配色: 字号:
《高中物理思维方法集解》参考系列——物理学中常用的几种科学思维方法
2017-08-21 | 阅:  转:  |  分享 
  
物理学中常用的几种科学思维方法



进入高三,高考在即。如何在高三物理复习中更好地提高学生的科学素质、推进知识向能力转化、提高课堂教学的效率和质量,是摆在每个老师和学生面前的重要课题。物理教学中不仅要注重基础知识、基本规律的教学;更应加强对学生进行物理学研究问题和解决问题的科学思维方法的指导与训练。英国哲学家培根说过:“跛足而不迷路,能赶过虽健步如飞,但误入歧途的人”。学习也是这样,只有看清路,才能少走或不走弯路。可见,掌握物理学科的特点,熟悉物理研究问题和解决问题的方法是至关重要的。学好中学物理,不只是一个肯不肯用功的问题,它还有一个方法问题,掌握正确的思路和方法往往能起到事半功倍的效果。下面我们从高中物理综合复习教学的角度,通过对典型问题的分析、解答、训练,介绍常用的几种科学思维方法,以期达到减轻学生负担提高复习效率的目的。

1.模型法

物理模型是一种理想化的物理形态,将复杂的问题抽象化为理想化的物理模型是研究物理问题的基本方法。科学家通常利用抽象化、理想化、简化、类比等把研究对象的物理学本质特征突出出来,形成概念或实物体系,即为物理模型。模型思维法就是对研究对象或过程加以合理的简化,突出主要因素忽略次要因素,从而解决物理问题的方法。从本质上说,分析物理问题的过程,就是构建物理模型的过程。通过构建物理模型,得出一幅清晰的物理图景,是解决物理问题的关键。实际中必须通过分析、判断、比较,画出过程图(过程图是思维的切入点和生长点)才能建立正确合理的物理模型。

[例1]如图1-1所示,光滑的弧形槽半径为R(R>>MN弧),A为弧形槽的最低点,小球B放在A点的正上方离A点高度为h处,小球C放在M点,同时释放,使两球正好在A点相碰,则h应为多大?

解:对小球B:其运动模型为自由落体运动,

下落时间为tB=

对小球C:因为R>>MN弧,所以沿圆弧的运动模型是摆长等于R的单摆做简谐振动,从M到A的可能时间为四分之一周期的奇数倍

所以tC=

解得:h=.(n=0,1,2……)

【评注】

解决本题的关键就在于建立C小球的运动模型——单摆简谐振动,其圆弧的圆心相当于单摆的悬点,圆弧的半径相当于单摆的摆长,只要求出C小球运动到A点的时间,问题就容易解决了

[例2]在光滑的水平面上有三个完全相同的小球排成一条直线,其中2、3小球静止,并靠在一起。而1小球以速度v0朝它们运动,如图1-2所示,设碰撞中不损失机械能,则碰后三小球的速度的可能值是

(A)v1=v2=v3=(B)v1=0,v2=v3=

(C)v1=-v0/3,v2=v3=(D)v1=v2=0,v3=v0

解:依题意碰撞无机械能损失,小球之间的碰撞一定是弹性碰撞,这里关键是如何建立正确的碰撞过程模型。若把2、3两小球看成整体,建立1小球和2、3小球之间的两体碰撞模型就会得出(C)[例3]如图1-3所示,有一根轻质弹簧将质量为m1和m2的木块连在一起并置于水平面上,问必须在m1上至少加多大的压力,才能在撤去压力后,m1弹起来恰好使m2离开地面?

解:用力F向下压m1到A位置放手后,m1和弹簧应看成弹簧振子模型。在A位置放手时F即为回复力,由振子特点知振动到最高点B时回复力向下也为F,又从m1的受力知:F=F弹+m1g从m2受力知恰好离地有:F弹=m2g所以F=(m1+m2)g

【评注】

正确的建立模型对突出问题的本质是十分重要的,本题巧妙利用振子模型,抓住本质,出奇制胜。

2.等效法

当研究的问题比较复杂,运算又很繁琐时,可以在保证研究对象的有关数据不变的前提下,用一个简单明了的问题来代替原来复杂隐晦的问题,这就是所谓的等效法。在中学物理中,诸如合力与分力、合运动与分运动、总电阻与各支路电阻以及平均值、有效值等概念都是根据等效的思想引入的。教学中若能将这种方法渗透到对物理过程的分析中去,不仅可以使问题的解决变得简单,而且对知识的灵活运用和知识向能力转化都会有很大的促进作用。

[例1]如图1-6所示,一质量为m、带电量为十q的小球从磁感应强度为B的匀强磁场中A点由静止开始下落,试求带电小球下落的最大高度?

解:这个问题中带电小球运动轨迹是比较复杂的曲线,对学生而言分析这个问题比较困难,容易错误的认为小球到达最低点时,所受洛仑兹力和重力平衡。实际上小球做曲线运动,它的受力是不平衡的。将小球刚运动时的静止状态等效为向左、右两个方向大小相等的水平初速度V01、V02,现使小球向右的分运动V01产生的洛伦兹力恰好与重力平衡,则有qV01B=mg

因而得V01=mg/qB故小球的运动可视为水平向右以速度出V01做匀速直线运动和在竖直平面内以速度V02沿逆时针方向的匀速圆周运动的合运动。匀速圆周运动的半径R=mV02/qB=g(m/qB)[例2]如图1-7所示,一条长为L的细线,上端固定下端拴一质量为m的带电小球,将它置于一匀强电场中,电场强度大小为E,方向水平向右,已知当细线离开竖直位置偏离α时,小球处于平衡。求:(1)小球带何种电荷?求出小球所带电量。(2)如果使细线偏离竖直线由α增大到,然后将小球由静止释放,则应为多大时,才能使在细线到达竖直位置时小球的速度刚好为零?

解:(1)小球带正电,小球受重力mg、电场力qE以及细线拉力T三力作用,当偏角为α时,小球平衡,则重力与电场力的合力与细线的拉力等值反向,根据平衡条件可求出q的大小为q=mgtgα/E

(2)求,常规的解法是应用能量守恒或动能定理,但若把电场、重力场等效为合重力场,则等效合重力场的方向为OO’连线方向,如图1-8所示。则解题更为新颖、简洁.小球在偏角为时的A点由静止释放后,围绕着O’O连线在AB范围内振动,小球受细线的拉力和一个合重力,大小为,它的振动与课本中的单摆振动相类似,立即可得O’O是的平分线,如图1-8,所以=2α。进一步推论:等效重力加速度g’=/m;若小球绕O做圆周运动等效最高点:在O’关于O的对称点上;若α小于5°可等效为单摆简谐振动,其周期为:T=

【评注】

用等效法解本题的关键在于正确得出等效重力,然后再利用单摆的振动关系得出结论。其推论实际中应用很广。

[例3]试分析用《伏安法测量电池的电动势和内阻》实验的实验误差.

解:如图1—9为测量电动势和内阻实验电路图.其原理是根据闭合电路的欧姆定律:=U+Ir0实验中,由于电表的接人而产生了分流或分压作用,因此使得测量值与真实值之间存在一差值,为了能很快地得出实验误差的大小。我们采用等效电源法。实验中测出的电动势和内阻就是方框所包围的等效电源的电动势’和内阻r’。然后再比较测量值’、r’与真实值、r0的数量关系便能得出实验误差的大小。如图1-9所示,等效电源的电动势和内阻分别是:’=r’=则测量值与真实值之间的绝对误差分别是:’-=-=r’-r0=-

这说明测量值都小于真实值。

【评注】

等效电源法是将虚框内的电路看成一个等效电源,等效电源的电动势为’,内阻为r’,由这样一个等效电源向R供电。可见等效电动势等于方框外的路端电压,内电阻等于方框内的总电阻。







3.极端法

所谓极端法,就是依据题目所给的具体条件,假设某种极端的物理现象或过程存在并做科学分析,从而得出正确判断或导出一般结论的方法。这种方法对分析综合能力和数学应用能力要求较高,一旦应用得恰当,就能出奇制胜。常见有三种:极端值假设、临界值分析、特殊值分析。

极端值假设

[例1]物体A在倾角为θ的斜面上运动,如图1-14所示。若初速度为V0,它与斜面间的摩擦系数为μ,在相同的情况下,A上滑和下滑的加速度大小之比为

(A)(B)(C)μ+tgθ(D)

解:本题常规解法:现对A进行受力分析,再用牛顿第二定律求出上滑、下滑的加速度表达式,最后求出比值,得出答案。这样做费时易错。若用极端假设法求解,则能迅速准确地排除错误选项,得出结果。其步骤是:a)选参变量,做极端假设。取μ为参变量,令其为最小值,即μ=0b)进行极端分析。在μ=0的情况下,A上滑、下滑加速度应相等为:gsinθ,二者之比等于1。把此极端值μ=0代入所给选项中,发现(A)(B)(C)均不合要求,(B)却满足要求,故应选(B)

【评注】

用极端假设法解题最关键是准确、迅速地选出参变量。其一般原则是:1)被选参变量存在极值,否则不能选;2)当赋予该参变量某一特定值后,不改变题目所给的物理过程或状态,否则不能选。本题就不能选θ做为参变量,这将改变题目描述的运动形式。

临界值分析

[例2]一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线间的夹角为θ=30°,如图1-15所示。一条长为L的细绳,一端拴着一个质量为m的物体。物体沿锥面在水平面内绕轴线以速度V做匀速圆周运动,求(1)当V=时绳对物体的拉力;(2)当V=时绳对物体的拉力。

解:本题涉及临界条件是:物体对锥面压力为零时,物体的速度值。如图1-15,物体受重力mg、锥面的支持力N、绳的拉力T三个力作用,将三力沿水平方向和竖直方向分解,由牛顿第二定律得:Tsinθ-Ncosθ=m①Tcosθ-Nsinθ=mg②由①②两式得:N=mgsinθ-m可见,θ一定,V越大,N越小,当V增大到某值V0时,N=0时,即V0=因N为支持力,不能为负值,故当V>V0时物体离开锥面,物体飘起绳与轴线夹角增大到某值α。

当V=时V
(2)当V=时,V>V0物体飞离锥面,此时物体只受重力mg和拉力T作用,设绳与轴线的夹角为α:Tsinα=③Tcosα=mg④

将V代入③④两式消去α可得2T2-3mgT-m2g2T=0解取合理值T=2mg

【评注】

本题涉及到物体随速度增大将要飘离锥面的临界问题,故要用临界分析法来解题。临界分析法,就是找出问题的临界条件,算出关键物理量的值进行分析比较,得出在不同条件下物体不同的状态,从而求出结果。本题关键在求出N=0时的速度值即临界条件。

特殊值分析法

[例3]如图1-16,两点电荷所带电量均为+Q,A处有一电子沿两电荷连线的中垂线运动,方向指向O点。设电子原来静止,A点离O点足够远,电子只受电场力作用那么电子的运动状态是

(A)先匀加速,后匀减速(B)加速度越来越小,速度越来越大(C)加速度越来越大,速度越来越小(D)加速度先变大后变小,最后变为零

解:本题如定量分析有些困难,但用特殊值分析法,变得相当容易,且概念清晰。设A点在无限远,其电场强度为零,那么电子所受电场力为零;而在O点处的场强也为零,故电子在O点处受电场力亦为零;所以,电子在从A向O运动的过程中,所受电场力必有一个最大值,因此电场力一定由小到大,再由大到小至零。由牛顿第二定律知:加速度的值应是先由小变大,再由大变小,以至最后变为零;但速度是一直增大的,可见正确答案为(D)

【评注】

在用特殊值分析法解题时,分析相关物理量的变化,必须注意变化过程中“拐点(转折点)”的存在性,“拐点”的寻找时关键

4.逆思法

在解决问题的过程中为了解题简捷,或者从正面入手有一定难度,有意识地去改变思考问题的顺序,沿着正向(由前到后、由因到果)思维的相反(由后到前、由果到因)途径思考、解决问题,这种解题方法叫逆思法。是一种具有创造性的思维方法,通常有:运用可逆性原理、运用反证归谬、运用执果索因进行逆思。

运用可逆原理进行逆思

[例1].一颗子弹以700m/s的速度打穿同样的、并排放置的三块木板后速度减为零,如图1-19所示。问子弹在三块木板中运动的时间之比是多少?

解:此题正向思维按匀减速直线运动来解,比较繁琐。但根据运动的可逆性,倒过来从后到前,将子弹的运动看成是初速度为零的匀加速直线运动,问题就变得很简单。即初速度为零的匀加速直线运动通过连续相等位移的时间比,所以,t3∶t2∶t1=1∶(-1)∶()因此t1∶t2∶t3=()∶(-1)∶1

【评注】

物理学中可逆性过程如:运动形式的可逆性、时间反演的可逆性、光路可逆性等往往正向思维解题较繁难,用逆向思维则简单明了。

运用反正归谬进行逆思

[例2]如图1-20所示,在水平放置的长方体空间内,有与y轴平行的等距离平行线,是用来描述真空中水平方向的某种均匀场的示意图(长方体外的空间场的强度为零)。现有质量较大的带电粒子q,从A点以速度V0沿AC方向进入场中,且正好从C’方向离开该场。试问这一组平行线是电场的电场线、磁场的磁场线和电场的等势线,这三种线中的哪一种?并用m、V0、L和q来表示这个场的强度(图中截面为边长L的正方形AD=2L,CE=L)。

解:要确定这组平行线是电场的电场线、磁场的磁场线还是电场的等势线,只能用反正法。假设是电场线,那么粒子沿AC方向进入场后,受竖直向下的重力和与y轴平行的电场力作用,这样粒子运动轨迹一定在ADEC平面内,不可能从C’点沿CC’方向离开电场,故不会是电场线。

再假设这组等距离平行线是磁场线,则粒子进人场后,在y轴方向不受力作用。因此,沿y轴方向的水平分速度V0cos45°保持不变,即等于粒子最后从C’点沿CC’方向离开时的速度V在y轴方向的水平分速度Vcos45°由此可知V=V0。由于粒子的质量较大,应考虑重力的作用,而洛仑兹力对粒子不做功,这样粒子的机械能应守恒,但从进入场中时机械能为,离开时机械能为+mgL,显然械能不守恒,所以也不可为磁场线.即使不考虑重力作用。粒子虽有可能以大小和方向与V0都相同的速度离开该场,但也不可能在C’处(这可从粒子做螺旋运动的周期去分析)。

最后假设这组等距离平行线是等势线,则电场线应与x轴平行。粒子进人电场后,同时受到竖直向下的重力和水平向里的电场力作用(设粒子为正电荷,电场强度方向水平向里)。这时粒子在y轴方向作匀速运动,竖直方向作竖直上抛运动,水平向里作匀加速运动。粒子从C’点沿CC’离开电场时,竖直上升的速度为零,上升高度为L;沿y轴方向的位移为2L。这同射出角为45°的斜抛运动是完更符合的。因为竖值上升的高度L==上升时间t=,这时沿y轴方向的位移刚好是S=tV0cos45°==2L至于要满足水平向里的速度为V0sin45°,和水平向里的位移为L,只要粒子所受电场力等于重力就可以了。最后根据:EqL=即得电场强度E=

【评注】

反证归谬是逆向思维的常用方法,基本思路是:(1)反设,即假设问题结论的反面正确;(2)归谬,从这个临时假设出发,利用已知条件进行正确的推理,推导出谬误的结论;(3)结论,指出反设错误,由排中律确定原来结论是正确的。它是通过否定反面,来肯定正面的。

运用“执果索因”进行逆思

[例3]长度为L的橡皮带,一端拴住一个质量为m的小球,以另一端为中心,使小球在光滑水平面上做匀速圆周运动,角速度为ω。若橡皮带每伸长单位长度产生的弹力为f,试证明橡皮带的张力为F=

证明:假设所证结论正确,则将F=展开,逐步上溯得Ff-Fmω2=mω2fL,Ff=mω2fL+Fmω2F=mω2(L+)=mω2(L+)由题意知f=K故F=mω2(L+ΔL)上式正是反映小球在水平面内做运速圆周运动时,所需要的向心力是由橡皮带的张力提供的,物理意义明确且步步可逆,所以得证。

【评注】

这种逆思法也是先假定所要证明的结论成立,由此出发,利用一定的物理知识,推导出符合题设物理模型的条件。这样把结论转化为判断条件(推理的每一步均可逆),以此判断所证结论确实正确、成立。

5.估算法

所谓估算法就是对某些物理量的数量级进行大致推算或精确度要求不太高的近似计算方法。估算题与一般的计算题相比较,它虽然是不精确不严密的计算,但确是合理的近似,它可以避免繁琐的计算而着重于简捷的思维能力的培养。解估算题的基本思路是:(1)抓住主要因素,忽略次要因素,从而建立理想化模型。(2)认真审题,注意挖掘埋藏较深的隐含条件。(3)此题求解的关键是抓住“大气压是由大气重量产生的”这一概念,然后从似乎缺少条件的情况下挖掘出两个隐藏很深的隐含条件,即标准大气压p0和地球半径R。根据G=p0S即可求出结果。

例2质量为m的弹性小球置于质量为M的弹性球上,且M>>m,今让M抬高h自由下落如图1-24所示.问m最高能反弹多高?

解:对此题,运用有关规律列方程求解非常麻烦,运用近似模型处理就非常容易了。假定大球着地速度为V,与地碰后反弹速度也为V(弹性碰撞,质点模型且近似处理)。以M为参照系,m与M碰撞时速度为2V(向下),由弹性碰撞(近似运动模型)规律及M>>m,可知碰后m相对于M的速度为2V(向上),则m对地的速度为2V+V=3V。又因h=V2/2g,所以(3V))m≈3.3×10-9m

【评注】

本题关键要知道标准状态下气体的摩尔体积和分子占有体积的立方体模型,从而近似算出结果。

[例4]在太阳直射下地球表面每平方厘米每分钟获得4.2J的能量,试估算我国江河每年流入海洋的水流量(设年平均气温25℃,汽化热为2.4×106J/kg,取一位有效数字)。

解:因为海洋约占地球面积S地的,且只有S地受太阳照射,则一年内海洋吸收太阳能为:

E=×S地×4.2×365×24×60J=8.3×105×S地J海洋一年的总蒸发水汽量M=E/L

如取25℃时水的汽化热为2.44×106J/kg则M==0.34S地kg

设我国的面积为S,则输送到我国上空的水汽量为:m==0.34S=0.34×9.6×1016kg≈3×1016kgV==3×1013m3即我国各江河一年流入海洋的水流量约为3×1013m3。

【评注】

每年流入海洋的水流量近似等于每年大气送到我国上空的水汽质量。水汽遇冷凝结成雨、雪落地,通过江河流入大海。本题要知道基本的地理常识,海洋约占地球面积S地的,地球只有半边受阳光照射,我国的国土面积等知识。

6.虚设法

在物理解题中,我们常常用到一种虚拟的思维方法,即从给定的物理条件出发,假设与想象某种虚拟的东西,达到迅速、准确地解决问题的目的,我们把这种方法较虚设法。虚设法常见的几种情形是:虚设条件、虚设过程、虚设状态、虚设结论等。

虚设条件

[例1]如图1-25所示,匀强磁场B垂直纸面向里,导线abc是半径为R的半圆周。当导线以速度V垂直磁场向右运动时,求导线内产生感生电动势的大小。

解:本题直接求解比较困难,但若虚设用一根导线将直径ac连接起来构成闭合回路问题就变得简单。对这个闭合回路来说,磁通量不变化,整个回路内感生电动势为零。这表明直导线与半圆导线切割磁感线产生的电动势大小相等方向相反,所以可得:ε圆=ε直=2BRV

【评注】

本题虚设了一段直导线使之成为闭合回路,利用闭合回路感生电动势为零很容易解决问题。利用这种方法可以解决任意形状导线的有效切割长度的问题。

虚设过程

[例2]质量为M的木块被固定在光滑的水平面上,一颗质量为m的子弹以速度V0水平飞来,穿透木块后的速度为V0/2。现使该木块不固定,可以在光滑水平面上滑动,同样的子弹以初速度V0飞来射向木块,如果M/m<3,那么子弹将

(A)能够射穿木块(B)不能穿过木块,留在木块中共同运动(C)刚好穿透木块但留在木块边缘共同运动(D)条件不足,无法判断

解:设木块放在光滑水平面上时子弹刚好能穿过木块,则由水平方向动量守恒得:

mV0=(M+m)②因是同样的木块所以穿过它克服阻力做功应相同则:③解①②③得:M/m=3可见,当M/m=3时子弹刚好穿过木块;当M/m>3时子弹能穿出木块;当M/m<3时子弹不能穿出木块。因此正确答案是(B)

【评注】

本题首先虚设过程,子弹刚好能穿出木块,利用动量守恒和功能关系得出M与m的关系,再比较得出正确结论。

虚设状态

[例3]如图1-26所示,要把闭合线圈向右匀速拉出,则

(A)线圈电阻R一定时,速度大时做功少,(B)线圈电阻R一定时,速度小时做功少(C)线圈的速度一定时,电阻大的做功少(D)线圈的速度一定时,电阻小的做功少?

解:虚设线圈缓慢拉出,速度接近零,则闭合线圈中几乎没有电流,就无需克服磁场力做功,故速度小时做功少,所以(B)正确。再虚设线圈的电阻无限大,则线圈内也几乎无电流,亦无需克服磁场力做功,故电阻大时做功少,所以(C)正确

【评注】

在所研究的物理过程中,可以虚设某一特殊状态,通过对其状态的分析与一般状态的比较,能够迅速作出正确的判断。

虚设结论

[例4]木块A、B叠放在一起共同沿光滑斜面下滑,A与B间的接触面时粗糙的,如图1-27所示,试判断A、B间是后存在静摩擦力作用

解:1)当B与斜面间无摩擦时,假设A、B间不存在静摩擦力,那么可以推算出A、B下滑的加速度为gsinθ,它们之间无相对滑动趋势,因此可以判断A与B之间不存在静摩擦力。2)当B与斜面有摩擦(滑动摩擦系数为μ)时,假设A与B之间无静摩擦力,则A的加速度为aA=gsinθ,而B下滑的加速度为aB==gsinθ-即aA>aB故A、B间有相对滑动趋势,因此可以判断A、B之间实际上存在静摩擦力,A受到静摩擦力向后,B受到的向前,此力的大小可以求出为fB静=μmAgcosθ

【评注】

在分析某些未知物理问题时,可以虚设某种结论,然后进行分析推理,从而得出肯定或否定的结论,得出正确的判断。

7.图像法

所谓图像法,就是利用图像本身的数学特征所反映的物理意义解决物理问题(根据物理图像判断物理过程、状态、物理量之间的函数关系和求某些物理量)和由物理量之间的函数关系或物理规律画出物理图像,并灵活应用图像来解决物理问题。

中学物理中常见的图像有:矢量图(几何图)、正比例图像、反比例图像、一次函数图像、二次函数图像、正弦(或余弦)函数等。

图像题的解题应注意:(l)搞清图像研究的是什么,并根据题目所反映的物理规律确定物理量之间的函数关系。(2)明确图像的物理意义:识别横坐标、纵坐标所代表的物理量及其物理意义,明确物理图像的中点、线段、截距、峰值、斜率、“面积”等的物理意义。(3)对图像进行分析、比较、判断,找出规律得出结论。

常用方法有观察分析法、比较判断法、分析计算法。利用图像法解题的优点在于可以直观地观察出物理过程的动态特征,使思路更加清晰,常能找到巧妙的解题途径。

[例1]将一个已知力F分解为两个分力,要求其中一个分力与F的夹角为θ(θ≤90°),另一个分力的大小为F1,试确定解的情况。

解:此题如用计算法解非常麻烦,但用作图法就简单明了,且物理意义明确,依题意作图1-29。作图步骤为:以F的末端点为圆心,以F1大小为半径画弧,交F2的方向线一个点(如图甲、乙)、两个点(如图丙)或无交点(如图丁),因此可知:当F1=Fsinθ或F1>F,只有一个解;当Fsinθ<F1<F,有两个解;当F1<Fsinθ,无解.

【评注】

根据力的合成和分解的平行四边形法则,结合本题的已知条件,即已知两个力大小和两个力间的夹角,用求作三角形的方法进行作图讨论。本题特别要注意,当F1>F作图时,另一个交点在F2的反相延长线上,不符合题意,故只有一个解。

[例2]如图1-30所示,直线OAC为某一电源的总功率P随电流I变化的图线,曲线OBC为同一电源内阻热功率Pr随电流I变化的图线.若A、B两点的横坐标都是1A,那么A、B两点的纵坐标值之差(PA一PB)为多少瓦?

解:如图在C点电源的总功率等于该电源内阻的热功率,这时外电阻为零,所以有:εI=I2r即ε=3r①PC=ε2/r即ε2=9r②由①②得:ε=3Vr=1Ω在A点PA=εI=ε=3W在B点PB=I2r=r=1W所以PA-PB=2W

【评注】

本题主要问题是要看懂题给图像的关键点,从图像收集信息,最重要的是C点,再通过闭合电路欧姆定律解决问题。

[例3]如图l—31所示,将质量为2m的长木板静止放在光滑的水平面上,一质量为m的小铅块(可视为质点)以水平初速V0由木板左端恰滑至木板的右端与木板相对静止。铅块运动中所受摩擦力始终不变,现将木板分成长度和质量均相等的两段后紧挨着仍放在水平面上,让小铅块仍以相同的初速度由左端开始滑动,则小铅块将

滑到右端与木板保持相对静止(B)在滑到右端前就与木板保持相对静止(C)滑过右端后飞离木板(D)以上答案均有可能

解:本题若按常规方法思考,运算十分繁杂;但用图像方法处理则变得非常简捷明了。具体做法是:先画出铅块和木板的速度图像如图1-32所示第一次:V0A表示铅块的速度图像,OA表示木板的速度图像;图像包围的“面积”即△V0OA的“面积”为铅块相对木板的位移即为木板长L。第二次:V0B表示铅块的速度图像,OC表示铅块在前一半木板上时木板的速度图像(加速度和第一次一样),CB表示铅块在后一半木板上时木板的速度图像(加速度比第一次大);图像包围的“面积”即V0BCO的“面积”为铅块相对木板的位移,由图可知该位移小于木板长L,故铅块未滑到右端就相对木板静止,正确答案应为(B)

【评注】

本题的关键是根据题意正确的画出铅块和木板在两种情况下的速度图像,注意木板的加速度变化,抓住图像所包围“面积”的物理意义,就可以顺利解题了。

[例4]总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发现时,机车已行驶L距离,于是除去牵引力。设运动的阻力与质量成正比,机车牵引力是恒定的,求当列车的两部分都停止时,它们之间的距离为多少?

解:本题解题方法很多,但用图像法解更加简单明了。如图1-33所示,脱节后m做匀减速直线运动,加速度为am=kg;前车先做匀加速直线运动,加速度为:a1=kmg/(M-m),后做匀减速直线运动,加速度为:a2=k(M-m)g/(M-m)=kg。由图像知:m从脱节到停止位移为△OVD的“面积”;而前车从脱节到停止的位移为四边形OVACO的“面积”。因△OVD和△EBC“面积”相等,所以两部分都停止的距离S为五边形OVABEO的“面积”。又a1t1=a2t2

所以t1/t2=(M-m)/m由题意四边形OVAF的“面积”为L;

则:L/S=t1/(t1+t2)故S=L(t1+t2)/t1=ML/(M-m)

【评注】

用图像法解本题关键弄清题给物理过程,画出对应的V-t图,掌握各物理量的对应关系——斜率表示加速度,面积表示位移,近而得出位移关系。

B



h

C

MAN



图1-1



V0

123



图1-2



m1B



O



A





m2



图1-3







图1-6



图1-7



图1-8



图1-9



图1-10



图1-14



图1-15



图1-16



V0



图1-19



图1-20



图1-21



图1-24



图1-25



图1-26



图1-27



图1-29



图1-30



图1-31



t/s



V(m/s)

V0

D

B

A

C

O



图1-32



t/s



V/(m/s)



A

Vt1t2B





O

DFEC



图1-33







献花(0)
+1
(本文系sdweifeng首藏)