferentiationduringchondrogenesisandneurogenesis(12,21).KEGGpathwayanalysis

indicatedthatthePI3K-AktsignalingpathwaycouldmediatethefunctionaleffectofDex-induced

5hmCchange,afindingthatwasverifiedwhenthepharmacologicalactivationoftheAktpathway

abrogatedDex-inducedosteocyteapoptosis.Significantly,wefurtherfoundalterationsinAkt

signalinginclinicalSAONsamples.ThemodulationofAktbyGCsisacellautonomous

mechanismofWnt/β-cateninantagonismthatcontributestotheadverseeffectsofexcessGCs.Akt

attenuationpromotesthebindingofβ-catenintoFoxOsandinhibitionofβ-catenin/TCFactivity(43).

PTHcounteractstheadverseeffectofGCsbyabrogatingthesuppressiveeffectofGCsonAkt

phosphorylationandtheWntpathway(46).Moreover,inhibitionofAkt-mTORC1signalingbyGCs

inducesautophagy,resultinginconnexin43degradationandsubsequentlyimpairingosteocyte



Thisarticleisprotectedbycopyright.Allrightsreserved16

cell-cellcommunication(20).Interestingly,knockdownofTET3invitrocanblocktheAktactivity

inhibitioninducedbyDex.Thus,ourdataforthefirsttimeindicatethatDex-inducedAktpathway

suppressionismediatedbyTET3.

InadditiontoAktpathway-associatedgenes,GC-inducedTET3-5hmCchangesregulatethe

expressionofalargenumberofgenes,suchasNotch,Dkk1andDkk4(datanotshown).Notch

signalingplaysacriticalroleinosteoblastcellfateandfunction,andendothelialNotchactivity

promotesangiogenesisandosteogenesis(47).Dkk1isinvolvedintheinhibitionoftheWntsignaling

pathway,anditsexpressionisassociatedwithosteocyteapoptosisinSAONpatients(48).Boseetal.

reportedthatTET3mediatesstableGC-inducedalterationsinDNAmethylationandDkk1

expressioninneuralprogenitors(32).ThisindicatesthatnotonlytheAktpathwaybutalsoother

targetgenesmaymediatethefunctionaleffectofGC-inducedTET3-5hmCchangeandcouldbe

furtherexplored.

Then,wefoundthatknockdownofTET3withspecificsiRNAtransfection,whichhasbeenused

inmanystudies,couldabrogateSAONinvivo(2,25).InanotherSAONrabbitmodel,theblockade

ofSrcwithspecificsiRNAwasusedasanoveltherapeuticstrategytopreventdestructiverepair(2).

Inourstudy,theeffectiveknockdownofTET3invitroconfirmedthespecificmouseTET3siRNA

sequence.ConsideringthefactthatweusedratstoestablishanSAONmodel,aBLASTsearchwas

performedinGenBanktovalidatethatthesequencewasconservedandalsospecificforrats.

Meanwhile,theefficiencyofTET3knockdowninvivowasconfirmedwithawesternblotassayof

theentirefemoralheadbonetissue.Furthermore,withtheaimofexploringwhetherknockdownof

TET3couldpreventthedevelopmentofSAON,weperformedTET3siRNAinjectiononthefirst

andfifteenthdayofSAONinduction.Interestingly,knockdownofTET3invivoprevented

GC-inducedosteocyteapoptosis,histopathologychanges,trabeculaedeclineandhigh-intensity



Thisarticleisprotectedbycopyright.Allrightsreserved17

T2W1MRIsignalsinratfemoralheads.Unfortunately,ourinvivotransfectionmethodcouldnot

ensurethespecificknockdownofTET3inosteocytes.Liangetal.developedCH6aptamer-

functionalizedlipidnanoparticles(LNPs)toencapsulatesiRNAandboostedinvivo

osteoblast-specificgenesilencing(49).TounderstandtheexactfunctionofTET3inosteocytes,

furtherosteocyte-specificdeletionofTET3withacorrespondingaptamerdeliverysystemis

warranted.

Inconclusion,thecurrentresultsindicatethatTET3-5hmC-AktsignalingiscriticalforGC-induced

osteocyteapoptosisandSAONanduncoveranewmechanismofSAON.Thisfindingindicatesthat

inhibitionofTET3expressioninosteocytesmightbeanewstrategytotreatSAONearly.

Disclosures

Allauthorsstatethattheyhavenoconflictsofinterest.

Acknowledgments

WearegratefultoProf.LyndaBonewaldforthekindgiftofMLO-Y4cells.Thisworkwas

supportedbygrantsfromtheNationalNaturalScienceFoundationofChina(No.81572154),the

ScientificandTechnologicalProjectofTianjinPublicHealthBureau(No.2014KY31)andthe

HealthCareKeyProjectofTianjin(No.14KG123).

Authors’roles:Studydesign:XLMa,JXMa,JZhaoandWLJin.Studyconduct:JZhao,LSun,B

Lu,LYXu,MJKuang,LFu,YMa.Datacollection:JZhao,BLu,LYXu,MJKuang,YWang,BC

Dong,LFu.Dataanalysis:JZhao,YWang,GSXing,HHBai,YMa,WLJin.Draftingmanuscript:

JZhao,JXMa.Revisingmanuscriptcontent:JZhao,JXMa,XLMa,WLJin.Approvingfinal

versionofthemanuscript:All.JZhao,JXMaandXLMaareresponsiblefortheintegrityofthe

dataanalysis.





Thisarticleisprotectedbycopyright.Allrightsreserved18



References

1.WeinsteinRS.Glucocorticoid-inducedosteonecrosis.Endocrine.2012;41(2):183-90.

2.ZhengLZ,CaoHJ,ChenSH,TangT,FuWM,HuangL,etal.BlockageofSrcbySpecific

siRNAasaNovelTherapeuticStrategytoPreventDestructiveRepairinSteroid-Associated

OsteonecrosisinRabbits.JournalofBoneandMineralResearch.2015;30(11):2044-57.

3.StrehlC,BijlsmaJW,deWitM,BoersM,CaeyersN,CutoloM,etal.Definingconditions

wherelong-termglucocorticoidtreatmenthasanacceptablylowlevelofharmtofacilitate

implementationofexistingrecommendations:viewpointsfromanEULARtaskforce.Annalsofthe

rheumaticdiseases.2016;75(6):952-7.

4.SunZ,YangS,YeS,ZhangY,XuW,ZhangB,etal.AberrantCpGislands''hypermethylation

ofABCB1inmesenchymalstemcellsofpatientswithsteroid-associatedosteonecrosis.J

Rheumatol.2013;40(11):1913-20.

5.LeeYK,HaYC,ChoYJ,SuhKT,KimSY,WonYY,etal.DoesZoledronatePreventFemoral

HeadCollapsefromOsteonecrosis?AProspective,Randomized,Open-Label,MulticenterStudy.

TheJournalofboneandjointsurgeryAmericanvolume.2015;97(14):1142-8.

6.WeinsteinRS.Glucocorticoid-inducedosteoporosisandosteonecrosis.EndocrinolMetabClin

NorthAm.2012;41(3):595-611.

7.KerachianMA,SeguinC,HarveyEJ.Glucocorticoidsinosteonecrosisofthefemoralhead:a

newunderstandingofthemechanismsofaction.JSteroidBiochemMolBiol.2009;114(3-5):121-8.

8.WeinsteinRS.Clinicalpractice.Glucocorticoid-inducedbonedisease.NEnglJMed.

2011;365(1):62-70.

9.MinorEA,CourtBL,YoungJI,WangG.Ascorbateinducesten-eleventranslocation(Tet)



Thisarticleisprotectedbycopyright.Allrightsreserved19

methylcytosinedioxygenase-mediatedgenerationof5-hydroxymethylcytosine.TheJournalof

biologicalchemistry.2013;288(19):13669-74.

10.SunZB,WangJW,XiaoH,ZhangQS,KanWS,MoFB,etal.Icariinmaybenefitthe

mesenchymalstemcellsofpatientswithsteroid-associatedosteonecrosisbyABCB1-promoter

demethylation:apreliminarystudy.Osteoporosisinternational.2015;26(1):187-97.

11.TahilianiM,KohKP,ShenY,PastorWA,BandukwalaH,BrudnoY,etal.Conversionof

5-methylcytosineto5-hydroxymethylcytosineinmammalianDNAbyMLLpartnerTET1.Science.

2009;324(5929):930-5.

12.TaylorSE,LiYH,SmeriglioP,RathM,WongWH,BhutaniN.Stable

5-Hydroxymethylcytosine(5hmC)AcquisitionMarksGeneActivationDuringChondrogenic

Differentiation.JournalofBoneandMineralResearch.2016;31(3):524-34.

13.SongCX,SzulwachKE,DaiQ,FuY,MaoSQ,LinL,etal.Genome-wideprofilingof

5-formylcytosinerevealsitsrolesinepigeneticpriming.Cell.2013;153(3):678-91.

14.SunW,ZangL,ShuQ,LiX.Fromdevelopmenttodiseases:theroleof5hmCinbrain.

Genomics.2014;104(5):347-51.

15.FrandsenPA,AndersenE,MadsenF,SkjodtT.Garden''sclassificationoffemoralneckfractures.

Anassessmentofinter-observervariation.TheJournalofboneandjointsurgeryBritishvolume.

1988;70(4):588-90.

16.FicatRP.Idiopathicbonenecrosisofthefemoralhead.Earlydiagnosisandtreatment.The

JournalofboneandjointsurgeryBritishvolume.1985;67(1):3-9.

17.KimT,HongJM,LeeJ,OhB,ParkEK,LeeC,etal.Promoterpolymorphismsofthevascular

endothelialgrowthfactorgeneisassociatedwithanosteonecrosisofthefemoralheadintheKorean

population.OsteoarthritisCartilage.2008;16(3):287-91.



Thisarticleisprotectedbycopyright.Allrightsreserved20

18.KitaseY,BarraganL,QingH,KondohS,JiangJX,JohnsonML,etal.Mechanicalinductionof

PGE2inosteocytesblocksglucocorticoid-inducedapoptosisthroughboththebeta-cateninandPKA

pathways.JournalofBoneandMineralResearch.2010;25(12):2657-68.

19.SatoAY,TuX,McAndrewsKA,PlotkinLI,BellidoT.Preventionofglucocorticoid

induced-apoptosisofosteoblastsandosteocytesbyprotectingagainstendoplasmicreticulum(ER)

stressinvitroandinvivoinfemalemice.Bone.2014;73C:60-8.

20.GaoJ,ChengTS,QinA,PavlosNJ,WangT,SongK,etal.Glucocorticoidimpairscell-cell

communicationbyautophagy-mediateddegradationofconnexin43inosteocytes.Oncotarget.

2016;7(19):26966-78.

21.ZhaoX,DaiJ,MaY,MiY,CuiD,JuG,etal.Dynamicsoften-eleventranslocation

hydroxylasefamilyproteinsand5-hydroxymethylcytosineinoligodendrocytedifferentiation.Glia.

2014;62(6):914-26.

22.WangJH,ChenWL,LiJM,WuSF,ChenTL,ZhuYM,etal.Prognosticsignificanceof

2-hydroxyglutaratelevelsinacutemyeloidleukemiainChina.ProceedingsoftheNational

AcademyofSciencesoftheUnitedStatesofAmerica.2013;110(42):17017-22.

23.HuangdaW,ShermanBT,LempickiRA.Systematicandintegrativeanalysisoflargegenelists

usingDAVIDbioinformaticsresources.Natureprotocols.2009;4(1):44-57.

24.HanN,YanZ,GuoCA,ShenF,LiuJ,ShiY,etal.Effectsofp-glycoproteinonsteroid-induced

osteonecrosisofthefemoralhead.CalcifTissueInt.2010;87(3):246-53.

25.LiCJ,ChengP,LiangMK,ChenYS,LuQ,WangJY,etal.MicroRNA-188regulates

age-relatedswitchbetweenosteoblastandadipocytedifferentiation.TheJournalofclinical

investigation.2015;125(4):1509-22.

26.YanW,FangZ,YangQ,DongH,LuY,LeiC,etal.SirT1mediateshyperbaricoxygen



Thisarticleisprotectedbycopyright.Allrightsreserved21

preconditioning-inducedischemictoleranceinratbrain.Journalofcerebralbloodflowand

metabolism:officialjournaloftheInternationalSocietyofCerebralBloodFlowandMetabolism.

2013;33(3):396-406.

27.YangL,BoydK,KasteSC,KamdemKamdemL,RahijaRJ,RellingMV.Amousemodelfor

glucocorticoid-inducedosteonecrosis:effectofasteroidholiday.JOrthopRes.2009;27(2):169-75.

28.LiuC,JankeLJ,KawediaJD,RamseyLB,CaiX,MattanoLA,Jr.,etal.Asparaginase

PotentiatesGlucocorticoid-InducedOsteonecrosisinaMouseModel.PloSone.

2016;11(3):e0151433.

29.DongY,LiY,HuangC,GaoK,WengX.Systemicapplicationofteriparatideforsteroid

inducedosteonecrosisinaratmodel.BMCMusculoskeletDisord.2015;16:163.

30.BouxseinML,BoydSK,ChristiansenBA,GuldbergRE,JepsenKJ,MullerR.Guidelinesfor

assessmentofbonemicrostructureinrodentsusingmicro-computedtomography.JournalofBone

andMineralResearch.2010;25(7):1468-86.

31.JilkaRL,NobleB,WeinsteinRS.Osteocyteapoptosis.Bone.2013;54(2):264-71.

32.BoseR,SpulberS,KilianP,HeldringN,LonnerbergP,JohnssonA,etal.Tet3mediatesstable

glucocorticoid-inducedalterationsinDNAmethylationandDnmt3a/Dkk1expressioninneural

progenitors.CellDeathDis.2015;6:e1793.

33.RasmussenKD,HelinK.RoleofTETenzymesinDNAmethylation,development,andcancer.

GenesDev.2016;30(7):733-50.

34.ItoS,D''AlessioAC,TaranovaOV,HongK,SowersLC,ZhangY.RoleofTetproteinsin5mC

to5hmCconversion,ES-cellself-renewalandinnercellmassspecification.Nature.

2010;466(7310):1129-33.

35.FuHL,MaY,LuLG,HouP,LiBJ,JinWL,etal.TET1exertsitstumorsuppressorfunctionby



Thisarticleisprotectedbycopyright.Allrightsreserved22

interactingwithp53-EZH2pathwayingastriccancer.Journalofbiomedicalnanotechnology.

2014;10(7):1217-30.

36.MiY,GaoX,DaiJ,MaY,XuL,JinW.ANovelFunctionofTET2inCNS:Sustaining

NeuronalSurvival.IntJMolSci.2015;16(9):21846-57.

37.XuY,XuC,KatoA,TempelW,AbreuJG,BianC,etal.Tet3CXXCdomainanddioxygenase

activitycooperativelyregulatekeygenesforXenopuseyeandneuraldevelopment.Cell.

2012;151(6):1200-13.

38.HuL,LuJ,ChengJ,RaoQ,LiZ,HouH,etal.Structuralinsightintosubstratepreferencefor

TET-mediatedoxidation.Nature.2015;527(7576):118-22.

39.GaoJ,MaY,FuHL,LuoQ,WangZ,XiaoYH,etal.Non-catalyticrolesforTET1protein

negativelyregulatingneuronaldifferentiationthroughsrGAP3inneuroblastomacells.Protein&

cell.2016;7(5):351-61.

40.SurjitM,GantiKP,MukherjiA,YeT,HuaG,MetzgerD,etal.Widespreadnegativeresponse

elementsmediatedirectrepressionbyagonist-ligandedglucocorticoidreceptor.Cell.

2011;145(2):224-41.

41.MoutsatsouP,KassiE,PapavassiliouAG.Glucocorticoidreceptorsignalinginbonecells.

Trendsinmolecularmedicine.2012;18(6):348-59.

42.PlotkinLI,ManolagasSC,BellidoT.Glucocorticoidsinduceosteocyteapoptosisbyblocking

focaladhesionkinase-mediatedsurvival.Evidenceforinside-outsignalingleadingtoanoikis.The

Journalofbiologicalchemistry.2007;282(33):24120-30.

43.AlmeidaM,HanL,AmbroginiE,WeinsteinRS,ManolagasSC.Glucocorticoidsandtumor

necrosisfactoralphaincreaseoxidativestressandsuppressWntproteinsignalinginosteoblasts.

TheJournalofbiologicalchemistry.2011;286(52):44326-35.



Thisarticleisprotectedbycopyright.Allrightsreserved23

44.PlotkinLI,MathovI,AguirreJI,ParfittAM,ManolagasSC,BellidoT.Mechanicalstimulation

preventsosteocyteapoptosis:requirementofintegrins,Srckinases,andERKs.AmJPhysiolCell

Physiol.2005;289(3):C633-43.

45.WangZ,GuoJ.MechanicalinductionofBMP-7inosteocyteblocksglucocorticoid-induced

apoptosisthroughPI3K/AKT/GSK3betapathway.CellBiochemBiophys.2013;67(2):567-74.

46.WeinsteinRS,JilkaRL,AlmeidaM,RobersonPK,ManolagasSC.Intermittentparathyroid

hormoneadministrationcounteractstheadverseeffectsofglucocorticoidsonosteoblastand

osteocyteviability,boneformation,andstrengthinmice.Endocrinology.2010;151(6):2641-9.

47.RamasamySK,KusumbeAP,WangL,AdamsRH.EndothelialNotchactivitypromotes

angiogenesisandosteogenesisinbone.Nature.2014;507(7492):376-80.

48.KoJY,WangFS,WangCJ,WongT,ChouWY,TsengSL.IncreasedDickkopf-1expression

acceleratesbonecellapoptosisinfemoralheadosteonecrosis.Bone.2010;46(3):584-91.

49.LiangC,GuoB,WuH,ShaoN,LiD,LiuJ,etal.Aptamer-functionalizedlipidnanoparticles

targetingosteoblastsasanovelRNAinterference-basedboneanabolicstrategy.Naturemedicine.

2015;21(3):288-94.









Thisarticleisprotectedbycopyright.Allrightsreserved24



Figurelegends

Figure1.TET3-5hmCisup-regulatedinthefemoralheadtissuesofpatientswithSAON.

A.RepresentativeradiographofSAONandfemoralneckfracturepatients.B,C.TUNELanalysis

ofosteocyteapoptosisinSAONandfemoralneckfracture.TUNELpositiveosteocytesappearred.

Nuclei(blue)arecounterstainedwithDAPI.Themergedimageisshowninthebottompanel.Scale

bar=30μm.TheTUNELresultsareexpressedasthepercentageofapoptoticcellsrelativetototal

cells.Dataareexpressedasthemean±SDfromthreeindependentbiologicalreplicates.D-F.

QuantificationofrelativemRNAlevelsofTET1,TET2andTET3inSAONandfemoralneck

fracture.Dataarerepresentedasthemean±SDfromthreeindependentbiologicalreplicates.Inall

graphs,theFracturecontrolgroupwassetto1,andSAONisexpressedasthefoldchangerelative

toFracture.G,H.WesternblotanalysisofTET3inSAONandfemoralneckfracture;atotalof20

μgproteinwasloaded(β-actinwasusedasacontrolforloading).Therelativeexpressionlevelof

TET3wascalculatedasTET3/β-actin.I,J.Quantificationofglobal5hmCinSAONandfemoral

neckfractureswithdotblot;atotalof500ngDNAwasloaded(DNAwasstainedwithmethylene

blueasacontrolforloading).Therelativelevelof5hmCwascalculatedas5hmC/DNA.p<0.05,

p<0.01.



Figure2.DexinducesTET3-5hmCup-regulationinatime-dependentmanner.Alsosee

SupplementalFigure1andsupplementalFigure2.

A,B.TUNELanalysisofMLO-Y4celltreatedwithvaryingconcentrations(10-8Mto10-5M)of

Dexfor12h.C,D.TUNELanalysisofMLO-Y4celloverthecourseofDex(10-6M)treatment.

Dataarerepresentedasthemean±SDfromthreeindependentbiologicalreplicates.Scalebar=30



Thisarticleisprotectedbycopyright.Allrightsreserved25

μm.E.Immunostainingof5hmCinMLO-Y4cellswithDextreatment(green).Nuclei(blue)are

counterstainedwithDAPI;themergedimageisshowninthebottompanel.Scalebar=30μm.F.

WesternblotanalysisofBcl-2,Baxandcleavedcaspase-3inDex-treatedMLO-Y4cells.Inall

graphs,thecontrolissetto1,andtreatmentsarereferredtoasthefoldchangerelativetocontrol.G.

Dotblotanalysisofglobal5hmCinDex-treatedMLO-Y4cells.Leftpanel:dotblotof5hmC,right

panel:methylenebluestaining.H-J.RelativegeneexpressionlevelsofTET1,TET2andTET3in

MLO-Y4cellswithDextreatment.Dataarerepresentedasthemean±SDfromthreeindependent

biologicalreplicates.Inallgraphs,thecontrolissetto1,andtreatmentsarereferredtoasthefold

changerelativetocontrol.K.WesternblotanalysisofTET1,TET2andTET3inDex-treated

MLO-Y4cells;atotalof50μgproteinwasloaded.L.SubcellularanalysisofnuclearTET3with

Dextreatment(histoneH3servedasaloadingcontrol).Twentymicrogramsofnuclearproteinwere

loaded.p<0.05,p<0.01.



Figure3.Dynamicchangesinglobal5hmCwithDextreatment

A.Aheatmapof456geneswithdifferential5hmCenrichmentinMLO-Y4cellswithDex

treatmentatdifferenttimes.Redindicatesupregulationof5hmC;greenindicatesareduction.①

5hmCup-regulationat4hand12h,②5hmCup-regulationat12h,③5hmCdown-regulationat4

hand12h,④5hmCdown-regulationat12h.B.Venndiagramsshowingdynamic5hmCchangein

HCG,ICG,LCGandtotalgenes.Thenumberofgeneswith5hmCup-regulationislistedonthe

upperpanel.Thenumberofgeneswith5hmCdown-regulationislistedonthelowerpanel.①

5hmCup-regulationat12hbutnot4h,②5hmCup-regulationat4hbutnot12h,③5hmC

up-regulationatboth12hand4h,④5hmCdown-regulationat12hbutnot4h,⑤5hmC

down-regulationat4hbutnot12h,⑥5hmCdown-regulationatboth12hand4h.C.



Thisarticleisprotectedbycopyright.Allrightsreserved26

RepresentationofGOtermresultsfromDEGforbiologicalprocess.Upperpanel:5hmC

up-regulatedgenes,lowerpanel:5hmCdown-regulatedgenes.



Figure4.TheAktsignalingpathwayismodifiedbyDex-inducedTET3-5hmCchange.

A,B.KEGGpathwayanalysisofDEGduringDextreatment.Leftpanel:5hmCup-regulatedgenes,

rightpanel:5hmCdown-regulatedgenes.Corresponding–log10(pValue)areshown.Dataanalysis

wasperformedusingDAVID(https://david.ncifcrf.gov/).C-M.Relativegeneexpressionlevelsof

PIK3r5,PIK3cd,PIK3c2b,Ppp2r5d,PTEN,Itga1,Itga11,TCL1,Tlr4,PDK2andJAK3in

Dex-treatedMLO-Y4cells.Dataarerepresentedasthemean±SDfromthreeindependent

biologicalreplicates.Inallgraphs,thecontrolissetto1,andtreatmentsareexpressedasthefold

changerelativetocontrol.N.WesternblotanalysisofPTEN,p-AktandAktinMLO-Y4cellswith

Dextreatment.p<0.05,p<0.01.



Figure5.TheAktsignalingpathwaymediatesthefunctionaleffectofDex-induced

TET3-5hmCchange.

A,B.TUNELanalysisofMLO-Y4cellspretreatedwith10-6MbpV(phen)for30minfollowedby

10-6MDexfor12hours.Dataarerepresentedasthemean±SDfromthreeindependentbiological

replicates.Scalebar=30μm.C.WesternblotanalysisofBcl-2,Baxandcleavedcaspase-3in

MLO-Y4cells.D.Westernblotanalysisofp-Akt,Akt,PTEN,p-PI3K,PI3K,Bcl-2,Baxand

cleavedcaspase-3infemoralneckfractureandSAONbonetissues.p<0.05,p<0.01.



Figure6.KnockdownofTET3abrogatesDex-inducedosteocyteapoptosisandAktpathway

inhibition.AlsoseeSupplementalFigure4.



Thisarticleisprotectedbycopyright.Allrightsreserved27

A.RelativeexpressionlevelofTET1-3inMLO-Y4cellswithspecificsiRNAtreatment.Dataare

representedasthemean±SDfromthreeindependentbiologicalreplicates.Inallgraphs,scramble

issetto1,andtreatmentsareexpressedasthefoldchangerelativetoscramble.B,C.TUNEL

analysisofMLO-Y4cellswithknockdownofTET1-3.Dataarerepresentedasthemean±SDfrom

threeindependentbiologicalreplicates.Scalebar=30μm.D.WesternblotanalysisofBcl-2,Bax

andcleavedcaspase-3inMLO-Y4cellswithknockdownofTET1-3.E.Westernblotand

subcellularanalysisofTET3inMLO-Y4cellswithknockdownofTET3.Fiftymicrogramsoftotal

proteinand20μgnuclearproteinwereloaded.F.Quantificationof5hmClevelsinMLO-Y4cells

withknockdownofTET3bydotblot.Leftpanel:dotblotof5hmC,rightpanel:methyleneblue

staining.G.Immunostainingof5hmCinMLO-Y4cellswithknockdownofTET3(green).Nuclei

(blue)arecounterstainedwithDAPI.Themergedimageisshowninthebottompanel.Scalebar=30

μm.H.WesternblotanalysisofPTEN,p-AktandAkt.p<0.05,p<0.01.



Figure7.KnockdownofTET3alleviatesSAONinrats.

A.SAONwasinducedinSDrats,andinvivoTET3siRNAtransfectionwasperformedasindicated.

B.WesternblotanalysisofTET1,TET2andTET3inthefemoralheadtissuesofrats.Atotalof50

μgproteinwasloaded.C.Dotblotanalysisof5hmCinthefemoralheadtissuesofrats.Atotalof

500ngDNAwasloaded.Leftpanel:dotblotof5hmC,rightpanel:methylenebluestaining.D.

RepresentativeHEstainingoftrabeculaeattheproximalepiphysisofthefemoralhead.Leftpanel:

scalebar=500μm,rightpanel:magnificationofboxedareaintheleftpanel,scalebar=50μm.E,F.

TUNELanalysisofosteocyteapoptosisintrabeculaeattheproximalepiphysisofthefemoralhead

(Red).Dataarerepresentedasthemean±SDfromthreeindependentbiologicalreplicates.Scale

bar=30μm.G.RepresentativeMicro-CTscanofthefemoralhead.H.Quantificationoftrabecular



Thisarticleisprotectedbycopyright.Allrightsreserved28

bonestructurewithintheROIinFigure7G.TrabecularBV/TV,BS/BV,trabecularthickness,

trabecularnumber,andtrabecularseparationwerecalculated.I.RepresentativeMRIT1W1and

T2W1scansofthefemoralhead.TheboxedareasindicatedifferentsignalinT1W1andT2W1scan.

p<0.05,p<0.01.



Figure8.SchematicillustrationoftheeffectoftheTET3-5hmC-AktpathwayonSAON

pathogenesis

TheseobservationsledustohypothesizethatGC-inducedTET3-5hmCchangecouldup-regulate

PTENexpressionanddown-regulatePI3Kexpressioninadditiontoregulatingothertargetgenesto

inhibittheAktpathwayandpromoteosteocyteapoptosisinSAON.







Thisarticleisprotectedbycopyright.Allrightsreserved29

Table1.ThepeakMvalueof11genesassociatedwithAktpathwayatindicatedtimepointwas

listed.

GeneControl4h12h

PIK3r50.6762391.1287061.036246

PIK3cd1.0436551.3563830.977372

PIK3c2b1.3076171.2236271.313212

Ppp2r5d1.6128711.1335851.649453

PTEN1.2731411.2838060.988902

Itga12.0824741.9839411.605688

Itga111.3976811.5865481.605688

TCL11.0716841.1996591.231157

Tlr41.3348231.2708011.635225

PDK20.9479821.2355551.283706

JAK31.2920341.4071951.448056

ThepeakMvaluerevealtherelativequantificationof5hmC.









Thisarticleisprotectedbycopyright.Allrightsreserved30



Figure1





Thisarticleisprotectedbycopyright.Allrightsreserved31





Figure2





Thisarticleisprotectedbycopyright.Allrightsreserved32



Figure3





Thisarticleisprotectedbycopyright.Allrightsreserved33



Figure4





Thisarticleisprotectedbycopyright.Allrightsreserved34



Figure5







Thisarticleisprotectedbycopyright.Allrightsreserved35



Figure6





Thisarticleisprotectedbycopyright.Allrightsreserved36



Figure7



Thisarticleisprotectedbycopyright.Allrightsreserved37





Figure8





Allin-textreferencesunderlinedinbluearelinkedtopublicationsonResearchGate,lettingyouaccessandreadthemimmediately.

献花(0)
+1
(本文系实验专家首藏)