配色: 字号:
siRNA转染(Entranster)与PKC-β抑制剂大鼠心脏微血管功能研究
2017-09-27 | 阅:  转:  |  分享 
  
staurin

effect

cmicrovascularbarrierfunctionindiabeticanimalsandmonolayerbarrier

?cant

etal.,

ndothe

MicrovascularResearch80(2010)158–165

ContentslistsavailableatScienceDirect

Microvascular

endothelialbarrierdysfunction,whichcancausedisruptionofblood

vesselintegrity,hemorrhages,leukocyteadhesion,andtheformationof

smallthrombi(Yuanetal.,2000).Inearlystagesofdiabetes,injurytothe

endothelialbarriercommonlymanifestsasautoregulatorydysfunction

andincreasedendothelialpermeability(Youngetal.,2002;Scaliaetal.,

2007).Wehavepreviouslyshowninthecaseofmyocardiumischemia,

thesepathologicchangesmayincreaseparacellular?uxofinjuryfactors

andaggravatedamageofmyocardium(Wangetal.,2006;Gaoetal.,

2008).

Diabeticmicrovascularcomplicationscharacterizedbybarrierdys-

functionandpermeabilityincreasehavebeenlinkedtoactivationof

ProteinkinaseCs(PKCs)inanumberofstudies(Ishiietal.,1996;

Gutterman,2002;Kouroedovetal.,2004;Meieretal.,2007).PKCisa

PKCβIIisoform.RBXhasbeenshowntonormalizeendothelialfunction,

improverenalglomerular?ltrationrate,andpreventthelossofvisual

acuityindiabeticpatientssufferingfromretinopathy(Beckmanetal.,

2002;IdrisandDonnelly,2006;Mehtaetal.,2009).Whiletheeffectsof

PKC-βIIactivationandtheroleofRBXarewellunderstoodinrenaland

retinalmicrovascularcomplications,theyarestillnotclearincardiac

microvascularcomplications.Therefore,inthepresentstudyweaimto:

(i)determinewhetherPKC-βIIactivationandcardiacmicrovascular

barrierdysfunctionexistindiabeticratshearts;(ii)elucidatewhether

RBXcanreversemicrovascularbarrierdysfunctionandattenuatecell

junctiondamage;and(iii)investigatethemechanism(s)bywhichRBX

maymodulatecardiacmicrovascularinjuryinhighglucoseordiabetic

stateswithafocusonthePKC-βIIdependentsignaling.

serine/threoninekinasethatparticipatesince

diabeticvasculardamage(Yuan,2002;Budhiraja

etal.,2009).ActivationofProteinkinaseCs

?Correspondingauthors.

E-mailaddresses:wind8828@gmail.com(F.Cao),wanghc@fmmu.edu.cn

1

Contributedequallytothiswork.

0026-2862/$–seefrontmatter?2010ElsevierInc.All

doi:10.1016/j.mvr.2010.01.003

lialfunctionthatcanbe

disease.An

ovasculardysfunctionis

cularcomplicationsbothinvitroandinvivo(Ishiietal.,1996;Yuanetal.,

2000;AvignonandSultan,2006).

Ruboxistaurin(RBX)isaPKC-βinhibitorthatishighlyselectiveforthe

consideredthe?rststepintheprogressionofcardiovascular

importantunderlyingmechanismofdiabeticmicr

Cardiacmicrovascularendothelialcells

(CMECs)

PKC-βinhibitor

Permeability

Introduction

Cardiovascularcomplicationsaresigni

mortalityinthehyperglycemia(Capes

(DM)isassociatedwithchangesine

endothelialbarrierdysfunction.PKC-βinhibitorRBXpreventedchroniccardiacmicrovascularbarrier

dysfunctionandimprovedendothelialcell–celljunctionalfunctioninhighglucosestates.

?2010ElsevierInc.Allrightsreserved.

causesofmorbidityand

2000).Diabetesmellitus

membranousprotein(Xuetal.,2008).Inparticular,theβisoformofPKC

(PKCβIandPKCβII)isexpressedincardiovasculartissuesandactivated

bycirculatinghighglucoseandfattyacids.Recently,severalreportshave

demonstratedthatPKC-βIIplaysasigni?cantroleindiabeticmicrovas-

llsignaltransductionin

andSingh,2008;Mehta

iselevatedexpressionin

Materialsandmethods

Animalpreparation

Allanimalex

InstitutesofHealth

(H.Wang).

rightsreserved.

protectivepropertiesofPKC-βinhibitoragainstcardiac

Diabetes

functionofculturedcardiacmicrovascularendothelialcells(CMECs),reproducingthesameeffectasPKC-βII

siRNA.Theseresultsprovidenewinsightinto

Keywords:

treatmentprotectedcardia

RegularArticle

APKC-βinhibitortreatmentreversescardiac

diabeticrats

LipingWei

a,b,1

,ZhiyongYin

a,1

,YuanYuan

a,1

,Andrew

ChunxiaDi

a

,RongqingZhang

a

,FengCao

a,

?,Haichang

a

DepartmentofCardiology,XijingHospital,FourthMilitaryMedicalUniversity,Xi''an,710032,

b

DepartmentofCardiology,Tianjinunionmedicinecenter,Tianjin,300121,China

c

DepartmentofRadiology,MolecularImagingProgramofStanford,StanfordUniversity,Palo

abstractarticleinfo

Articlehistory:

Received6September2009

Revised16December2009

Accepted5January2010

Availableonline14January2010

ThePKC-βinhibitorruboxi

complications.However,the

thisstudy,weaimedtoinvestigate

barrierdysfunctioninhighglucose

PKC-βIIactivationandphospho

journalhomepage:www.el

microvascularbarrierdysfunctionin

Hwang

c

,AndrewLee

c

,DongdongSun

a

,FeiLi

a

,

Wang

a,

?

Shaanxi,China

Alto,CA,USA

(RBXorLY333531)preventsdiabeticrenalandretinalmicrovascular

ofRBXondiabeticcardiacmicrovasculardysfunctionisstillunclear.In

theeffectsandmechanismsofRBXtreatmentuponcardiacendothelial

states.WedemonstratedRBXtreatmentsuppressedhighglucoseinduced

rylationofβ-catenininvivoandinvitroexperiments.Meanwhile,RBX

Research

sevier.com/locate/ymvre

forinvivoexperiments

perimentswereperformedundertheNational

GuidelinesontheUseofLaboratoryAnimals

159L.Weietal./MicrovascularResearch80(2010)158–165

andwereapprovedbytheFourthMilitaryMedicalUniversity

CommitteeonAnimalCare.30maleSprague–Dawleyrats(weight

250–280g)wereinducedtoadiabeticstatebyasingleintraperitoneal

injectionofstreptozotocin(STZ,50mg/kgin0.9%saline,Sigma,USA).

Bloodglucoselevelsweremeasured1weekafterSTZinjection.

Animalswithglucoselevelsequaltoorgreaterthan300mg/dlwere

classi?edasdiabetic(Talpuretal.,2005).Diabeticratsweredivided

into3groups:(1)DMgroup(n=10)thatdidnotreceivetreatment;

(2)RBXgroup(n=10)thatreceiveddailytreatmentsofruboxistaurin

(Lilly,USA)at5mg/kgofbodyweightfor2weeks;(3)Vehiclegroup

(n=10)thatreceivedonlysalineonadailybasisfor2weeks.Age-

matchednormalrats(n=10)wereusedasnon-diabeticcontrols.

Examinationofbarrierfunctionofcardiacmicrovascularendothelial

cells(CMECs)viatransmissionelectronmicroscope

Totestforintegrityofendothelialcelltocelljunctions,heartsof

anaesthetizedratswereperfusedviathecarotidarterywith50mlof

pre?xativesolution(100mMTris,pH7.2,150mMNaCl,5.6mMKCl,

1mMMgCl

2

,2.5mMCaCl

2

,3.7mMglucoseand3.6mMprocaine)

followedby250mlof?xingsolution(2.5%glutaraldehydeand2%

paraformaldehydein0.1Msodiumcacodylatebuffer,pH7.2,

containing2%lanthanumnitrate)usingaperistalticpump.The

perfusionpressurewasmonitoredwithamercurymanometerand

neverexceeded100mmHg.Afterperfusion,thehearttissuewaskept

inthesame?xativewithoutlanthanumfor1h.Thesampleswere

thenrinsedinwashingsolution(0.15MNaClplus0.2Msucrose).

Ultra-thinsections(60nmthick)werecut,mountedoncoppergrids

(200mesh)andexaminedusingatransmissionelectronmicroscope

tocheckforthepresenceoflanthanumnitrate(JEM-2000EX,Japan).

ExaminationofintegrityofCMECsviascanningelectronmicroscope

After?xing,tissuesampleswereexaminedviascanningelectron

microscopytoassessmicrovascularendothelialintegritywithinthe

vesselwallofdiabeticandcontrolrathearts.Animalheartsreceived

10mlMercoxresin(resin20ml,catalyst0.5mg)(SPI,USA)at

perfusionpressurenomorethan100mmHgthroughtheaortaand

weredippedinasolutionconsistingof5%sodiumhydroxidesolution

(Verlietal.,2008).Afterremovalofallconnectivetissuecomponents

surroundingthebloodvessels,regularpretreatmentsinaccordance

withstandardinstructionwereemployed,includingdehydration,

desiccationandgilding.Preparedsamplesweresubsequentlyexam-

inedwithascanningelectronmicroscope(HITACHIS-3400N,Japan).

IsolationandmaintenanceofCMECsforinvitroexperiments

CMECswereisolatedfrom15maleSprague–Dawleyratsweighting

100–120g.Leftventriclesofratswereharvestedandmincedinto1mm

3

smallpiecesafterremovaloftheendocardialendotheliumandthe

epicardialcoronaryarteries.ThepieceswereincubatedincollagenaseII

(1mg/ml,Invitrogen,USA)andsubsequentlyculturedinEndothelial

GrowthMediumconsistingofde?nedgrowthfactorsandsupplemented

withadditionalFBSupto15%ofthe?nalconcentration(Hendrickxetal.,

2004).Passage3–5cellswereusedforfurtherstudies.RBX(Alexis,USA)

dissolvedindimethylsulfoxide(DMSO,Sigma,USA)toa?nal

concentrationof1,10,or100nmol/L.Mediawerereplacedtodifferent

conditionsaftercon?uence:normalglucosemedium(5.5mmol/L),high

glucosemedium(25mmol/L),highglucoseplusRBX-1(1nmol/L),high

glucoseplusRBX-2(10nmol/L),highglucoseplusRBX-3(100nmol/L),

andhighglucoseplusvehicle(DMSO).

Measurementoftransendothelialelectricalresistance

Transendothelialelectricalresistance(TER)isameasureofthe

ionicconductanceofendothelialcellsandcanbeusedtoassess

junctionalfunction.TERincreaseswhenendothelialcellsadhereand

spreadout,anddecreaseswhenendothelialcellsretractorlose

adhesion.Anelectricalendothelialresistancesystem(Millipore,USA)

wasusedtomeasureTERaspreviouslydescribedindetail(Chiang

etal.,2009).Con?uenceofastandardCMECsmonolayerwasassessed

asastabilizedbasalresistanceof1000Ω.Aftercon?uence,the

mediumwasreplacedbynormalmedium(5.5mmol/L),highglucose

medium(25mmol/L),highglucosemediumplusRBX(1,10,

100nmol/L)orhighglucoseplusvehicle.TERindifferentmedia

wasmeasuredafterincubationfor24h.Thesemeasurementsprovide

ahighlysensitivebiophysicalassayofcelljunctionalfunction.This

procedurewasrepeated?vetimes.

QuantitativeassayofCMECs''permeability

FITC-Dextranclearancewasmeasuredtoassesschangesin

endothelialpermeability.CMECsat100,000cells/insertwereseeded

ontocollagencoatedinsertofanInVitroVascularPermeabilityAssay

kit(ECM640,Millipore,USA)andgrowntocon?uence.After

con?uence,theculturedmediumwasalsoreplacedbydifferent

mediadescribedabove.Afterincubationfor24hinthesemedia,FITC-

Dextran(?nalconcentration1mg/mL)wasaddedtothemediumand

allowedtopermeatethroughthecellmonolayer.Theextentof

permeabilityafter2hwasdeterminedbyusinga?uorescentplate

reader(Bio-Rad,USA)tomeasuretheFITCcontentremainingonthe

plate.Thisprocedurewasrepeated?vetimes.

Immuno?uorescencestainingofPKC-βII

InordertolocalizePKC-βIIexpressionwithinthediabeticheartand

culturedCMECs,immuno?uorescentstainingwasperformed.Heart

tissuewaspreparedaspreviouslydescribed(Yoonetal.,2005).Tissues

were?xedwithparaformaldehydeandsectionedinto4to5μmslides.

CMECswerewashedoncewithPBS,?xedin4%paraformaldehydefor

10min,washedagainwithPBS,andpermeabilizedwith0.2%Triton100

for5min.HearttissueandCMECswereincubatedovernightwithanti-

PKC-βIIantibody(1:200,Abcam,British).Afterwards,slidesandcells

werewashed3timeswithPBSandincubatedwithsecondaryFITC-

labeledantibody(ZhongshanCO,China)for1h.AnIX71cofocal

microscope(Olympus,Japan)wasusedtoassessimages.

WesternblotanalysisforPKC-βII,phosphor-β-cateninandVE-cadherin

InordertoexaminetheactivatedPKC-βIIthatwastranslocatedfrom

cellcytoplasmtomembrane.Membranousproteinfromhearttissue

andculturedCMECswasisolatedusingtheEukaryoticMembrane

ProteinExtractionReagentKit(Pierce,USA).Monoclonalantibody

againstPKC-βII(1:1000,Abcam,British),phosphor-β-catenin(1:1000,

SantaCruz,USA),andVE-cadherin(1:1000,Abcam,British)wereused

forwesternblotanalysis.Nitrocellulosemembraneswereincubated

withHRP-conjugatedanti-mouseimmunoglobulinGantibody(1:2000,

CellSignaling,USA)for1handtheblotwasdevelopedwitha

Supersignalchemiluminescencedetectionkit(Pierce,USA).Immuno-

blottingwasvisualizedwithanImageStation400(Kodak,Japan).

TransfectionofPKC-βIISiRNAintoCMECs

TransfectionswereperformedwithEntransterTM-R(EngreenBio-

system,China)accordingtothemanufacturer''sinstructions.PKC-βIIand

GAPDH-speci?csiRNAsweresynthesized(SantaCruz,USA)andusedfor

transfection.ThesenseandantisensestrandsofthePKC-βIIsiRNAwere

GUCAGAUGCUGAUGUUCCUUUandUUCAGUCUACGACUACAAGGA.

CMECsweretransfectedafter48hofculture.EntransterTMR(8μL)

wasaddedto100μLofOptiMEMserum-freemediumcontaining2nmol/

LofeachsiRNAoligo,incubatedfor10min,andaddedtothe6-cmplate

containing2mlmedium.GAPDHsiRNAwasusedasanegativecontrol.

TheFITC-labeled(SantaCruz)controlsiRNAwasusedasamarkerof

transfectionef?ciency.TERandpermeabilityacrosscon?uentCMECs

monolayerswereperformedasdescribedabove.Theef?cacyofPKC-βII

silencingandreductionsinproteinexpressionwasassessedafter72hin

thesamegroupofcellsusingWesternblotanalysis.

Statisticalanalysis

Allvaluesarepresentedasmean±SD(ofnindependent

experiments).Alldata(exceptWesternblotdensity)werecompared

byANOVAfollowedbyBonferronicorrectionforposthocanalysis.P

valuesb0.05wereconsideredstatisticallysigni?cant.Allstatistical

testswereperformedusingGraphPadPrismsoftwareversion4.0

(GraphPadSoftware,SanDiego,CA).GraphofTERwasperformed

usingSigmaplot8.0software(SPSSInc,Chicago,USA).

Results

RBXtreatmentprotectscardiacmicrovascularbarrierfunctionin

diabeticrats

Lanthanumnitrateisareagentthathasbeenusedinanumberof

studiestotestbarrierfunctionofendothelialcells(Raposoetal.,

2007).Underhealthyconditions,lanthanumnitrateisunableto

traverseendothelialcelltocelljunctionsinsigni?cantquantities,but

whensuchbarriersarede?cientasinpathologicconditionsitmay

crosscellboundariesviaparacellulardiffusion.Inthisstudy,

applicationoflanthanumnitraterevealedsigni?cantde?citsin

barrierintegrityofdiabeticanimalhearts.Ascomparedtocontrol

animalsinwhichpresenceoflanthanumnitratewasregulatedtothe

bloodvessellumen(Fig.1A),lanthanumnitratewasfoundtodiffuse

acrossvessellumentothebasallaminaindiabeticanimals(Fig.1B).

Diffusionoflanthanumnitrateacrossendothelialcellswasattenuated

byadministrationofRBX,showingthatRBXiscapableofprotecting

cardiacendotheliumfromdamageinducedbydiabetes(Fig.1C).

Animalsthatreceivedtreatmentofvehiclealoneexhibitedlossof

barrierfunctioncomparabletodiabeticanimals(Fig.1D).

RBXtreatmentmaintainsCMECsintegrityindiabeticrats

ScanningelectronmicroscopyrevealedthesurfaceofCMECsin

controlanimalstobesmoothandwell-integrated(Fig.1EandI).In

contrast,CMECsindiabeticanimalswereobservedtobehighly

irregular,withnumerousexvaginationsandinvaginations.Cell

junctionintegritywaslargelycompromisedandcellswerenotwell

integratedwiththevessel(Fig.1FandJ).RBXtreatmentattenuated

changes,preservingCMECsintegrityandvesselintegration(Fig.1G

andK).Animalsthatreceivedtreatmentofvehiclealonedidnot

exhibitimprovement(Fig.1HandL).

DecreasedPKC-βIIactivatedandphosphor-β-catenincontributeto

endothelialbarrierrepair

Immuno?uorescentstainingshowedPKC-βIIactivatedexpression

tobelowinheartsofcontrolanimals(Fig.2A)buthighlyelevatedin

thediabeticgroup(Fig.2B).TreatmentwithRBXdownregulatedPKC-

and

solution

ultrastructure

animals

attenuated

that

and

integrity

160L.Weietal./MicrovascularResearch80(2010)158–165

Fig.1.Cardiacmicrovascularpermeabilityobservedbytransmissionelectronmicroscope

heartsofanaesthetizedratswereperfusedviathecarotidarterywith50mlofpre?xative

cardiacmicrovascularpermeabilityvialanthanumnitratetracerandtoexamineendothelial

witharrows.Lanthanumnitratewasonlyregulatedtothebloodvessellumenincontrol

laminaindiabeticanimals(B).Diffusionoflanthanumnitrateacrossendothelialcellswas

anddiffusionoflanthanumnitrateacrossendothelialcells(D).Thisresulthasshown

Scanningelectronmicroscopywasusedtoanalyzechangesinmorphologyofcardiacmicrovessels.

methods.ThesurfaceofCMECsincontrolanimalswassmoothandwell-integrated(E

numerousexvaginationsandinvaginations(FandJ).CMECsinRBXtreatmentexhibited

displayedirregularandrough(HandL).

scanelectronmicroscope.Totestforintegrityofendothelialcelltocelljunctions,

containinglanthanumnitrate.Transmissionelectronmicroscopywasusedtoassay

(scalebar:2μm).Theextracellulartracerlanthanumnitrateishighlighted

(A),andlanthanumnitratewasfoundtodiffuseacrossvessellumentothebasal

inRBXtreatment(C).Vehicletreatmentaloneexhibitedlossofbarrierfunction

RBXiscapableofprotectingcardiacendotheliumfromdamageinducedbydiabetes.

AnimalheartsreceivedperfusionofMercoxresinasdescribedinMaterialsand

I).Incontrast,CMECsindiabeticanimalswereobservedtobehighlyirregular,with

andvesselintegration(GandK).Animalsthatreceivedtreatmentofvehicle

?uo

gsh

pre

an

min

ead

161L.Weietal./MicrovascularResearch80(2010)158–165

Fig.2.PKC-βII,phosphor-β-cateninandVE-cadherinexpressioninhearttissue.Immuno

methods.(Highlightedwitharrows,AtoD,scalebar:20μm).Immuno?uorescentstainin

elevatedinthediabeticgroup(B).TreatmentwithRBXdownregulatedPKC-βIIactivatedex

affectPKC-βIIactivatedexpression(D).WesternblotanalysisofPKC-βII,phosphor-β-catenin

antibodyshowPKC-βIIexpressionwasincreasedindiabeticsanddown-regulatedbythead

showphosphor-β-cateninexpressionwasincreasedindiabeticsanddown-regulatedbyth

βIIactivatedexpressioninanimalswithdiabetes(Fig.2C).Admin-

istrationofthevehiclealonedidnotsigni?cantlyaffectPKC-βII

activatedexpression(Fig.2D).Westernblotsemi-quantization

revealedexpressionofPKC-βIIactivatedandphosphor-β-cateninto

besigni?cantlyelevatedindiabeticheartsascomparedtonon-

diabeticcontrols(1.06±0.09vs.0.76±0.06forPKC-βII;0.74±0.13

vs.0.47±0.11forphosphor-β-cateninin,Pb0.01)(Fig.2E).RBX

treatmentsigni?cantlyloweredlevelsofPKC-βIIactivated(0.97±

0.11vs.0.78±0.10,Pb0.05)andphosphor-β-catenin(0.80±0.11vs.

0.59±0.07,Pb0.05)(Fig.2F).VE-cadherinexpressiondidnotdiffer

amongthevariousgroups(Fig.2G).

RBXpretreatmentprotectsmonolayerbarrierfunctionofCMECs

MeasurementofTERisanaccuratemethodofassessing

junctionalintegrityforendothelialcells.AhighTERisassociated

withrelativelyimpermeablejunctionsofanendothelialmonolayer,

whilealowTERindicateselevatedpermeability(Fig.3A).Inthis

study,CMECsculturedinhighglucosemediumhadsigni?cantly

lowerTERthanthoseculturedinnormalglucosemedium(760.3±

72.1Ωvs.1053.2±76.3Ω,Pb0.01).AdditionofRBXtohighglucose

mediumatconcentrationsof10nmol/Land100nmol/Linduced

endothelialbarrierenhancementasdetectedbyincreasedTER

comparedwithvehicleonlytreatment(1079.2±72.8Ωvs.810.3±

71.6Ω,Pb0.01,905.6±77.9Ωvs.810.3±71.6Ω,Pb0.05,

respectively).AdditionoflowconcentrationsofRBX(1nmol/L)to

highglucosemediumdidnotaffectTERsigni?cantly(Fig.3B).

TocomplementandvalidateTERresults,permeabilityofthe

monolayerwasalsoassessedviatheadditionofaFITC-Dextransolution

totheCMECsmonolayerfollowedby?uorescenceanalysis.FITC-

DextranwasaddedtoCMECsculturedundernormalandhighglucose

conditions.Relative?uorescenceunit(RFU)inthehighglucosemedium

group).Analysisofmembraneswithanti-VE-cadherinantibodyshowVE-cadherinexpression

rescencestainingofPKC-βIIinhearttissuewasdetectedasdescribedinMaterialsand

owedPKC-βIIactivatedexpressiontobelowinheartsofcontrolanimals(A)buthighly

ssioninanimalswithdiabetes(C).Administrationofthevehiclealonedidnotsigni?cantly

dVE-cadherinexpressioninhearttissue(EtoG).Analysisofmembraneswithanti-PKC-βII

istrationofRBX(E).Analysisofwholehomogenatewithanti-phosphor-β-cateninantibody

ministrationofRBX(F)(??Pb0.01vs.Non-diabeticcontrol,#Pb0.05vs.Vehicletreatment

wasmuchhigherthaninthenormalmedium(394.5±36.9RFUvs.

279.1±14.9RFU,Pb0.01).RBXpretreatmentreducedFITC-dextran

clearanceatconcentrationsofRBXat10nmol/L(369.9±25.9RFUvs.

282.5±24.2RFU,Pb0.01)andat100nmol/L(369.9±25.9RFUvs.

325.7±20.5RFU,Pb0.05),suggestingthatRBXataconcentrationofat

least10nmol/Lsigni?cantlyenhancesendothelialbarrierfunctionby

reducingleakage(Fig.3C).

RBXpretreatmentnormalizesexpressionofPKC-βIIand

phosphor-β-catenininvitro

Notably,PKC-βII(1.17±0.13vs.0.71±0.07,Pb0.01)andphos-

phor-β-catenin(0.92±0.11vs.0.56±0.07,Pb0.01)expressionwas

markedlyhigherinCMECsculturedinthehighglucosemediumthan

inthenormalglucosemedium.PKC-βIIandphosphor-β-catenin

expressioninthehighglucosegroupwerereversedbypretreatment

withRBXat10nmol/L(1.13±0.12vs.0.67±0.14forPKC-βII,

Pb0.01)(0.76±0.07vs.0.47±0.06forphosphorylationofβ-catenin,

Pb0.01)andat100nmol/L(1.13±0.12vs.0.83±0.07forPKC-βII,

Pb0.05)(0.76±0.07vs.0.62±0.09forphosphorylationofβ-catenin,

Pb0.05)comparedwithvehiclepretreatment(Fig.4AandB).In

contrast,VE-cadherinexpressiondidnotdifferbetweenthehigh

glucosemediumandthehighglucosemediumpretreatedwithRBX

(Fig.4C).

EffectofPKC-βIIsiRNAonPKC-βII,phosphor-β-cateninandVE-cadherin

expression

TheeffectsofRBX(10nmol/L)onproteinexpressionofphosphor-

β-cateninandVE-cadherinwascomparedwithuseofPKC-βIIsiRNA.

HighglucosemediumresultedinupregulationofPKC-βIIexpression

andtheadditionofGAPDHcontroldidnotinhibitPKC-βIIactivation.

didnotdifferamongthevariousgroups(G).

Fig.3.EffectsofRBXonpermeabilityofCMECsmonolayer.CMECsculturedongoldmicroelectrodesandsubjectedtotransendothelialelectricalresistance(TER)measurementsto

detectchangesinbarrierpermeability.Increasesinresistancecorrespondtotighteningofjunctionaladhesionrelatedwithenhancedbarrierfunction,whiledecreasesinresistance

correspondtobarrierdysfunctionandincreasedparacellularpermeability.Trans-endothelialelectricalresistance(TER)overtimeinnormal,highglucose,highglucoseplus

treatment,andhighglucoseplusvehiclegroups.TERofCMECsmonolayerwaspresenteddifferenttendencyindifferentgroup,whereaspretreatmentwithRBXinhibiteddecreaseof

TERandenhancedbarrierfunction(A).RBXattenuatesthedecreaseinjunctionalintegrityafterincubationfor24hasmeasuredbyTER(B).RBXattenuatesthepermeabilityincrease

ofmonolayerCMECsafterincubationfor24hasmeasuredbyFITC-Dextranclearance(C).(##Pb0.01vs.Nor,??Pb0.01vs.HG+Vehicle,?Pb0.05vs.HG+Vehicle)Nor:normal

glucosemedium,HG:highglucosemedium,HG+Vehicle:highglucoseplusvehiclemedium.

Fig.4.PKC-βII,phosphor-β-cateninandVE-cadherinexpressioninCMECsinvitro.PKC-βIIactivatedandVE-cadherinwereexaminedusingcellmembranousproteinandβ-catenin

phosphorylationwasexaminedusingwholehomogenate.PKC-βIIwasactivatedinCMECswithhighglucosemediumanddown-regulatedbytheadministrationofRBX(A).

Phosphor-β-cateninexpressionincreasedinthehighglucosemediumandwassigni?cantlydownregulatedbyadministrationRBX(B).VE-cadherinexpressioninvariousgroupsdid

notdiffersigni?cantly(C).(##Pb0.01vs.Nor,??Pb0.01vs.HG+Vehicle,?Pb0.05vs.HG+Vehicle)Nor:normalglucosemedium,HG:highglucosemedium,HG+Vehicle:high

glucoseplusvehiclemedium.

162L.Weietal./MicrovascularResearch80(2010)158–165

Bycomparison,useofRBXandPKC-βIIsiRNAsigni?cantlyinhibited

activatedPKC-βIIexpression(Fig.5AtoD).PKC-βIIandphosphor-β-

cateninexpressioninthehighglucosemediumwerereversedby

pretreatmentwithRBX(0.59±0.08forPKC-βII,Pb0.01;0.56±0.09

forphosphor-β-catenin,Pb0.01)andPKC-βIIsiRNA(0.51±0.13for

PKC-βII,Pb0.01;0.62±0.11forphosphor-β-catenin,Pb0.01).There

werenosigni?cantdifferencesbetweenRBXtreatmentanduseof

PKC-βIIsiRNA(Fig.5EandF).Incontrasttophosphor-β-catenin,

levelsofVE-cadherindidnotchangeafterexposureofGAPDHcontrol,

RBX,andPKC-βIIsiRNA(Fig.5G).

EffectofPKC-βIIsiRNAonbarrierfunctionofCMECsmonolayer

AdditionofPKC-βIIsiRNAtoCMECsresultedinendothelialbarrier

enhancementasevidencedbyanincreasedTER(1025.4±87.7Ωvs.

755.6±75.9Ω,Pb0.01)anddecreasedpermeability(385.3±27.3

RFUvs.284.3±31.7RFU,Pb0.01).Therewerenosigni?cant

differencesbetweenuseofPKC-βIIsiRNAandRBX.BothPKC-βII

siRNAandRBXselectivelyinhibitedactivatedPKC-βIIexpressionand

protectedendothelialbarrierfunction(Fig.6).

Discussion

Vascularendothelialcellsplayamajorroleinmaintaining

cardiovascularhomeostasisinnormalconditions.Diabetesmellitus

substantiallyimpairsthepropertiesoftheendotheliumandleadsto

endothelialdysfunction,especiallyphysicalbarrierfunction,which

canbeconsideredthecrucialprogressionofcardiovasculardisease

Yuanetal.(2000)havereportedasigni?canttranslocationofboth

PKC-βIIand-?isoformsfromthecytosoltothemembraneinthe

heartsofdiabeticanimalsaccompanyingwithbasalpermeabilityto

andVE-cadherininCMECsinvitro.CMECsweretransfectedwithPKC-βIIsiRNAorcontrol

?uorescenceinCMECs(AtoD,scalebar:40μm).Immuno?uorescentstainingshowed

elevatedinthehighglucose(B).TreatmentwithRBXdownregulatedPKC-βIIactivated

βII,phosphor-β-cateninandVE-cadherinexpressioninCMECs.TransfectionwithPKC-βII

didnotchangetheexpressionofVE-cadherin(EtoG).PKC-βIIdepletioninducedbyPKC-βII

thesameeffectasPKC-βIIsilencingreducedproteinexpressionofPKC-βIIand

Fig.6.DepletionofPKC-βIIenhancedbarrierfunctionofCMECsmonolayerculturedin

highglucose.EffectsonbarrierfunctionofCMECstransfectedwith8nMPKC-βIIsiRNA

orcontrolsiRNAcomparedwitheffectsofRBXat10nmol/L.After24h,TERofCMECs

monolayerwasmeasuredbyanelectricalendothelialresistancesystem(Millipore,

USA)andFITC-Dextranclearancewasmeasuredtoassesschangesinendothelial

163L.Weietal./MicrovascularResearch80(2010)158–165

(Avogaroetal.,2006;Yuanetal.,2007).Severalstudieshave

discussedthemolecularmechanismsunderlyingendothelialdys-

function(WautierandSchmidt,2004;IdrisandDonnelly,2006;

Mohamadinetal.,2007)andtheactivationofPKCsorPKCsisoforms

byhyperglycemiahasbeenfoundtobethemostimportant(Das

EvcimenandKing,2007).

TheindividualisoformsofPKCsresponddifferentlytohypergly-

caemia,however,bothexperimentsinvivoandinvitrosupportthe

predominantroleofPKC-βIIindiabeticmicrovascularcomplications.

Fig.5.EffectsofPKC-βIIdepletiononproteinexpressionofPKC-βII,phosphor-β-catenin

siRNAasdescribedinMaterialsandmethods.PKC-βIIexpressionwasdetectedbyimmuno

PKC-βIIactivatedexpressedtobelowinCMECsculturedinnormalmedium,(A)buthighly

expression(C)similarwiththeeffectsofPKC-βIIsiRNA(D).WesternblotanalysisofPKC-

speci?csiRNAin?uencedtheproteinexpressionofPKC-βIIandphosphor-β-catenin,but

speci?csiRNAwascon?rmedbyWesternblot.ThepharmacologicalinhibitorRBXreproduced

phosphor-β-catenin.Representativeblotsof5independentexperimentsareshown(??Pb0.01

permeability.Trans-endothelialelectricalresistance(TER)overtimeinGAPDHcontrol,

RBXtreatment,andPKC-βIIsiRNAgroups(A).PretreatmentwithRBXinhibited

decreaseofTERandenhancedbarrierfunctionsimilarwiththeeffectofPKC-βIIsiRNA

(B).RBXattenuatesthepermeabilityincreaseofCMECsmonolayersimilarwiththe

effectofPKC-βIIsiRNA(C)(??Pb0.01vs.GAPDHcontrol,##Pb0.01vs.GAPDHcontrol).

vs.GAPDHcontrol,##Pb0.01vs.GAPDHcontrol).

164L.Weietal./MicrovascularResearch80(2010)158–165

albuminelevatedincoronaryvenues.Similarly,Beckmanetal.(2002)

alsoshowedthathyperglycemiaimpairsendothelialfunctionpartly

viaPKCβactivation.AlthoughthesereportsdemonstratePKC-βII

activationasthedirectlinkbetweenhyperglycemiaandcardiac

vascularendothelialdysfunction,however,theeffectandmechanisms

ofPKC-βIIactivationoncardiacmicrovascularfunctionislessclear.

Inthepresentstudy,weappliedanidealandhighselectivedrug

RBXtodemonstratethePKC-βIIisoformactivationandsubsequent

cardiacmicrovasculardamageinresponsetohyperglycemiainvivo

andinvitro.

Inordertotestendothelialpermeabilityinvivo,lanthanumnitrate

permeabilityassayswereperformed.Lanthanumnitratehasa

moleculardiameterof4nmandisunabletopassthroughcell

junctionsundernormalconditions.Underconditionswheremicro-

vascularendothelialintegrityiscompromised,however,itisableto

diffuseparacellularlyacrosscelljunctions(Raposoetal.,2007).Our

resultsshowthatinheartsofdiabeticratswithPKC-βIIactivation,

cardiacmicrovesselshaveincreasedpermeabilitytolanthanum

nitrate,indicatingbarrierdysfunction.Ameliorationofcell–cell

junctionalimpairmentfollowingRBXadministrationdemonstrates

thatPKC-βIIactivationplaysanimportantroleinthispathological

process.Throughscanningelectronmicroscopy,wealsofoundthat

CMECsindiabeticanimalshaveabnormalvascularstructureand

compromisedintegrityofendothelialcelljunctions.RBXtreatment

reversedthesepathologicalchangesaswell.

Andwecon?rmedtheprotectiveeffectsofRBXonCMECs

monolayerbyassayingcellpermeabilityandTER.Wefoundthatat

aconcentrationof10nmol/L,RBXexertsamaximallybarrierfunction

protectiveroleandPKC-βIIexpressioninhibition.Interestingly,

barrierfunctionwasnotenhancedathighdosesofRBXsuchas

100nmol/L.ThereasonforthismaybeduetoinhibitionofotherPKC

isoformsathighconcentrationsofRBX,whichmayexertadditional

adverseeffectstoendothelialcells.Resultsofthesetestsindicated

prolongedculturedCMECsunderhighglucoseconditionscaninduce

PKC-βIIactivationandCMECsmonolayerbarrierdysfunctionwhile

pretreatmentwithRBXcanattenuatethesechanges.Wecompared

theeffectsofRBXat10nmol/LwiththetransfectionofPKC-βIIsiRNA

intoCMECs.WefoundRBXselectivelyinhibitedPKC-βIIactivated

expressionandprotectedendothelialbarrierfunction,reproducing

thesameeffectasPKC-βIIsiRNA,whichfurthersupportsour

conclusionthatRBXcontributesprotectiveeffectsuponmicrovascu-

latureviadownregulationofPKC-βIIandnotindependent

mechanisms.

Endothelialbarrierfunctionisdeterminedbyabalancebetween

adhesiveforcesatintercellularjunctionsandactingenerated

centripetalforces.Lossofadhesiveforceatthejunctionsand

increasedactingeneratedforcemayincreaseparacellular?uxof

?uidsandmacromolecules(BaldwinandThurston,2001;Bazzoniand

Dejana,2001).Cadherinsbinddirectlytoβ-cateninandtop120.

Linkageofthecadherinsviacateninstotheactincytoskeletonisthe

mechanismbywhichcateninsstrengthencadherin-mediatedadhe-

siveforce(Dejana,2004;Guoetal.,2008;Vestweber,2008).VE-

cadherinishighlyexpressedinmicrovascularendothelialcells,which

isaprimarycomponentoftheadherentjunctionproteinthat

maintainsadhesiveforce(Orlovaetal.,2006;Dejanaetal.,2008).

β-cateninisanimportantproteininsignaltransductionofjunction–

cytoskeletoninteractions(Aberleetal.,1996;BazzoniandDejana,

2001).Exogenousorendogenousagentsmayaffectthestabilityof

thissystembyinducingphosphorylationand/ordistributionof

junctionproteins(Coradaetal.,2001).Manystudies(Tinsleyetal.,

1999;Shasbyetal.,2002;Yuan,2002)havedemonstratedhyperper-

meabilityfactorsstimulateβ-cateninphosphorylationandsimulta-

neouslycauseendothelialgapformation.Weshowedinhibitionof

PKC-βIIanddownregulationofβ-cateninphosphorylationpreferen-

tiallyprotectagainstCMECsmonolayerbarrierdysfunction.PKCβII

activationwasparalleledwithincreasesinphosphorylatedβ-catenin,

indicatingthatβ-cateninisdirectlyphosphorylatedbyactivatedPKC

βIIorbyaPKC-dependentactivationofanotherkinase(Mehtaetal.,

2001).Phosphor-β-cateninwasalsofoundtobeelevatedunderhigh

glucoseanddiabeticconditionswhereasVE-cadherinexpressionwas

maintainedatconstantlevelsregardlessoftheamountofglucosein

thecultureenvironment.Weproposethatphosphor-β-catenin

inducedbyPKC-βIIactivationpromotesthedissociationofVE-

cadherinfromVE-cadherin–catenincomplexandleadstodeteriora-

tionofthefundamentalstructureofnormalCMECsbarrierfunction.

RearrangementofVE-cadherinnotVE-cadherinphosphorylation

modulatedbyPKC-βIIactivationmostlikelycontributestolossof

adhesiveforce.Thesehypothesesaresupportedbyotherstudiesthat

showmultipleantibodiesdirectedtotheextracellulardomainofVE-

cadherincandisruptendothelialbarrierfunctioninvitro(Corada

etal.,2001;Londonetal.,2009).

Takentogether,Ourdatafurtherdemonstratethatβ-catenin

phosphorylationwasanimportantsignalresponsiblefordiminishing

celltocellcontactandbreakingdownthecardiacbarrierfunctionin

diabeteswithPKC-βIIactivation.RBXpretreatmentreducedcardiac

microvascularbarrierimpairmentandimprovedendothelialcellular

junctioninvivoandinvitro.Themechanismsresponsibleforthese

effectsofRBXmightbepartlymediatedbyPKC-βIIactivationand

phosphor-β-cateninsignalpathway.

Con?ictofintereststatement

Thereisnocon?ictofinteresttodeclare.

Acknowledgments

ThisstudywassupportedbygrantsfromtheNationalNatural

ScienceFoundationofChina(NSFC,No.30770784,30670969)and

XijingResearchBoostingProgram(FC,No.XJZT07Z05,XJZT08Z04).

References

Aberle,H.,Schwartz,H.,Kemler,R.,1996.Cadherin–catenincomplex:protein

interactionsandtheirimplicationsforcadherinfunction.J.Cell.Biochem.61,

514–523.

Avignon,A.,Sultan,A.,2006.PKC-Binhibition:anewtherapeuticapproachfordiabetic

complications.Diabetes.Metab.32,205–213.

Avogaro,A.,Fadini,G.P.,Gallo,A.,Pagnin,E.,deKreutzenberg,S.,2006.Endothelial

dysfunctionintype2diabetesmellitus.Nutr.Metab.Cardiovasc.Dis.16(Suppl.1),

S39–S45.

Baldwin,A.L.,Thurston,G.,2001.Mechanicsofendothelialcellarchitectureand

vascularpermeability.Crit.Rev.Biomed.Eng.29,247–278.

Bazzoni,G.,Dejana,E.,2001.Poresinthesieveandchannelsinthewall:controlof

paracellularpermeabilitybyjunctionalproteinsinendothelialcells.Microcircu-

lation8,143–152.

Beckman,J.A.,Gold?ne,A.B.,Gordon,M.B.,Garrett,L.A.,Creager,M.A.,2002.Inhibition

ofproteinkinaseCbetapreventsimpairedendothelium-dependentvasodilation

causedbyhyperglycemiainhumans.Circ.Res.90,107–111.

Budhiraja,S.,Singh,J.,2008.ProteinkinaseCbetainhibitors:anewtherapeutictarget

fordiabeticnephropathyandvascularcomplications.Fundam.Clin.Pharmacol.22,

231–240.

Capes,S.E.,Hunt,D.,Malmberg,K.,Gerstein,H.C.,2000.Stresshyperglycaemiaand

increasedriskofdeathaftermyocardialinfarctioninpatientswithandwithout

diabetes:asystematicoverview.Lancet355,773–778.

Chiang,E.T.,Camp,S.M.,Dudek,S.M.,Brown,M.E.,Usatyuk,P.V.,Zaborina,O.,Alverdy,J.

C.,Garcia,J.G.,2009.Protectiveeffectsofhigh-molecularweightPolyethylene

Glycol(PEG)inhumanlungendothelialcellbarrierregulation:roleofactin

cytoskeletalrearrangement.Microvasc.Res.77,174–186.

Corada,M.,Liao,F.,Lindgren,M.,Lampugnani,M.G.,Breviario,F.,Frank,R.,Muller,W.A.,

Hicklin,D.J.,Bohlen,P.,Dejana,E.,2001.Monoclonalantibodiesdirectedto

differentregionsofvascularendothelialcadherinextracellulardomainaffect

adhesionandclusteringoftheproteinandmodulateendothelialpermeability.

Blood97,1679–1684.

DasEvcimen,N.,King,G.L.,2007.TheroleofproteinkinaseCactivationandthe

vascularcomplicationsofdiabetes.Pharmacol.Res.55,498–510.

Dejana,E.,2004.Endothelialcell–celljunctions:happytogether.Nat.Rev.Mol.CellBiol.

5,261–270.

Dejana,E.,Orsenigo,F.,Lampugnani,M.G.,2008.TheroleofadherensjunctionsandVE-

cadherininthecontrolofvascularpermeability.J.Cell.Sci.121,2115–2122.

Gao,H.K.,Yin,Z.,Zhou,N.,Feng,X.Y.,Gao,F.,Wang,H.C.,2008.Glycogensynthase

kinase3inhibitionprotectstheheartfromacuteischemia-reperfusioninjuryvia

inhibitionofin?ammationandapoptosis.J.Cardiovasc.Pharmacol.52,286–292.

Guo,M.,Breslin,J.W.,Wu,M.H.,Gottardi,C.J.,Yuan,S.Y.,2008.VE-cadherinandbeta-

cateninbindingdynamicsduringhistamine-inducedendothelialhyperpermeabi-

lity.Am.J.Physiol.CellPhysiol.294,C977–C984.

Gutterman,D.D.,2002.Vasculardysfunctioninhyperglycemia:isproteinkinaseCthe

culprit.Circ.Res.90,5–7.

Hendrickx,J.,Doggen,K.,Weinberg,E.O.,VanTongelen,P.,Fransen,P.,DeKeulenaer,G.

W.,2004.Moleculardiversityofcardiacendothelialcellsinvitroandinvivo.

Physiol.Genomics.19,198–206.

Idris,I.,Donnelly,R.,2006.ProteinkinaseCbetainhibition:anoveltherapeuticstrategy

fordiabeticmicroangiopathy.Diab.Vasc.Dis.Res.3,172–178.

Ishii,H.,Jirousek,M.R.,Koya,D.,Takagi,C.,Xia,P.,Clermont,A.,Bursell,S.E.,Kern,T.S.,Ballas,

L.M.,Heath,W.F.,Stramm,L.E.,Feener,E.P.,King,G.L.,1996.Ameliorationofvascular

dysfunctionsindiabeticratsbyanoralPKCbetainhibitor.Science272,728–731.

Kouroedov,A.,Eto,M.,Joch,H.,Volpe,M.,Luscher,T.F.,Cosentino,F.,2004.Selective

inhibitionofproteinkinaseCbeta2preventsacuteeffectsofhighglucoseon

vascularcelladhesionmolecule-1expressioninhumanendothelialcells.

Circulation110,91–96.

London,N.R.,Whitehead,K.J.,Li,D.Y.,2009.Endogenousendothelialcellsignaling

systemsmaintainvascularstability.Angiogenesis12,149–158.

Mehta,D.,Rahman,A.,Malik,A.B.,2001.ProteinkinaseC-alphasignalsrho-guanine

nucleotidedissociationinhibitorphosphorylationandrhoactivationandregulates

theendothelialcellbarrierfunction.J.Biol.Chem.276,22614–22620.

Mehta,N.N.,Sheetz,M.,Price,K.,Comiskey,L.,Amrutia,S.,Iqbal,N.,Mohler,E.R.,Reilly,

M.P.,2009.SelectivePKCbetainhibitionwithruboxistaurinandendothelial

functionintype-2diabetesmellitus.Cardiovasc.Drugs.Ther.23,17–24.

Meier,M.,Park,J.K.,Overheu,D.,Kirsch,T.,Lindschau,C.,Gueler,F.,Leitges,M.,Menne,

J.,Haller,H.,2007.DeletionofproteinkinaseC-betaisoforminvivoreducesrenal

hypertrophybutnotalbuminuriainthestreptozotocin-induceddiabeticmouse

model.Diabetes56,346–354.

Mohamadin,A.M.,Hammad,L.N.,El-Bab,M.F.,Gawad,H.S.,2007.Cannitricoxide-

generatingcompoundsimprovetheoxidativestressresponseinexperimentally

diabeticrats.Clin.Exp.Pharmacol.Physiol.34,586–593.

Orlova,V.V.,Economopoulou,M.,Lupu,F.,Santoso,S.,Chavakis,T.,2006.Junctional

adhesionmolecule-Cregulatesvascularendothelialpermeabilitybymodulating

VE-cadherin-mediatedcell–cellcontacts.J.Exp.Med.203,2703–2714.

Raposo,C.,Zago,G.M.,daSilva,G.H.,daCruzHo?ing,M.A.,2007.Acuteblood–brain

barrierpermeabilizationinratsaftersystemicPhoneutrianigriventervenom.Brain

Res.1149,18–29.

Scalia,R.,Gong,Y.,Berzins,B.,Zhao,L.J.,Sharma,K.,2007.Hyperglycemiaisamajor

determinantofalbuminpermeabilityindiabeticmicrocirculation:theroleofmu-

calpain.Diabetes56,1842–1849.

Shasby,D.M.,Ries,D.R.,Shasby,S.S.,Winter,M.C.,2002.Histaminestimulates

phosphorylationofadherensjunctionproteinsandalterstheirlinktovimentin.

Am.J.Physiol.LungCell.Mol.Physiol.282,L1330–L1338.

Talpur,N.,Echard,B.,Ingram,C.,Bagchi,D.,Preuss,H.,2005.Effectsofanovel

formulationofessentialoilsonglucose-insulinmetabolismindiabeticand

hypertensiverats:apilotstudy.DiabetesObes.Metab.7,193–199.

Tinsley,J.H.,Wu,M.H.,Ma,W.,Taulman,A.C.,Yuan,S.Y.,1999.Activatedneutrophils

inducehyperpermeabilityandphosphorylationofadherensjunctionproteinsin

coronaryvenularendothelialcells.J.Biol.Chem.274,24930–24934.

Verli,F.D.,Marinho,S.A.,Rossi-Schneider,T.R.,Yurgel,L.S.,deSouza,M.A.,2008.

AngioarchitectureoftheventralsurfaceofthetonguefromWistarrats.Scanning

30,414–418.

Vestweber,D.,2008.VE-cadherin:themajorendothelialadhesionmoleculecontrolling

cellularjunctionsandbloodvesselformation.Arterioscler.Thromb.Vasc.Biol.28,

223–232.

Wang,H.C.,Zhang,H.F.,Guo,W.Y.,Su,H.,Zhang,K.R.,Li,Q.X.,Yan,W.,Ma,X.L.,Lopez,B.L.,

Christopher,T.A.,Gao,F.,2006.Hypoxicpostconditioningenhancesthesurvivaland

inhibitsapoptosisofcardiomyocytesfollowingreoxygenation:roleofperoxynitrite

formation.Apoptosis11,1453–1460.

Wautier,J.L.,Schmidt,A.M.,2004.Proteinglycation:a?rmlinktoendothelialcell

dysfunction.Circ.Res.95,233–238.

Xu,H.,Czerwinski,P.,Hortmann,M.,Sohn,H.Y.,Forstermann,U.,Li,H.,2008.Protein

kinaseCalphapromotesangiogenicactivityofhumanendothelialcellsvia

inductionofvascularendothelialgrowthfactor.Cardiovasc.Res.78,349–355.

Yoon,Y.S.,Uchida,S.,Masuo,O.,Cejna,M.,Park,J.S.,Gwon,H.C.,Kirchmair,R.,Bahlman,

F.,Walter,D.,Curry,C.,Hanley,A.,Isner,J.M.,Losordo,D.W.,2005.Progressive

attenuationofmyocardialvascularendothelialgrowthfactorexpressionisa

seminaleventindiabeticcardiomyopathy:restorationofmicrovascularhomeo-

stasisandrecoveryofcardiacfunctionindiabeticcardiomyopathyafter

replenishmentoflocalvascularendothelialgrowthfactor.Circulation111,

2073–2085.

Young,M.E.,McNulty,P.,Taegtmeyer,H.,2002.Adaptationandmaladaptationofthe

heartindiabetes:PartII:potentialmechanisms.Circulation105,1861–1870.

Yuan,S.Y.,2002.Proteinkinasesignalinginthemodulationofmicrovascular

permeability.Vascul.Pharmacol.39,213–223.

Yuan,S.Y.,Ustinova,E.E.,Wu,M.H.,Tinsley,J.H.,Xu,W.,Korompai,F.L.,Taulman,A.C.,

2000.ProteinkinaseCactivationcontributestomicrovascularbarrierdysfunction

intheheartatearlystagesofdiabetes.Circ.Res.87,412–417.

Yuan,S.Y.,Breslin,J.W.,Perrin,R.,Gaudreault,N.,Guo,M.,Kargozaran,H.,Wu,M.H.,

2007.Microvascularpermeabilityindiabetesandinsulinresistance.Microcircu-

lation14,363–373.

165L.Weietal./MicrovascularResearch80(2010)158–165

献花(0)
+1
(本文系实验专家首藏)