配色: 字号:
RNA转染(Entranster)与成骨细胞增殖和分化研究,高效转染
2017-09-30 | 阅:  转:  |  分享 
  
ContentslistsavailableatScienceDirect

ExperimentalCellResearch

journalhomepage:www.elsevier.com/locate/yexcr

Liraglutide,aglucagon-likepeptide-1receptoragonist,facilitatesosteogenic

proliferationanddi?erentiationinMC3T3-E1cellsthrough

phosphoinositide3-kinase(PI3K)/proteinkinaseB(AKT),extracellular

signal-relatedkinase(ERK)1/2,andcAMP/proteinkinaseA(PKA)signaling

pathwaysinvolvingβ-catenin

XuelunWu

a,b

,ShilunLi

b

,PengXue

a,b

,YukunLi

a,b,

?

a

DepartmentofEndocrinology,TheThirdHospitalofHebeiMedicalUniversity,139ZiqiangRoad,Shijiazhuang050051,HebeiProvince,PRChina

b

KeyOrthopaedicBiomechanicsLaboratoryofHebeiProvince,139ZiqiangRoad,Shijiazhuang050051,HebeiProvince,PRChina

ARTICLEINFO

Keywords:

GLP-1

Osteoblast

Proliferation

Di?erentiation

Signalingpathway

ABSTRACT

Previousstudieshaveproventhatglucagon-likepeptide-1(GLP-1)anditsreceptoragonistexertfavorable

anabolice?ectsonskeletalmetabolism.However,whetherGLP-1coulddirectlyimpactosteoblast-mediated

boneformationisstillcontroversial,andtheunderlyingmolecularmechanismremainstobeelucidated.Thusin

thispaper,weinvestigatedthee?ectsofliraglutide,aglucagon-likepeptide-1(GLP-1)receptoragonist,on

murineMC3T3-E1preosteoblastsproliferationanddi?erentiationandexploredthepotentialcellularbasis.Our

studycon?rmedthepresenceofGLP-1RinMC3T3-E1,anddemonstratedthatliraglutidepromotesosteoblasts

proliferationatanintermediateconcentration(100nM)andtime(48h),upregulatedtheexpressionofosteo-

blastogenicbiomarkersatvariousstages,andstimulatedosteoblasticmineralization.Liraglutidealsoelevated

theintracellularcAMPlevelandphosphorylationofAKT,ERKandβ-cateninsimultaneouslywithincreased

nuclearβ-catenincontentandtranscriptionalactivity.PretreatmentofcellswiththeinhibitorsLY294002,

PD98059,H89andGLP-1Randβ-cateninsiRNApartiallyblockedtheliraglutide-inducedsignalingactivation

andattenuatedthefacilitatinge?ectofliraglutideonMC3T3-E1cells.Collectively,liraglutidewascapableof

actinguponosteoblastsdirectlythroughGLP-1RbyactivatingPI3K/AKT,ERK1/2,cAMP/PKA/β-cat-Ser675

signalingtopromoteboneformationviaGLP-1R.Thus,GLP-1analoguesmaybepotentialtherapeuticstrategy

forthetreatmentofosteoporosisindiabetics.

1.Introduction

Osteoporosisandtype2diabetesmellitus(T2DM)aretwocommon

metabolicdiseases,andbotharewellknowntobeassociatedwithhigh

morbidityandeconomicburden[1–3].Althoughthesetwoprevalent

conditionshavepreviouslybeenconsideredseparatediseases,accu-

mulatingevidencehasshownthattheycouldbelinkedbysimilar

predispositionsandmolecularmechanisms[4].Thus,speci?cclassesof

anti-hyperglycemicmedicationscoulddirectlyin?uencebonemeta-

bolismunrelatedtoglucosehomeostasis.Glucagon-likepeptide-1(GLP-

1)anditsreceptoragonists(GLP-1RAs)havebeenpreviouslyreported

toplayapositiveroleinbonemetabolismgiventhatincretinshave

variouspleiotropice?ectsonliver,adiposetissue,bone,cardiovascular

andgastrointestinalsystem[5,6],drawingincreasingattention.

GLP-1,akeyincretinhormone,issecretedbyintestinalendocrineL

cellsandamelioratesglucosehomeostasisbystimulationofinsulin

secretion,suppressionofglucagonrelease,andinhibitionofgastric

emptyingandappetite,withitsbioactivitieslimitedbyrapidde-

gradationbydipeptidylpeptidase-4(DPP-4)[7].GLP-1exertsitsbio-

logicalroleprimarilybybindingtotheGLP-1receptor(GLP-1R),which

belongstotheG-proteincoupledreceptorfamily[8]highlyexpressed

onpancreaticβcellsbutalsowidelydistributedinextrapancreaticcells

includingbone[9].Inviewoftheabove-mentionedproperties,GLP-1

RAs,suchasexenatideandliraglutide,basedonincretine?ectshave

beenandarebeingdevelopedforT2DMtreatment.

Boththepreclinicalandclinicalresearchcurrentlyavailablesuggest

thatGLP-1andGLP-1RAsplayapositiveimportantroleinfacilitating

boneformationandsuppressingboneresorption,thusimprovingbone

strength[10–14].Thesee?ectshavebeendemonstratedinvivoinro-

dentsandinvitro,inGLP-1Rdeletionanimals[15–17],streptozotocin-

http://dx.doi.org/10.1016/j.yexcr.2017.09.018

Received15August2017;Receivedinrevisedform9September2017;Accepted12September2017

?

Correspondingauthorat:DepartmentofEndocrinology,TheThirdHospitalofHebeiMedicalUniversity,139ZiqiangRoad,Shijiazhuang050051,HebeiProvince,PRChina.

E-mailaddress:lyk19621225@163.com(Y.Li).

ExperimentalCellResearchxxx(xxxx)xxx–xxx

0014-4827/?2017ElsevierInc.Allrightsreserved.

Pleasecitethisarticleas:Wu,X.,ExperimentalCellResearch(2017),http://dx.doi.org/10.1016/j.yexcr.2017.09.018

inducedT2DMandfructose-inducedinsulinresistant(IR)rats[10,11],

agedovariectomized(OVX)rats[12],hyperlipidicrats[18]andos-

teoblasts[19].Theresultshavebeenverypositiveinmost[10–12,20]

butnotallstudies[21].Additionally,ameliorationofbonemetabolism

andtheanti-osteoporosise?ectsofGLP-1andGLP-1RAsinrodent

experimentshaveprimarilybeendemonstratedinosteoblastlineages

[22].

However,whetherGLP-1Rispresentinosteoblaststomediatea

directe?ectisstillunclear.Previousinvitroexperimentshavesug-

gestedthatthereisnodirecte?ectofGLP-1ineitherosteoblastsor

osteoclasts[15].Recently,Nuche-Berenguerandco-workersidenti?ed

thepresenceofaspeci?cfunctionalGLP-1RinMC3T3-E1cells[23].

Kimetal.foundthatpancreaticGLP-1RwaspresentonMLO-Y4cells

andosteocytesofratfemurs[20].AnotherstudybythePereirateam

con?rmedthattheGLP-1Rwasexpressedinbonemarrowcells,pri-

maryosteoclasts,osteoblastsandalateosteocyticcellline[24].In

summary,GLP-1Ractivationmaycontributetoosteogenesis.

Togainfurtherinsightintothepathophysiologyofosteoporosisand

thepharmacologicalpropertiesofGLP-1anditsanalogues,thedown-

streammolecularmechanismsunderlyingtheosteogenice?ectshave

beeninvestigated.GLP-1inducesmultiplesignalingpathwaysthrough

activationofthepleiotropicGLP-1R,includingclassicalcAMP/PKA

pathwayandothersecondmessengers[25–29].Amongthem,cAMP/

PKA[30,31],PI3K/Akt[32,33]andMEK/ERK1/2[34]signaling

pathwayshavebeenshowntobeinvolvedinosteoblastmediatedbone

formation.InMC3T3-EIcells,datasupportaGLP-1-inducedstimulation

uponPI3KandMAPKactivitiesinosteoblasticcells[23].Similarly,

anotherstudyfoundthatExendin-4canalsopromotetheproliferation

anddi?erentiationofMC3T3-E1osteoblastsviaMAPKs[19].Inlightof

recent?ndingsthatlinkGLP-1asadirectactivatorofWntsignaling,

GLP-1canstimulateβ-catenin(thee?ectorofWntsignaling)phos-

phorylationataC-terminalSer675position,thusleadingtothestabi-

lizationandincreasedtranslocationofβ-catenintothenucleus,derived

fromactivationofthecAMP/PKAsignalingcascade[35,36].Mengand

colleaguesrevealedthatactivationoftheGLP-1regulatedosteogenic

di?erentiationandinhibitedBMSCadipogenicdi?erentiationthrough

cAMP/PKA/β-cateninandPKA/PI3K/AKT/GSK3βsignaling[37].Thus,

wehypothesizedthatGLP-1mightinducecAMP/PKA,PI3K/AKTand

ERK1/2signalingactivationwithβ-catenininvolvementtoachieveits

promotinge?ectinosteoblast-mediatedboneformation.

Althoughalargenumberofstudieshavebeencommittedtoex-

ploringthebene?cialanabolice?ectsofGLP-1onskeletalhealth,there

hasbeenlessinterestinliraglutide,asyntheticGLP-1RAthatshares

97%homologywiththestructureofhumanGLP-1andexhibitsre-

sistancetoDPP-IVinactivationandamuchlongercirculatinghalf-life

[38].Recently,severalstudiesindicatedthatthedrugliraglutidecan

exertosteogenicandanti-resorptivee?ectswhenadministeredtodia-

beticratsornon-diabeticosteoporoticOVXrats[24,39,40];however,

theunderlyingmechanismsresponsibleforthesefavorablechangesare

lessknown.

Therefore,theaimofourstudywastoinvestigatethee?ectiveness

ofliraglutideonthefunctionofmurineMC3T3-E1preosteoblastsandto

explorethepossibleunderlyingmolecularmechanisms.Wealsoaimed

todeterminewhetherGLP-1RAcanhaveadirecte?ectonbonecellsin

vitrothroughareceptorexpressedinbonecells.

2.Materialsandmethods

2.1.Reagents

Glycerol2-phosphatedisodiumsalthydrate(β-GP),ascorbicacid,

alizarinred,3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbro-

mide(MTT),cetylpyridiniumchlorideanddimethylsulfoxide(DMSO)

werepurchasedfromSigma-Aldrich(St.Louis,MO,USA).Antibodies

targetingextracellularsignal-regulatedkinase(ERK),p-ERK,AKT,p-

AKTandβ-cateninwerepurchasedfromCellSignalingTechnology

(Danvers,MA,USA).GLP-1RantibodywaspurchasedfromAbgent(San

Diego,CA,USA,CatalogNo.AP52040).β-catenin-Ser675antibodywas

purchasedfromAbcam(Cambridge,MA,USA,CatalogNo.ab58615).

Peroxidase-conjugatedA?niPuregoatanti-rabbitIgG(H+L),GAPDH

andβ-actin(asaninternalcontrol)antibodieswerepurchasedfrom

ZSGB-BIO(Beijing,China).TheERKinhibitorPD98059,AKTinhibitor

LY294002andPKAinhibitorH89werepurchasedfromSelleckchem

(Houston,TX,USA).GLP-1R-siRNA,β-catenin-siRNAandsiRNA

scramblewerepurchasedfromGenePharmaCompany(Shanghai,

China).Allotherchemicalswereofanalyticalgradeandavailable

commercially.

2.2.Cellcultureanddi?erentiationinduction

MC3T3-E1cellswereobtainedfromAmericanTypeCulture

Collection(ATCCCRL-2594)andculturedinalphaminimalessential

medium(α-MEM)supplementedwith10%fetalbovineserum(FBS)

and1%penicillin–streptomycininahumidi?edincubatorat37°Cwith

5%CO

2

.Theculturemediawasrefreshedevery2–3days.Whenthe

cellsreachedapproximately80%con?uence,theyweresubcultured

intoanewculture?askata1:2ratioorthecompletemediumwas

replacedwithosteogenicinductionmediumcontainingα-MEM,10%

FBS,1%penicillin–streptomycin,50mg/L-ascorbicacidand10mMβ-

GPinthepresenceorabsenceofliraglutide(100nM)for28days.

2.3.Cellviabilityassay

MC3T3-E1cellswereseededatadensityof5×10

4

cells/200μL/

wellin96-wellplatesinα-MEM.Afterattachmentfor6h,themedium

wasremoved,andthecellswereincubatedwithliraglutide(0,10,100,

500,or1000nM)basedonpreviousresearch[24]for24,48or72h.

Followingtreatments,20μLoffreshlypreparedMTT(5mg/ml)was

added,andtheplateswereincubatedat37°Cforanother4htoform

crystals.Then,150μLofDMSOwasaddedtofullydissolvethecrystals,

and?nally,theabsorbanceofeachwellwasmeasuredatawavelength

of490nmusingamicroplatespectrophotometer(BioTekInstruments,

SanJose,CA,USA).

2.4.ALPactivityassay

MC3T3-E1cellsweregrownin24-wellplatesfortheALPactivity

assayafter0,7,and14daysofosteogenicdi?erentiation.Then,the

cellswereharvestedandlysedwithproteinlysisbu?er(Beyotime

Biotechnology,Shanghai,China),and30μLsampleswerequanti?ed

withanALPDetectionKit(NanjingJianchengBiotechInstitute,China)

andaspectrophotometeratawavelengthof520nmaccordingtothe

protocol.Eachvaluewasnormalizedtotheproteinconcentration.

MC3T3-E1cellswerecollectedonday7forinhibitionandinterference

experiments.

2.5.Reversetranscription-polymerasechainreaction(RT-PCR)and

quantitativereal-timeRT-PCR

ToidentifytheexpressionofGLP-1RmRNAinmouseMC3T3-E1

cells,RT-PCRwasconducted.TotalRNAwasisolatedfromcultured

MC3T3-E1cellsandmousepancreasasapositivecontrolusingTRIzol

reagent(Invitrogen,Carlsbad,CA,USA)accordingtotherecommended

protocol,andthen,cDNAwaspreparedwithaTIANScriptRTKIT

(TIANGEN,Beijing,China).PCRwasperformedinavolumeof50μL

thatincluded25μLofPCRmix(TIANGEN,Beijing,China)asfollows:

pre-denaturationat95°Cfor5minfollowedby40cyclesofthethree-

stepPCR(denaturationat95°Cfor45s,annealingat53°Cfor45s,and

extensionat72°Cfor1min).Then,5μLoftheampli?edproductswere

visualizedwithethidiumbromide(EB)after2%agarosegelelectro-

phoresis.

Toinvestigateosteogenicdi?erentiationmarkers,including

X.Wuetal.ExperimentalCellResearchxxx(xxxx)xxx–xxx

2

collagen-1(COL1),osteocalcin(OC),runt-relatedtranscriptionfactor-2

(RUNX2)andosteoprotegerin(OPG),alongwithGLP-1mRNAexpres-

sion,totalRNAwasextractedfromMC3T3-E1cellsusingEastep

?

Super

TotalRNAExtractionKit(Promega,Madison,WI,USA)followingthe

manufacturer''sinstructionsduringdi?erentiationstages(days0,7,14,

21and28).Equalamounts(1.0μg)oftotalRNAwerereversetran-

scribedusingaGoScript?ReverseTranscriptionSystem(Promega,

Madison,WI,USA)toobtaincDNA.PCRwasperformedinastandard

20μLreactionvolumecontaining10μLGoTaq

?

qPCRMasterMix

(Promega,Madison,WI,USA)usingaBIO-RADCFX96touchq-PCR

system.Ampli?cationparametersconsistedofaninitialdenaturation

for10minat95°Cand40cyclesoftwosteps(95°Cfor15s,and60°C

for1min).ToevaluateWntsignalingactivation,theexpressionlevelof

TCF7L2mRNAwasalsoquantitatedasdescribedabove.

QuantitativePCRassayswereconductedintriplicateforeach

sample.Therelativequanti?cationexpressionofeachgenewasde-

terminedusingtheΔΔCtmethodandwasnormalizedtoGAPDHmRNA.

AlloftheabovePCRprimers,includingthoseforGLP-1R(5′-

GGGCCAGTAGTGTGCTACAA-3′,5′-CTTCACACTCCGACAGGTCC-3′),

COL1(5′-GAGAGGTGAACAAGGTCCCG-3′,5′-AAACCTCTCTCGCCTC

TTGC-3′),OC(5′-GCACACCTAGCAGACACCAT-3′,5′-TATTGCCCTCCT

GCTTGGAC-3′),RUNX2(5′-TCGCCTCACAAACAACCACA-3′,5′-

AAAACAAAACGGAGTGAGCAAA-3′),OPG(5′-CCTTGCCCTGAC

CACTCTTAT-3′,5′-CACACACTCGGTTGTGGGT-3′),TCF7L2(5′-

CTAGGATGGCAAGGTCAGCC-3′,5′-CTTGACTGTCGGTGTGACGA-3′),

andGAPDH(5′-CCTTCCGTGTTCCTACCC-3′,5′-CCCAAGATGCCCTTG

AGT-3′),weredesignedusingtheNCBI-BLASTsystem.Forinhibition

andinterferenceexperiments,cellswerepretreatedwithinhibitoror

siRNAandharvestedonday7afterundergoingdi?erentiation.

2.6.Alizarinredstaining(AR-S)

Toexaminethematrixmineralizationofosteoblasts,MC3T3-E1

cellswereplatedin6-wellplatesataconcentrationof1×10

5

perwell

inthedi?erentiationmediumfor21days,andAlizarinredstainingwas

performed.Cellswere?xedwith4%paraformaldehydeatroomtem-

peraturefor10min.Then,thewellswererinsedthreetimeswithdis-

tilledwater,andcellsweredyedwith1%AR(Sigma,USA)at37°Cfor

30min.Finally,cellswerewashedthoroughlywithdistilledwaterand

air-driedforphotography.Afterthat,ARwasprecipitatedwith10%

cetylpyridiniumchloride(Sigma,USA)for30minatroomtemperature.

ThecalciumconcentrationsweredeterminedbydeterminingtheOD

valueat562nmwithamicroplatespectrophotometer.Alldatawere

normalizedtothetotalproteincontent.

2.7.Westernblotanalyses

TomeasurethephosphorylationlevelofthesignalingproteinsAKT,

ERK1/2,andβ-catenin,MC3T3-E1cellswereculturedin25cm

2

?asks

forproteinextraction.Aftercellsgrewtocon?uence,thecomplete

mediumwassubstitutedwithserum-freemedium,andcellswerecul-

turedforanother12h.Then,thecellswereexposedtoliraglutide

(100nM)for0–60mininfreshmedium.Cellswerewashedwithcold

PBSthreetimes,andtotalproteinwasextractedattheindicatedtime

pointusingRIPAlysisbu?erwithphosphataseinhibitors(Beyotime

Biotechnology,Shanghai,China).ABCAassay(Beyotime

Biotechnology,Shanghai,China)wasusedtodetermineproteincon-

centration,andequalamountsofproteinwereseparatedby5%SDS-

PAGEandtransferredtoPVDFmembranesusingasemidrytransfer

Fig.1.ThepresenceofGLP-1RinMC3T3-E1osteoblasts.RepresentativeRT-PCR(A),Westernblot(B),andconfocalmicroscopy(C)indicatingthepresenceoftheGLP-1receptorin

MC3T3-E1cellsandmousepancreas(aspositivecontrol).(C)Upperpanel:400×magni?cation;lowerpanel:200×magni?cation.GLP-1RmRNA(D)andproteinexpression(E)in

di?erentiatingMC3T3-E1cellsinducedbyosteogenicmediumfor0,7,14,21,and28days.TheresultswerenormalizedtoGAPDHasaninternalcontrol.Experimentswereperformedat

leastthreetimes,andthedataareexpressedasthemean±SD.P<0.05andP<0.01vs.controlcells.

X.Wuetal.ExperimentalCellResearchxxx(xxxx)xxx–xxx

3

apparatus(ATTO).Themembranewasblockedwith5%non-fatmilkin

TBSTfor1hatroomtemperaturebeforeincubationwithspeci?cpri-

maryantibodiesovernightat4°Candsubsequentlywasincubatedwith

HRP-labeledsecondaryantibody(1:3000dilution)for90minatroom

temperature.Lastly,blotswereprocessedusinganECLkit(SantaCruz

Biotechnology),exposedto?lm,andthendetectedwithTanon1600

ImagingSystem(Shanghai,China).Tocontrolforimmunedetection

e?ciency,p-AKT,totalAKT,p-ERK1/2,totalERK1/2,p-β-catenin-

Ser675,totalβ-cateninwerediluted1:1000withGAPDHasaninternal

control.

NuclearandcytoplasmicfractionsofMC3T3-E1cellswereprepared

fordetectionoftheβ-cateninproteinlevelusingaNuclearProtein

ExtractionKitprovidedbySolarbio(Beijing,China).Thehousekeeping

proteinsβ-actinandHistone3wereusedasinternalcontrolsfornor-

malization.

Westernblotanalysisservedtocon?rmthepresenceofGLP-1R

proteininMC3T3-E1cells,withmousepancreasasapositivecontrol,

andtodetectalterationsinGLP-1Rexpressionduringtheosteogenic

di?erentiationperiod.Theanti-GLP-1Rantibodyusedwasrabbit

polyclonal(AP52040,Abgent,53kDa).

2.8.MeasurementofintracellularcyclicAMP

MC3T3-E1cellswereculturedin25cm

2

?asksformeasurementof

cAMP.Atharvesttime,thecellsupernatantswereobtainedafterul-

trasonicationandrepeatedfreezingandthawing.CytoplasmiccAMP

contentwasmeasuredinlysatesusingaCyclicAMPELISAAssaykit

(NanjingJianchengBiotechInstitute,China)accordingtothe

manufacturer''sinstructions.Todetectshort-termmodi?cationofthe

cAMPlevelfor0–60min,thecellswereplacedinserum-freemedium

for12h.

2.9.Confocalmicroscopy

MC3T3-E1cells(10

5

cells/well)wereculturedonaglasscoverslip

in6-wellplatesfor24h.Then,thecellswere?xedin4%paraf-

ormaldehydefor30min.Subsequently,the?xedcellswerewashed

twicewith0.1%BSAinPBSfor10min,permeabilizedwith0.3%

TritonX-100inPBS,washedagainwithPBSfor10min,blockedfor1h

inPBScontaining10%bovineserumalbumin(BSA),andincubated

overnightat4°Cwithanti-GLP-1Rantibodydiluted1:200inPBS

containing1%BSA.Thenextday,thecoverslipswerewashedtwicein

PBSfor10minandincubatedfor1hatroomtemperatureawayfrom

lightwithAlexaFluor

?

594-conjugatedgoatanti-rabbitIgGH&L

(MolecularProbes,Eugene,OR,USA)diluted1:200inPBScontaining

1%BSA.Thecoverslipsweremountedwithglycerolmediumcon-

taining4′,6-diamidino-2-phenylindole(DAPI,Sigma-Aldrich)for

10minatroomtemperature.Confocalimageswereobservedundera

FV1000FLUOVIEWconfocallaserscanningmicroscope(Olympus,

Tokyo,Japan).

2.10.Inhibitionstudy

MC3T3-E1cellswerepretreatedwiththepharmacologicalPI3K

inhibitorLY294002(20μM)theERKinhibitorPD98059(20μM),orthe

PKAinhibitorH89(20μM)2hbeforeliraglutidetreatment.Follow-up

Fig.2.E?ectsofliraglutideoncellviabilityanddi?erentiationinMC3T3-E1cells.(A)CellviabilityafterMC3T3-E1cellswereculturedfor24,48,or72hwithliraglutideattheindicated

concentrations.(B)ALPactivityinMC3T3-E1cellsafterliraglutidetreatmentatdi?erentdosesondays0,7,and14.(C–F)ThemRNAexpressionofboneformationmarkersCol-1,OC,

Runx2,andOPGinMC3T3-E1cellsculturedfor0,7,14,21and28daysinosteogenesisinductionmediumvia?uorogenicquantitativePCR.(G,H)MineralizedmatrixinMC3T3-E1cells

anditsquanti?cation.Alizarinredstainingwasperformedonday21;mineralizednodulesapparentbyvisualinspection(G)andquanti?cationbycetylpyridiniumchloridedissolution

(H)arepresented.(n=3).P<0.05andP<0.01comparedwiththecontrolgroup.

X.Wuetal.ExperimentalCellResearchxxx(xxxx)xxx–xxx

4

experimentswereperformedbasedontheadditionofaboveinhibitors.

Forcalciumdepositionlastingfor21days,alowerconcentration

(10μM)ofvariousinhibitorswasappliedforAlizarinRedstaining.

2.11.GLP-1Randβ-cateninsilencingviaRNAinterference

TwosmallinterferingRNAstargetingGLP-1R(5′-

CCGGACCUUUGAUGACUAUTT-3′,5′-AUAGUCAUCAAAGGUCCGGTT-

3′)andβ-catenin(5′-GGGUUCCGAUGAUAUAAAUTT-3′,5′

-AUUUAUAUCAUCGGAACCCTT-3′)andascrambledsiRNA(sense5′-

UUCUCCGAACGUGUCACGUTT-3′,antisense5′-ACGUGACACG

UUCGGAGAATT-3′)weresynthesizedbyGenePharmaBiotechnology

(Shanghai,China).MC3T3-E1cellswereplatedinaT25?askand

culturedfor24hwithoutantibioticsandthentransfectedwithsiRNA

(50pmol/well)usingEntransterTM-R4000(EngreenBiosystemCo,

Ltd.)accordingtothemanufacturer''sinstructions.Cellswerecultured

for48h.ThesiRNAsilencinge?ciencywasdeterminedbyprotein

analysisforfurtherexperiments.Becausethematrixmineralizationof

MC3T3-E1cellswasevaluatedbyAlizarinredstainingonday21

duringdi?erentiation,cellsenduredthreeroundsoftransfectionprior

toperformingexperiments[41,42].

2.12.Statisticalanalysis

Dataareexpressedasthemean±standarddeviation(SD)andwere

analyzedusingSPSSsoftware,version18.0.Allexperimentswerere-

peatedthreetimes.StatisticalanalysiswasperformedusingStudent''st-

testandone-wayANOVAfollowedbyposthocmethods.P<0.05was

consideredstatisticallysigni?cant.

3.Results

3.1.ExpressionofGLP-1RinMC3T3-E1cells

TodeterminethedirectroleofGLP-1inMC3T3-E1cells,we?rst

con?rmedthepresenceofGLP-1RinMC3T3-E1cellsusingRT-PCR.

Theresultsrevealeda111-bpbandspeci?ctoGLP-1Rwithmouse

pancreastissueasapositivecontrol(Fig.1A).Inaddition,westernblot

analysis(Fig.1B)andconfocalmicroscopy(Fig.1C)furthervalidated

theexpressionofGLP-1RproteinonthesurfaceofMC3T3-E1cellsas

expected.Moreover,weinvestigatedthee?ectsofliraglutideon

MC3T3-E1cellsduringdi?erentiationstages,andwefoundthatGLP-

1RmRNAandproteinexpressionwerebothincreasedduringosteo-

genicinductionfor28days,withthehighestvalueatday21.The

observede?ectswerenottime-dependent(Fig.1DandE).

3.2.Liraglutidepromotedproliferationanddi?erentiationinMC3T3-E1

cells

MC3T3-E1cellsweretreatedwithliraglutide(0,10,100,500,or

Fig.3.E?ectsofliraglutideonAKT,ERK,andβ-cateninphosphorylationandontheintracellularcAMPlevelinMC3T3-E1cells.(A–C)AKT,ERK,andβ-cateninphosphorylationin

MC3T3-E1cellstreatedwithliraglutide.Relativeratiosofphosphorylated/totalproteinarelistedonthepanels.(D–F)E?ectsofspeci?cselectiveinhibitors(20μMLY294002,20μM

PD98059,or20μMH89)onliraglutide-inducedupregulationofAKT,ERK,andβ-cateninphosphorylation.(G,H)TheintracellularcAMPlevelinMC3T3-E1cellswhensubjectedto

di?erentconcentrationsofliraglutide(G)ortreatedwith100nMliraglutidefor60minatdi?erenttimepoints(H).ThedataarepresentedasthemeanandSD(n=3/group).P<0.05

andP<0.01comparedwiththecontrolgroup.

X.Wuetal.ExperimentalCellResearchxxx(xxxx)xxx–xxx

5

1000nM)todetermineitse?ectsontheproliferationanddi?erentia-

tionofMC3T3-E1cells.Preliminarily,MTTassaysshowedthat100nM

liraglutideat48hhadthehigheste?ectoncellviabilitycomparedto

thecontrolgroup,peakingatanintermediateconcentrationandtime

(Fig.2A).Inparallelwiththisanalysis,ALPactivityexhibitedthelar-

gestincreaseat100nMafterexposuretoliraglutide,althoughthetrend

wastime-dependentunderinduction(Fig.2B).Basedontheabove

results,100nMliraglutidewasselectedastheoptimalconcentration

forfurtherstudies.Subsequently,quantitativereal-timeRT-PCRwas

usedtoexaminethemRNAexpressionofbonemarkers,includingCol-

1,OC,RUNX2andOPG(Fig.2C–F),thatarecorrelatedwithosteo-

blasticdi?erentiation.Inbrief,ourdatashowedthatCol-1mRNAex-

pressionreachedahighlevelintheearlyperiodofdi?erentiation,

RUNX2mRNAexpressionwasslightlyincreased,andtheOPGmRNA

levelroseduringtheearlyandmiddleperiod,allpeakingonday14

(P<0.05).However,OCdisplayedasustainedincreaseinmRNAex-

pressionalmostthroughouttheentiredi?erentiationprocesscontrolled

tobaseline.ThesedataindicatedthatMC3T3-E1cellswereundergoing

acharacteristicosteogenicdi?erentiationprocessformaturation.After

stimulationwithliraglutide,thesetendencieswerenoticeablyen-

hanced.ThemRNAlevelsofCol-1andOPGweresigni?cantlyelevated,

withthehighestincreaseonday14(P<0.05),andOCandRUNX2

mRNAexpressionwasmostvisiblyaugmentedonday21(P<0.05).In

addition,visualinspectionusingAlizarinredstaining(Fig.2G)and

quanti?cationofcalciumdepositionviacetylpyridiniumchloridedis-

solution(Fig.2H)showedanincreaseinmineralizationforcellstreated

withliraglutidecomparedwiththatofcellsculturedindi?erentiation

mediaalone(P<0.05).

3.3.PI3K/AKT,ERK1/2,andcAMP/PKAsignalingmediatedtheanabolic

e?ectofliraglutideinMC3T3-E1cellsviaGLP-1Randinvolvingβ-catenin

ToelucidatehowGLP-1interactedwiththedownstreamsignaling

activatedbyGLP-1R,westernblotting,ELISAandsiRNAassayswere

performed.Ourresultsshowedthatliraglutidesimultaneouslyacti-

vatedPI3K/AKT(Fig.3A),ERK1/2(Fig.3B),andcAMP/PKA(Fig.3H)

signalingpathwaysinsidetheshorttimeof0–60min.Westernblotting

indicatedthatliraglutideupregulatedAKTandERK1/2phosphoryla-

tionwiththehighestimpactat30minforERK1/2butat45minfor

AKT,andthephosphorylationofERKandAKTbyliraglutidewaso?set

bypretreatmentwiththespeci?cinhibitorsLY294002(AKTinhibitor,

20μM)(Fig.3D)andPD98059(ERK1/2inhibitor,20μM)(Fig.3E),

respectively.ForcAMP,theELISArevealedthattheoptimumcon-

centrationofliraglutidetoincreasecAMPcontentwas100nMwhen

MC3T3-E1cellsweresubjectedtodi?erentconcentrationsofliraglutide

(Fig.3G).Furthermore,similartoERK1/2,cAMPinductionbylir-

aglutidewasmaximizedat30min(Fig.3H).Inaddition,ourwestern

blotresultsalsoshowedthatliraglutidetreatmentaugmentedthe

phosphorylationofβ-cateninataC-terminalSer675positionatthe

sametimeascAMPactivation,peakingat30min(Fig.3C),andpre-

treatmentwith20μMH89(PKAinhibitor)attenuatedthephosphor-

ylationofβ-cateninatC-terminalSer675inducedbyliraglutide

(Fig.3F),indicatingthatcAMP/PKA/β-catenin-Ser675signalingcas-

cadewasinvolvedinthisstimulatorye?ect.

Then,toinvestigatewhethercAMP/PKA,PI3K/AKT,andERK1/2

activationwaslinkedwithGLP1-R,siRNAwasusedtosuppressGLP1-R

(Fig.4A),andthelevelofcAMP/PKA/β-catenin-Ser675,PI3K/AKT,

andERK1/2activationwassigni?cantlyblocked(Fig.4C–F),which

Fig.4.E?ectsofGLP-1Randβ-cateninsmallinterferingRNAtransfectiononliraglutide-inducedupregulationofAKT,ERK,andβ-cateninphosphorylationandoncAMPcontent.(A,B)

GLP-1Randβ-cateninproteinexpressionsuppressedbysiRNA.(C)ThecAMPcontentaftertreatmentwithscrambledGLP-1RsiRNAandGLP-1R-siRNA.(D–F)AKT,ERK,andβ-catenin

phosphorylationafterSiGLP-1Rinterference.Barsrepresentthemean±SD.P<0.05,P<0.01.

X.Wuetal.ExperimentalCellResearchxxx(xxxx)xxx–xxx

6

suggeststhatliraglutidemediatedtheactivationofcAMP/PKA,PI3K/

AKTandERK1/2throughGLP-1R.

Thewesternblottingresultsalsoshowedthatliraglutidetreatment

ledtoincreasedaccumulationofβ-catenininthecytoplasmanden-

hancedtranslocationofβ-cateninintothenucleus(Fig.5A–C).Nuclear

β-cateninassociateswithTCF7L2toformatranscriptionallyproductive

complexthattargetsWntsignalinge?ectors.Hence,ourPCRresults

showedupregulationofTCF7L2mRNAexpressioncomparedwiththe

levelinthecontrolundertheimpactofliraglutide(Fig.5G).Subse-

quently,pretreatmentwithH89(PKAinhibitor)andinterventionwith

siGLP-1Rdownregulatedthenuclearlocalizationofβ-cateninandthe

inductionofTCF7L2inducedbyliraglutide(Fig.5A–H),providingdi-

rectevidenceoftheinvolvementofcAMP/PKA/β-catenininthecom-

plexprocessinducedbyliraglutidethroughGLP-1R.Inaddition,the

accumulationofβ-catenininthecytoplasmandtranslocationofβ-ca-

tenintothenucleusaswellasthetranscriptionofTCF7L2werealso

partlyinhibitedbyLY294002andPD98059,indicatingthatthePI3K/

AKTandERK1/2pathwaysmaycross-talkwithβ-catenintoactivate

Wntsignaling.

3.4.Thee?ectsofliraglutideinpromotingtheproliferationand

di?erentiationofMC3T3-E1cellswereabolishedbyspeci?cinhibitorsand

siRNAs

Speci?cinhibitorsandsiRNAswereutilizedtoinvestigatetherole

ofcAMP/PKA,PI3K/AKTandERK1/2intheproliferation,di?erentia-

tionandfunctionofMC3T3-E1osteoblasticcells.InMTTassays,

treatmentwiththeinhibitorPD98059causedthemostobviousat-

tenuatione?ect;LY294002showedtheleastbutstillsigni?cantde-

crease,andH89exhibitedalevelofinhibitionsomewhereinbetween

them(Fig.6A).ThemRNAexpressionofosteoblasticdi?erentiation

markersafterinhibitortreatmentwasmuchlowerthanthatinthe

blanks(Fig.6E–H).PD98059andLY294002preferentiallyinhibitedthe

expressionofRunx2(Fig.6G),leavingH89withthelowestlevelofOC

expression(Fig.6F),buttheyallrestrainedmatrixcalci?cationbased

onamineralizationstainingassay(Fig.7AandC).Lastly,suppressing

GLP1-RwithsiRNAdistinctlyattenuatedthefacilitatione?ectoflir-

aglutideoncellviability(Fig.6B),theexpressionofdi?erentiation

genes(Fig.6I–L)andthemineralizationcapacity(Fig.7BandD)of

MC3T3-E1osteoblasticcells.Tofurthercon?rmthekeyroleofβ-ca-

tenininthemodulatinge?ectofGLP-1RonMC3T3-E1cellprolifera-

tionanddi?erentiation,wealsoexploredthee?ectofsilencingβ-ca-

tenin(Fig.4G).Ourresultsshowedthatthee?ectofliraglutideoncell

viability(Fig.6B),ALPactivity(Fig.6D),theexpressionofosteoblast

di?erentiationmaturationmarkers(Fig.6I–L)andmineralization

(Fig.7BandD)wereabolishedbysiβ-catenin.Insummary,liraglutide

inducedcAMP/PKA,PI3K/AKT,andERK1/2signalingpathwayacti-

vationviaGLP-1Rwithβ-catenininvolved,whichplaysapivotalrolein

theproliferation,di?erentiationandmineralizationofMC3T3-E1os-

teoblasticcells(Fig.8).

Fig.5.Involvementofβ-catenininliraglutide-stimulatedPI3K/AKT,ERK1/2andcAMP/PKAsignalinginMC3T3-E1osteoblasticcells.(A–C)Cytoplasmicβ-catenin(C-β-cat)andnuclear

β-catenin(N-β-cat)proteinlevelsaftertreatmentwithLY294002,PD98059,orH89.(D–F)C-β-catandN-β-catproteinlevelsaftertreatmentwithsiGLP1-Rorsiβ-catenin.Western

blottingwasperformed,andtheresultswerenormalizedtoβ-actinorhistoneH3.1.(G–H)Real-timePCRforTCF7L2mRNAinMC3T3-E1cellssubjectedtodi?erenttreatments.Thedata

arepresentedasthemean±SD(n=3/group).P<0.05andP<0.01vsvehicletreatment.

X.Wuetal.ExperimentalCellResearchxxx(xxxx)xxx–xxx

7

4.Discussion

GLP-1isexpectedtoexertpotentialbene?ciale?ectsonbonehealth

beyondglycemia,possiblyduetodirectboneanabolicactivity[43].

However,thisputativeroleofGLP-1asamodulatorofboneturnover

andtheunderlyingmechanismsremainuncertain.Moreover,thereis

stillwidespreadconfusionregardingthepresenceofGLP-1Rinbone.In

ourstudy,werecon?rmedthepresenceofGLP-1RinMC3T3-E1os-

teoblasts,corroboratingmostofthepreviousresults[19,44].However,

theinabilityofNuche-Berenguerandcolleaguestodetectpancreatic

GLP-1Rinthesamecelllinemaybedueinparttodi?erencesinthesize

oftheampli?cationtemplate[45].Inaddition,wealsoobservedthat

GLP-1RexpressionwasincreasedinMC3T3-E1cellsduringinduced

osteogenicdi?erentiation,whichwasinlinewithobservationsinadi-

pose-derivedstemcells(ADSCs)[46],despitedisparitiesintheex-

pressiontendency,perhapsasaresultofthedi?erentcellsource,which

stilldidnotpreventusfromdrawingtheconclusionthatGLP-1Racti-

vationinMC3T3-E1osteoblastsmaycontributetoosteogenesis.

GLP-1exertsnumerouspleiotropice?ectsinvarioustissues,reg-

ulatingenergyabsorptionanddisposal,aswellascellproliferationand

survival[47,48].Forosteoblasts,GLP-1causedsigni?cantincreasesin

cellviabilityinthehumanMG-63cellline[45],andexendin-4in-

creasedcellproliferationatcertainconcentrations[19],asevidenced

byMTTassay.Inagreementwiththeaboveresults,wefoundthatlir-

aglutidepromotedMC3T3-E1osteoblastproliferationatdi?erent

concentrationsandtimes,bothwithapeake?ectatanintermediate

point,butnotinadose-andtime-dependentmanner.Theexplanation

forthismaybethatlowerconcentrationsandshortertimesarenot

su?cienttoinducemeaningfulalterationsinviability,whileGLP-1R

maybesubjectedtosomedesensitizationorrapidattenuationofre-

ceptorsensitivityafterlongorhighexposuretoagonists[45].

ALPactivityandCol1,OC,RUNX2,andOPGmRNAexpressionwere

usedasbonemarkerstoevaluatetheabilityofMC3T3-E1osteoblaststo

di?erentiateafterinduction.ALPandCol1havebeendemonstratedto

beearlymarkers,whileOCNappearslate,concomitantwithminer-

alization[49].Runx2isamastertranscriptionalregulatorofosteoblast

di?erentiation,asevidencedbyupregulatedosteoblast-relatedgenes

suchasCol1,ALP,BSPandOCN[50].OPGmRNAexpressionhasbeen

foundtobeincreasedattheonsetofmineralizationandtoremainhigh

throughoutprimaryosteoblasticdi?erentiation[51].Here,ourdata

showedthatliraglutidesigni?cantlyupregulatedtheexpressionofos-

teoblastogenicbiomarkersatvariousstageswhilestimulatingosteo-

blasticmineralization,despiteadivergenceinbasalexpressionandthe

peake?ectspointcomparedtothosereportedbyFengetal.[19]and

Nuche-Berengueretal.[23],possiblyonaccountofcomparablemed-

ication,dosesandexposuretimesalongwithGLP-1Rexpressionin

MC3T3-E1cellsduringinducedosteogenicdi?erentiation.Insummary,

liraglutideconferredadirectpositiveactiononMC3T3-E1pre-

osteoblastdi?erentiationandmineralizationtowardboneformation.

Togainabetterunderstandingofthemechanismsunderlyingthe

Fig.6.E?ectsofGLP-1R-mediatedPI3K/AKT,ERK1/2andcAMP/PKAsignalingonMC3T3-E1cellproliferationanddi?erentiationstimulatedbyliraglutide.(A,B)E?ectofLY294002,

PD98059,orH89andsiGLP1-Rorsiβ-cateninonliraglutide-inducedincreaseofMC3T3-E1cellproliferationevaluatedbyMTTassays.(C-L)E?ectofLY294002,PD98059,orH89and

siGLP1-Rorsiβ-cateninontheliraglutide-inducedincreaseinMC3T3-E1celldi?erentiation.Cellswereinducedtodi?erentiateinosteogenicmediumwithspeci?cinhibitorsandsiRNAs

for7days,andthen,ALPactivitywasdetected(C,D),andquantitativePCRwasperformed(E-L).Thedataareexpressedasthemean±SDofthreeindependentexperiments.P<0.05

andP<0.01vsthecontrolgroup.

X.Wuetal.ExperimentalCellResearchxxx(xxxx)xxx–xxx

8

functionofliraglutideinregulatingtheproliferationanddi?erentiation

ofMC3T3-E1preosteoblasts,weconcentratedonseveralintracellular

signalingpathwayssurroundingGLP-1.Basedonaseriesofstudies

[19,20,37]conductedforinsightintothemechanismsofGLP-1-induced

boneformationthroughGLP-1R,thepresentstudyshowedthatlir-

aglutideactivatedcAMP/PKA,PI3K/AKT,andERK1/2andphos-

phorylatedβ-cateninattheSer675positioninanextremelybrief

period,allwithamaximumenhancemente?ectat30min,withthe

Fig.7.Matrixmineralizationandquanti?cationin

MC3T3-E1cells.Cellswereculturedindi?erentia-

tionmediumandstainedwithalizarinredonday21

subjectedtoAKT,ERK,andcAMPselectivein-

hibitors(A,C)orGLP-1Randβ-cateninsiRNA(B,D).

Upper?guresshowimagesofAlizarinredstaining,

andthelower?gurespresentthequanti?cation

basedoncetylpyridiniumchloridedissolution(n=

3/group).P<0.05andP<0.01vscontrolcells.

Fig.8.Anillustrationofthesignalingpathwaysinvolvedinthe

roleofGLP-1inpromotingMC3T3-E1osteoblastproliferationand

di?erentiation.GLP-1ortheGLP-1agonist,liraglutideactivated

PI3K/AKT,ERK1/2andcAMP/PKAsignalingviaGLP-1R.Then,

activatedPKAinducedphosphorylationattheSer675site,thus

leadingtoβ-cateninnucleartranslocationandbindingtotran-

scriptionfactorTCF7L2totargetosteogenicWnte?ectors.

ActivationofPI3K/AKTandERK1/2alsopotentiatednuclear

accumulationofβ-catenin,with?nalboneanabolice?ects

achieved.

X.Wuetal.ExperimentalCellResearchxxx(xxxx)xxx–xxx

9

exceptionofAKT,whichpeakedat45minaftertheonsetofstimula-

tion.GLP-1hasbeenreportedtoenhancebetacellproliferationvia

transactivationoftheEGFreceptor(EGFR),whichregulatedthePI3K

andAKTactivationrequiredforbasalWntsignaling[52].However,

whetherthissignalingoranothercontributedtothenon-synchronous

activationinsignalingcascadesevokedbyliraglutidewithadelayfor

AKTisnotyetclear.Subsequently,PI3K/AKT,ERK1/2,andcAMP/

PKA/Ser675pathwayswerecon?rmedtobeactivatedthroughGLP-1R

byliraglutidestimulationandtohavesomecross-talkwithWntsig-

nalingactivation,enablingustoestimatethattheWntsignaling

pathwayisthe?nalpathwayforliraglutide-mediatedosteoblastfunc-

tionbyGLP-1R,whichboreoutourearliersuspicion.However,data

fromNuche-Berengueretal.[23]failedtoverifythatGLP-1a?ected

thecanonicalWntpathway.Weinferthatthedi?erenceinourresultsis

probablytraceableinparttodi?erentpharmacologicalproperties,

medicationtiminganddosingregimen,whichrequiresfurtherin-

vestigation.Inaddition,inhibitionofcAMP/PKAdidnota?ectAKTor

ERKactivationunexpectedly(datanotshown),butNuche-Berenguer

[23]foundthatGLP-1inducedanincreaseinPI3KandMAPKactivities

byGPI/IPGs,andassuch,weassumedthatwhetherGLP-1mightin-

teractwiththedownstreampathwaythroughbothGLP-1RandGPI/

IPG-coupledreceptorsroutestoengenderdi?erentiale?ectsdependsto

greatextentonsignalingbiasandhighselectivity[53],whichneedsto

becon?rmedbyfurtherstudy.

Theuseofspeci?cinhibitorsandsiRNAssupportedtheindis-

pensablerolethatliraglutideplaysintheproliferation,di?erentiation

andfunctionofMC3T3-E1osteoblasticcells.Inproliferationexperi-

ments,theinhibitorPD98059displayedthemostobviousinhibitory

e?ect,treatmentwithLY294002showedamildbutsigni?cantde-

crease,andtheH89e?ectwasintermediatebetweentheothertwo,

suggestingthatthemitogenice?ectofliraglutiderequiredthecAMP/

PKAandERK1/2pathwaysmorethanthePI3K/AKTpathway.

Meanwhile,allthreeinhibitorsblockedtheexpressionofdi?erentiation

markers,asexpected.LY294002,PD98059,andH89exhibitedsimilar

inhibitorye?ectsonALPandCOL1,indicatingthatPI3K/AKT,ERK1/2,

andcAMP/PKA/Ser675signalingworktogetherintheearlystagesof

celldi?erentiation.LY294002andPD98059imposedtheirmaximum

eliminationimpactonRunx2,consistentwithpreviousstudiesthat

haveshownthatAKTandERKpotentiatedboneformationbymod-

ulatingtheactivityofRunx2[54],whileH89presentedasharpin-

hibitorye?ectonOC,suggestingapreferentiale?ectofcAMP/PKAon

thelaterstagesofosteoblasticdi?erentiation[23].Theirunanimous

in?uenceonmatrixcalci?cationclearlydemonstratedtheircommon

contributionstoosteoblastfunctionaftermaturation.Anyhow,these

downstreamsignalscomeintoplayataspeci?cstageofdi?erentiation

partiallyunresponsivetoGLP-1Rexpression(asindicatedbyFig.1D

andE),onceagainindicatedthepossibleimportanceofsignalingbiasin

thiscomplexsignalnetwork.

Additionally,astheoriginandtermination,GLP-1Randβ-catenin

interferenceviasiRNAtheoreticallyshouldcauseagreaterlossforthe

enhancementthatliraglutidegivesrisetoonMC3T3-E1osteoblastic

cells.However,theydisplaysimilare?ectsasthegroupusingeach

inhibitoronly,raisingthepossibilitythattherearestillothersignaling

pathwaysinvolvedinthiscomplexprocess.Inbrief,theimpactoflir-

aglutidedescribedabovecanbepartlyorcompletelypreventedbyin-

hibitorsandsiRNAsinMC3T3-E1cells,echoingtheconclusionswe

previouslyreached.

Inconclusion,ourresultsclearlyshowthattheGLP-1RAliraglutide

engendereddirectanabolice?ectsonmurineMC3T3-E1preosteoblasts

throughmultiplepathwaysinducedviaGLP-1Rinvitro.However,

whethertheresultsofthesepreclinicalstudiescanbeextrapolatedfrom

rodentstohumansinvivoisnotclear.Thus,furtherexperimentaland

long-termclinicalstudieswillberequiredtoascertainthee?cacyof

GLP-RAtherapiesinbonediseasesandtoidentifytheunderlyingpa-

thophysiologicalmechanisms,whichisparticularlyimportantnotonly

forabetterunderstandingoftheinterplaybetweenincretinsandbone

butalsoforthepotentialtherapeuticimplicationsofincretinsinske-

letalfragilityassociatedwithdiabetes.

Acknowledgements

ThisworkwassupportedbyNaturalSciencefoundationofHebei

Province(grantNo:H2016206243),HebeiProvincial2016govern-

ment-fundedclinicaltalentstrainingandbasicresearchprojects(grant

No:361005),andHebeiCollegeNaturalSciencetoptalentproject

(grantNo:BJ2016037)fromChina.

Authorcontributions

Studyconceptanddesign,acquisitionofdata,analysisandinter-

pretationofdata,draftingofthemanuscript:XuelunWu,ShilunLi;

criticalrevisionofthemanuscriptforimportantintellectualcontent:

PengXue,YukunLi;statisticalanalysis:PengXue;obtainedfunding:

PengXue,YukunLi;administrative,technical,ormaterialsupport:

XuelunWu,ShilunLi;studysupervision:PengXue,YukunLi.

Con?ictofinterest

Theauthorshavenocon?ictsofinterests.

References

[1]G.Roglic,N.Unwin,P.H.Bennett,C.Mathers,J.Tuomilehto,S.Nag,V.Connolly,

H.King,Theburdenofmortalityattributabletodiabetes:realisticestimatesforthe

year2000,DiabetesCare28(2005)2130–2135.

[2]D.W.Dempster,Osteoporosisandtheburdenofosteoporosis-relatedfractures,Am.

J.Manag.Care17(Suppl6)(2011)S164–S169.

[3]F.Ponti,S.Guerri,C.Sassi,G.Battista,G.Guglielmi,A.Bazzocchi,Imagingof

diabeticbone,Endocrine(2017).

[4]B.Lecka-Czernik,Safetyofanti-diabetictherapiesonbone,Clin.Rev.BoneMiner.

Metab.11(2013)49–58.

[5]C.H.McIntosh,S.Widenmaier,S.J.Kim,Pleiotropicactionsoftheincretinhor-

mones,Vitam.Horm.84(2010)21–79.

[6]E.Ceccarelli,E.G.Guarino,D.Merlotti,A.Patti,L.Gennari,R.Nuti,F.Dotta,

Beyondglycemiccontrolindiabetesmellitus:e?ectsofincretin-basedtherapieson

bonemetabolism,Front.Endocrinol.4(2013)73.

[7]L.L.Baggio,D.J.Drucker,Biologyofincretins:GLP-1andGIP,Gastroenterology

132(2007)2131–2157.

[8]J.S.Dillon,Y.Tanizawa,M.B.Wheeler,X.H.Leng,B.B.Ligon,D.U.Rabin,H.Yoo-

Warren,M.A.Permutt,A.E.Boyd3rd,Cloningandfunctionalexpressionofthe

humanglucagon-likepeptide-1(GLP-1)receptor,Endocrinology133(1993)

1907–1910.

[9]J.E.Campbell,D.J.Drucker,Pharmacology,physiology,andmechanismsofincretin

hormoneaction,CellMetab.17(2013)819–837.

[10]B.Nuche-Berenguer,P.Moreno,P.Esbrit,S.Dapia,J.R.Caeiro,J.Cancelas,

J.J.Haro-Mora,M.L.Villanueva-Penacarrillo,E?ectofGLP-1treatmentonbone

turnoverinnormal,type2diabetic,andinsulin-resistantstates,Calcif.TissueInt.

84(2009)453–461.

[11]B.Nuche-Berenguer,P.Moreno,S.Portal-Nunez,S.Dapia,P.Esbrit,

M.L.Villanueva-Penacarrillo,Exendin-4exertsosteogenicactionsininsulin-re-

sistantandtype2diabeticstates,Regul.Pept.159(2010)61–66.

[12]X.Ma,J.Meng,M.Jia,L.Bi,Y.Zhou,Y.Wang,J.Hu,G.He,X.Luo,Exendin-4,a

glucagon-likepeptide-1receptoragonist,preventsosteopeniabypromotingbone

formationandsuppressingboneresorptioninagedovariectomizedrats,J.Bone

Miner.Res.:O?.J.Am.Soc.BoneMiner.Res.28(2013)1641–1652.

[13]B.Su,H.Sheng,M.Zhang,L.Bu,P.Yang,L.Li,F.Li,C.Sheng,Y.Han,S.Qu,

J.Wang,Riskofbonefracturesassociatedwithglucagon-likepeptide-1receptor

agonists''treatment:ameta-analysisofrandomizedcontrolledtrials,Endocrine48

(2015)107–115.

[14]G.Mabilleau,UseofGLP-1mimeticintype2diabetesmellitus:isittheendof

fragilityfractures?Endocrine48(2015)1–2.

[15]C.Yamada,Y.Yamada,K.Tsukiyama,K.Yamada,N.Udagawa,N.Takahashi,

K.Tanaka,D.J.Drucker,Y.Seino,N.Inagaki,Themurineglucagon-likepeptide-1

receptorisessentialforcontrolofboneresorption,Endocrinology149(2008)

574–579.

[16]G.Mabilleau,A.Mieczkowska,N.Irwin,P.R.Flatt,D.Chappard,Optimalbone

mechanicalandmaterialpropertiesrequireafunctionalglucagon-likepeptide-1

receptor,J.Endocrinol.219(2013)59–68.

[17]A.Mieczkowska,S.Mansur,B.Bouvard,P.R.Flatt,B.Thorens,N.Irwin,

D.Chappard,G.Mabilleau,Doubleincretinreceptorknock-out(DIRKO)mice

presentwithalterationsoftrabecularandcorticalmicromorphologyandbone

strength,Osteoporos.Int.:J.Establ.ResultCoop.Eur.Found.Osteoporos.Natl.

Osteoporos.Found.USA26(2015)209–218.

[18]B.Nuche-Berenguer,D.Lozano,I.Gutierrez-Rojas,P.Moreno,M.L.Marinoso,

X.Wuetal.ExperimentalCellResearchxxx(xxxx)xxx–xxx

10

P.Esbrit,M.L.Villanueva-Penacarrillo,GLP-1andexendin-4canreversehyperli-

pidic-relatedosteopenia,J.Endocrinol.209(2011)203–210.

[19]Y.Feng,L.Su,X.Zhong,W.Guohong,H.Xiao,Y.Li,L.Xiu,Exendin-4promotes

proliferationanddi?erentiationofMC3T3-E1osteoblastsbyMAPKsactivation,J.

Mol.Endocrinol.56(2016)189–199.

[20]J.Y.Kim,S.K.Lee,K.J.Jo,D.Y.Song,D.M.Lim,K.Y.Park,L.F.Bonewald,B.J.Kim,

Exendin-4increasesbonemineraldensityintype2diabeticOLETFratspotentially

throughthedown-regulationofSOST/sclerostininosteocytes,LifeSci.92(2013)

533–540.

[21]J.L.Perez-Castrillon,J.A.Riancho,D.deLuis,J.R.Caeiro,D.Guede,M.Gonzalez-

Sagrado,M.Ruiz-Mambrilla,M.Domingo-Andres,R.Conde,D.Primo-Martin,The

deleteriouse?ectofbariatricsurgeryoncorticalandtrabecularbonedensityinthe

femursofnon-obese,type2diabeticGoto-Kakizakirats,Obes.Surg.22(2012)

1755–1760.

[22]G.Luo,H.Liu,H.Lu,Glucagon-likepeptide-1(GLP-1)receptoragonists:potentialto

reducefractureriskindiabeticpatients?Br.J.Clin.Pharmacol.81(2016)78–88.

[23]B.Nuche-Berenguer,S.Portal-Nunez,P.Moreno,N.Gonzalez,A.Acitores,

A.Lopez-Herradon,P.Esbrit,I.Valverde,M.L.Villanueva-Penacarrillo,Presenceof

afunctionalreceptorforGLP-1inosteoblasticcells,independentofthecAMP-

linkedGLP-1receptor,J.Cell.Physiol.225(2010)585–592.

[24]M.Pereira,J.Jeyabalan,C.S.Jorgensen,M.Hopkinson,A.Al-Jazzar,J.P.Roux,

P.Chavassieux,I.R.Orriss,M.E.Cleasby,C.Chenu,Chronicadministrationof

Glucagon-likepeptide-1receptoragonistsimprovestrabecularbonemassandar-

chitectureinovariectomisedmice,Bone81(2015)459–467.

[25]E.Gomez,C.Pritchard,T.P.Herbert,cAMP-dependentproteinkinaseandCa2+

in?uxthroughL-typevoltage-gatedcalciumchannelsmediateRaf-independent

activationofextracellularregulatedkinaseinresponsetoglucagon-likepeptide-1in

pancreaticbeta-cells,J.Biol.Chem.277(2002)48146–48151.

[26]Y.Suzuki,H.Zhang,N.Saito,I.Kojima,T.Urano,H.Mogami,Glucagon-like

peptide1activatesproteinkinaseCthroughCa2+-dependentactivationofphos-

pholipaseCininsulin-secretingcells,J.Biol.Chem.281(2006)28499–28507.

[27]J.Buteau,S.Foisy,C.J.Rhodes,L.Carpenter,T.J.Biden,M.Prentki,Proteinkinase

Czetaactivationmediatesglucagon-likepeptide-1-inducedpancreaticbeta-cell

proliferation,Diabetes50(2001)2237–2243.

[28]H.Hui,X.Zhao,R.Perfetti,Structureandfunctionstudiesofglucagon-likepeptide-

1(GLP-1):thedesigningofanovelpharmacologicalagentforthetreatmentof

diabetes,Diabetes/Metab.Res.Rev.21(2005)313–331.

[29]C.Sanz,P.Vazquez,C.Blazquez,P.A.Barrio,M.AlvarezMdel,E.Blazquez,

Signalingandbiologicale?ectsofglucagon-likepeptide1onthedi?erentiationof

mesenchymalstemcellsfromhumanbonemarrow,Am.J.Physiol.Endocrinol.

Metab.298(2010)E634–E643.

[30]R.Siddappa,W.Mulder,I.Steeghs,C.vandeKlundert,H.Fernandes,J.Liu,

R.Arends,C.vanBlitterswijk,J.deBoer,cAMP/PKAsignalinginhibitsosteogenic

di?erentiationandboneformationinrodentmodels,TissueEng.PartA15(2009)

2135–2143.

[31]K.W.Lo,H.M.Kan,K.M.Ashe,C.T.Laurencin,ThesmallmoleculePKA-speci?c

cyclicAMPanalogueasaninducerofosteoblast-likecellsdi?erentiationandmi-

neralization,J.TissueEng.Regen.Med.6(2012)40–48.

[32]A.R.Guntur,C.J.Rosen,Theskeleton:amulti-functionalcomplexorgan:newin-

sightsintoosteoblastsandtheirroleinboneformation:thecentralroleof

PI3Kinase,J.Endocrinol.211(2011)123–130.

[33]I.M.McGonnell,A.E.Grigoriadis,E.W.Lam,J.S.Price,A.Sunters,Aspeci?crolefor

phosphoinositide3-kinaseandAKTinosteoblasts?Front.Endocrinol.3(2012)88.

[34]M.B.Greenblatt,J.H.Shim,L.H.Glimcher,Mitogen-activatedproteinkinase

pathwaysinosteoblasts,Annu.Rev.CellDev.Biol.29(2013)63–79.

[35]T.Jin,I.GeorgeFantus,J.Sun,WntandbeyondWnt:multiplemechanismscontrol

thetranscriptionalpropertyofbeta-catenin,Cell.Signal.20(2008)1697–1704.

[36]B.Gustafson,U.Smith,WNTsignallingisbothaninducerande?ectorofglucagon-

likepeptide-1,Diabetologia51(2008)1768–1770.

[37]J.Meng,X.Ma,N.Wang,M.Jia,L.Bi,Y.Wang,M.Li,H.Zhang,X.Xue,Z.Hou,

Y.Zhou,Z.Yu,G.He,X.Luo,ActivationofGLP?1receptorpromotesbonemarrow

stromalcellosteogenicdi?erentiationthroughbeta-catenin,StemCellRep.6

(2016)579–591.

[38]S.Madsbad,Exenatideandliraglutide:di?erentapproachestodevelopGLP-1re-

ceptoragonists(incretinmimetics)–preclinicalandclinicalresults,bestpractice&

research,Clin.Endocrinol.Metab.23(2009)463–477.

[39]H.X.Sun,N.Lu,X.Luo,L.Zhao,J.M.Liu,Liraglutide,theglucagon-likepeptide-1

receptoragonist,hasanabolicbonee?ectsindiabeticGoto-Kakizakirats,J.

Diabetes7(2015)584–588.

[40]N.Lu,H.Sun,J.Yu,X.Wang,D.Liu,L.Zhao,L.Sun,H.Zhao,B.Tao,J.Liu,

Glucagon-likepeptide-1receptoragonistLiraglutidehasanabolicbonee?ectsin

ovariectomizedratswithoutdiabetes,PLoSOne10(2015)e0132744.

[41]R.Rubin,A.Arzumanyan,A.R.Soliera,B.Ross,F.Peruzzi,M.Prisco,Insulinre-

ceptorsubstrate(IRS)-1regulatesmurineembryonicstem(mES)cellsself-renewal,

J.Cell.Physiol.213(2007)445–453.

[42]P.Xue,X.Wu,L.Zhou,H.Ma,Y.Wang,Y.Liu,J.Ma,Y.Li,IGF1promotesos-

teogenicdi?erentiationofmesenchymalstemcellsderivedfromratbonemarrow

byincreasingTAZexpression,Biochem.Biophys.Res.Commun.433(2013)

226–231.

[43]C.Hamann,S.Kirschner,K.P.Gunther,L.C.Hofbauer,Bone,sweetbone–osteo-

poroticfracturesindiabetesmellitus,Nat.Rev.Endocrinol.8(2012)297–305.

[44]E.Aoyama,I.Watari,K.A.Podyma-Inoue,M.Yanagishita,T.Ono,Expressionof

glucagon-likepeptide-1receptorandglucosedependentinsulinotropicpolypeptide

receptorisregulatedbytheglucoseconcentrationinmouseosteoblasticMC3T3-E1

cells,Int.J.Mol.Med.34(2014)475–482.

[45]E.L.Pacheco-Pantoja,L.R.Ranganath,J.A.Gallagher,P.J.Wilson,W.D.Fraser,

Receptorsande?ectsofguthormonesinthreeosteoblasticcelllines,BMCPhysiol.

11(2011)12.

[46]Y.K.Jeon,M.J.Bae,J.I.Kim,J.H.Kim,S.J.Choi,S.K.Kwon,J.H.An,S.S.Kim,

B.H.Kim,Y.K.Kim,I.J.Kim,Expressionofglucagon-likepeptide1receptorduring

osteogenicdi?erentiationofadipose-derivedstemcells,Endocrinol.Metab.29

(2014)567–573.

[47]D.J.Drucker,Glucagon-likepeptides:regulatorsofcellproliferation,di?erentia-

tion,andapoptosis,Mol.Endocrinol.17(2003)161–171.

[48]V.Gupta,Pleiotropice?ectsofincretins,IndianJ.Endocrinol.Metab.16(Suppl1)

(2012)S47–S56.

[49]C.S.Soltano?,S.Yang,W.Chen,Y.P.Li,Signalingnetworksthatcontrolthelineage

commitmentanddi?erentiationofbonecells,Crit.Rev.Eukaryot.GeneExpr.19

(2009)1–46.

[50]M.Fakhry,E.Hamade,B.Badran,R.Buchet,D.Magne,Molecularmechanismsof

mesenchymalstemcelldi?erentiationtowardsosteoblasts,WorldJ.StemCells5

(2013)136–148.

[51]G.P.Thomas,S.U.Baker,J.A.Eisman,E.M.Gardiner,ChangingRANKL/OPGmRNA

expressionindi?erentiatingmurineprimaryosteoblasts,J.Endocrinol.170(2001)

451–460.

[52]J.Buteau,S.Foisy,E.Joly,M.Prentki,Glucagon-likepeptide1inducespancreatic

beta-cellproliferationviatransactivationoftheepidermalgrowthfactorreceptor,

Diabetes52(2003)124–132.

[53]C.Koole,K.Pabreja,E.E.Savage,D.Wootten,S.G.Furness,L.J.Miller,

A.Christopoulos,P.M.Sexton,RecentadvancesinunderstandingGLP-1R(glu-

cagon-likepeptide-1receptor)function,Biochem.Soc.Trans.41(2013)172–179.

[54]J.F.Chau,W.F.Leong,B.Li,Signalingpathwaysgoverningosteoblastproliferation,

di?erentiationandfunction,Histol.Histopathol.24(2009)1593–1606.

X.Wuetal.ExperimentalCellResearchxxx(xxxx)xxx–xxx

11

献花(0)
+1
(本文系实验专家首藏)