配色: 字号:
[6]-姜酚抗氧化活性与机制 Antioxidant Mechanism of [6]-gingerol
2017-10-24 | 阅:  转:  |  分享 
  
[6]-GingerolProtectsagainstDNADamage&AntioxidantMechanismBull.KoreanChem.Soc.2014,Vol.35,No.61633

http://dx.doi.org/10.5012/bkcs.2014.35.6.1633

ProtectiveEffectAgainstHydroxylRadical-inducedDNADamageand

AntioxidantMechanismof[6]-gingerol:AChemicalStudy

JingLin,

a

XicanLi,

a,

LiChen,WeizhaoLu,XianwenChen,

?

LuHan,andDongfengChen

?,

SchoolofChineseHerbalMedicine,GuangzhouUniversityofChineseMedicine.



E-mail:lixican@126.com

?

SchoolofChineseHerbalMedicine,FujianUniversityofChineseMedicine

?

SchoolofBasicMedicalScience,GuangzhouUniversityofChineseMedicine,Guangzhou510006,China



E-mail:CDF27212@21cn.com

ReceivedJanuary24,2014,AcceptedFebruary9,2014

[6]-Gingerolisknownasthemajorbioactiveconstituentofginger.Inthestudy,itwasobservedtoeffectively

protectagainstOH-inducedDNAdamage(IC

50

328.60±24.41μM).Antioxidantassaysindicatedthat[6]-

gingerolcouldefficientlyscavengevariousfreeradicals,includingOHradical(IC

50

70.39±1.23μM),O

2

?

radical(IC

50

228.40±9.20μM),DPPHradical(IC

50

27.35±1.44μM),andABTS

+





radical(IC

50

2.53±0.070

μM),andreduceCu

2+

ion(IC

50

11.97±0.68μM).Inordertoinvestigatethepossiblemechanism,thereaction

productof[6]-gingerolandDPPHradicalwasfurthermeasuredusingHPLCcombinedmassspectrometry.

Theproductshowedamolecularionpeakatm/z316[M+Na]

+

,anddiagnosticfragmentloss(m/z28)for

quinone.Onthisbasis,itcanbeconcludedthat:(i)[6]-gingerolcaneffectivelyprotectagainstOH-induced

DNAdamage;(ii)apossiblemechanismfor[6]-gingeroltoprotectagainstoxidativedamageisOHradical

scavenging;(iii)[6]-gingerolscavengesOHradicalthroughhydrogenatom(H)transfer(HAT)and

sequentialelectron(e)protontransfer(SEPT)mechanisms;and(iv)bothmechanismsmake[6]-gingerolbe

oxidizedtosemi-quinoneorquinoneforms.

KeyWords:[6]-Gingerol,Hydrogenatomtransfer,Sequentialelectronprotontransfer,Antioxidantmecha-

nism,Hydroxylradical

Introduction

Asthemostharmfulreactiveoxygenspecies(ROS),

hydroxylradical(?OH)canoxidativelydamageDNA,lead

todeleteriousbiologicalconsequences,includinggenetic

mutation,

1

carcinogenesis,

2

andcelldeath.

2

Therefore,itis

criticaltosearchforpotentialtherapeuticagentsforoxida-

tiveDNAdamage.Sincegingerhasbeendemonstratedto

possessbeneficialeffectsoncells,

3

itsrelevantbioactive

compoundshadattractedconsiderableattentioninrecent

years.Asamajorpungentprincipleofginger,[6]-gingerol

(Fig.1)hasthereforebeenintensivelyinvestigatedfor

pharmacologicalandphysiologicalactivities.

Severalstudiessuggestedthat[6]-gingerolcanberespon-

siblefortheanti-inflammatory,anti-tumourandantioxidant

activitiesofginger.[6]-Gingerolcanpreventagainstvarious

cancers,

4,5

especiallyprostatecancer,

6

skincancer,

7

colon

cancer.

8

Inaddition,ithasbeenobservedtoattenuateoxida-

tivecelldeath

9

andpreventgenotoxicity.

10



Theseeffectsarethoughttoberelatedtoitsprotective

effectsagainstoxidativeDNAdamageandantioxidantability.

Previously,Dugasaniandcolleagueshavecomparedthe

antioxidantlevelsoffourbioactivecomponentsinginger

(including[6]-gingerol).

11

Unfortunately,someexperimental

dataarenotreliable,includingsuperoxideradicalscaveng-

ingandhydroxylradicalscavengingassays.Inhydroxyl

radicalscavengingassay,theyusedDMSOforsamplesolu-

tionpreparation,andthesamplesolutionwasdirectlyused

forhydroxylradical-scavengingassay.Asmentionedinour

previousreport,

12

DMSOitselfcanscavenge?OHradical

andbringaboutconsiderableinterference.Infact,the

reactionofDMSOwith?OHhadbeenrecognizedforover

30years.

13,14

Thereactionratewascalculatedas9×10

9

L

mol

?1

s

?1

.

15

Theproductof?OHreactionwithDMSOhas

beendemonstratedtobe?CH

3

.

16

Inaddition,inxanthine-

luminal-xanthineoxidaseassay,sincealkalineDMSOcan

generatesuperoxideanionradicals,

17,18

DMSOasthesolv-

entundoubtedlycauseinterferencewiththedeterminationof

superoxideradicalscavenging.Inaword,itisnecessaryto

reevaluatetheantioxidantlevelof[6]-gingerolbyareliable

method.

Ontheotherhand,despitethattherehavebeenseveral

computationalstudiesforfreeradical-scavengingmech-

anisms

19

andsomehydrogenatomtransferkineticstudies

forDPPH?scavenging,

20

nomechanisticstudybasedon

oxidizedproductanalysishasbeenreported.Thepresent

study,however,triedtouseHPLCandMStoexplainthe

a

Theseauthorscontributedequallytothiswork.

Figure1.Thechemicalstructureof[6]-gingerol.

1634Bull.KoreanChem.Soc.2014,Vol.35,No.6JingLinetal.

mechanism.Thestructureelucidationofmassspectrumcan

beusedtointerprettheantioxidantmechanismof[6]-gin-

gerol.Obviously,thepresentstudywillprovideimportant

insightsintothemechanismsunderlyingtheantioxidantof

[6]-gingerol.

Experimental

Chemicals.[6]-Gingerol(CASnumber:519-34-6,98%)

wasobtainedfromWeikeqiBiologicalTechnologyCo.,

Ltd(Chengdu,China).1,1-Diphenyl-2-picrylhydrazylradical

(DPPH?),(±)-6-hydroxyl-2,5,7,8-tetramethlychromane-2-

carboxylicacid(Trolox),andBHA(butylatedhydroxy-

anisole)werefromSigma-AldrichShanghaiTradingCo.

(Shanghai,China).Deoxyriboseand2,2′-azino-bis(3-ethyl-

benzothiazoline-6-sulfonicaciddiammoniumsalt)(ABTS

diammoniumsalt)wereobtainedfromAmrescoInc.(Solon,

OH,USA).DNAsodiumsalt(fishsperm,98%)waspur-

chasedfromAladdinChemistryCo.(Shanghai,China).

WaterandmethanolwereofHPLCgrade.Allotherreagents

wereofanalyticalgrade.

ProtectiveEffectAgainst?OH-inducedDNADamage.

Theexperimentwasconductedusingthemethoddeveloped

byourlaboratory.

21

Briefly,thesamplewasfirstlydissolved

in95%ethanolat2mg/mL.Thesamplesolutionwasthen

aliquotedintotubes.Afterevaporatingthesamplesolutions

inthetubestodryness,300μLofphosphatebuffer(0.2M,

pH7.4)wasaddedtothesampleresidue.Subsequently,50

μLofDNAsodium(10mg/mL),75μLofH

2

O

2

(33.6mM),

50μLofFeCl

3

(3.2mM)



and100μLofNa

2

EDTA(0.5mM)

solutionwereadded.Thereactionwasinitiatedbyadding75

μLofascorbicacid(1.2mM).Afterincubationinawater

bathat55°Cfor20min,thereactionwasterminatedby

adding250μLoftrichloroaceticacid(10%,w/w).Thecolor

wasthendevelopedbyadditionof150μLofTBA(5%,in

1.25%NaOHaqueoussolution)andheatinginanovenat

105°Cfor15min.Themixturewascooledandthe

absorbancewasmeasuredat530nmagainstthebuffer(as

theblank).Theinhibitionpercentagefor?OHisexpressedas

follows:

Protectiveeffect%=

WhereA

0

istheabsorbanceat530nmofthecontrol

withoutsample,andAistheabsorbanceat530nmofthe

reactionmixturewithsample.

HydroxylRadical(OH)ScavengingAssay.Theexperi-

mentof?OHradical-scavengingwasconductedaccordingto

ourmethod.

12

Inbrief,thesampleethanolicsolution(1mg/

mL)wasseparatelyaddedintotubes.Afterevaporatingthe

samplesolutionsinthetubestodryness,550μLofphos-

phatebuffer(0.2M,pH7.4)wasaddedtothesample

residue.Then,50μLglucose(2.8mM),50μLNa

2

EDTA(1

mM),50μLFeCl

3

(3.2mM)and50μLH

2

O

2

(2mM)were

added.Thereactionwasinitiatedbymixing50μLascorbic

acid(1.8mM)andthetotalvolumeofthereactionmixture

wasadjustedto800μLwithbuffer.Afterincubationat50

°Cfor20min,thereactionwasterminatedby500μLtri-

chloroaceticacid(5%,w/w).Thecolorwasthendeveloped

byadditionof500μLTBA(5%,in1.25%NaOHaqueous

solution)andheatedinanovenat105°Cfor15min.The

mixturewascooledandabsorbancewasmeasuredat532nm

(Unico2100,spectrophotometer,Shanghai,China)against

thebuffer(asblank).Thehydroxylradicalscavenging

activitywasexpressedas:

Inhibition%=

WhereA

0

istheabsorbanceofthecontrolwithoutsample;

andAistheabsorbanceofthereactionmixturewithsample.

SuperoxideAnion(O

2

?

)Radical-scavengingAssay.

Measurementofsuperoxideanion(?O

2

?

)scavengingactivity

wasbasedonourmethod.

22

Briefly,thesamplewasdis-

solvedinmethanolat2mg/mL.Thesamplesolution(xμL,

wherex=0,30,60,90,120and150μL)wasmixedwith

2960-xμLTris-HClbuffer(0.05mol/L,pH7.4)containing

Na

2

EDTA(1mmol/L).When40μLpyrogallol(60mmol/L

in1mmol/LHCl)wasadded,themixturewasshakenat

roomtemperatureimmediately.Theabsorbanceat325nm

ofthemixturewasmeasured(Unico2100,Shanghai,China)

againsttheTris-HClbufferasblankevery30sfor5min.

The?O

2

?

scavengingabilitywascalculatedas:

Inhibition%=

Here,ΔA

325nm,control

/TistheincreaseinA

325nm

ofthemix-

turewithoutthesampleandΔA

325nm,sample

/Tisthatwiththe

sample;T=5min.Theexperimenttemperaturewas37°C.

DPPHRadical-scavengingAssay.TheDPPH?radical-

scavengingactivitywasdeterminedasdescribed.

23

Briefly,

500μLofDPPH?solution(0.1mM)wasmixedwith250μL

sample95%ethanolsolutionwithvariousconcentrations.

Themixturewaskeptatroomtemperaturefor30min,and

thentheabsorbancewasmeasuredat519nmagainst95%

ethanol(asblank).TheDPPH?inhibitionpercentagesofthe

sampleswerecalculated:

Inhibition%=

WhereA



istheabsorbancewithsamples;whileA

0

isthe

absorbancewithoutsamples.TroloxandBHAwereusedas

thepositivecontrols.

HPLCAnalysisandMassSpectrometryofReaction

Productof[6]-gingerolandDPPHRadical.Theproduct

mixtureof[6]-gingerolandDPPH?radical(10:3,mol/mol)

wasfilteredusing0.45μmfiltersthenanalyzedbyapre-

parativeHPLCsystem(ProminenceLC-20A,Shimadzu,Japan),

equippedwithaDiamonsilC

18

(250mm×4.6mm,5μm)

column(DikmaCo.,Beijing,China).Themobilephase

consistedofmethanol-0.5%aceticacid(90:10,v:v)andthe

flowratewas0.5mL/min,injectionvolumewas27μL,

A

0

A–

A

0

---------------100%×

A

0

A–

A

0

---------------100%×

ΔA

325nm,control

T

-------------------------------

??

??

ΔA

325nm,sample

T

------------------------------

??

??



A

325nm,sample

T

--------------------------

??

??

----------------------------------------------------------------------------100%×

A

0

A–

A

0

---------------100%×

[6]-GingerolProtectsagainstDNADamage&AntioxidantMechanismBull.KoreanChem.Soc.2014,Vol.35,No.61635

detectionwavelengthwas225nm.[6]-GingerolandDPPH?

radicalwerealsocomparativelymeasuredunderthesame

chromatographicconditions.

ThereactionproductisolatedbyHPLCwasfurtherana-

lyzedbyamicroflexLTMALDITOF-QII(BrukerDaltonics,

USA)massspectrometerwhichwasequippedwithan

electrosprayionisation(ESI)sourceandruninpositive

mode.Thescanrangewas50-3000m/z.ESIparameters

wereoptimisedwithdirectinfusionofdansylatedamine

mixturebyanexternalsyringeandsetasfollows:capillary,

+4.5kV;nebulizerpressure,0.3bar;drygasflow,4.0L/

min;drygastemperature,180

o

C.Argonwasappliedasthe

collisiongas,andthecollisionenergywassetto10eVto

providesomestructuralinformationandtofocusionflux.

Highpuritynitrogenwasappliedbothasanebulizergasand

adryinggas.TheQ-TOF/MSparameterswereoptimisedto

thefollowing:funnel1was300.0Vppand2was400.0Vpp;

hexapoleRfwas400.0Vpp;quadrupoleionenergywas5.0

eV;collisionRfwas650.0Vpp.Theiontransfertimeand

prepulsestoragetimeweresetto120and10us,respectively.

ABTS

+

Radical-scavengingAssay.TheABTS

+





scaveng-

ingactivitywasevaluatedbythemethod.

23

TheABTS

+

?was

producedbymixing350μLABTSdiammoniumsalt(7.4

mM)with350μLK

2

S

2

O

8

aqueouspersulfate(2.6mM).The

mixturewaskeptinthedarkatroomtemperaturefor12hto

allowcompletionofradicalgeneration,thendilutedwith

95%ethanol(about1:50)sothatitsabsorbanceat734nm

was0.70±0.02.Then,0.6mLdilutedABTS

+

?reagents

werebroughtto150μLsampleethanolicsolutions(0.01

mg/mL).Afterincubationfor6min,theabsorbanceat734

nmwasreadonaspectrophotometer(Unico2100,Shanghai,

China).Thepercentageinhibitionwascalculatedas:

Inhibition%=

WhereA

0

istheabsorbanceofthecontrolwithoutany

samples,Aistheabsorbanceofthemixturewith[6]-

gingerol,Trolox,orBHA.

Cu

2+

-reducingPowerAssay.Thecupricions(Cu

2+

)re-

ducingpowercapacitywasdeterminedbasedonthemethod,

23

withaslightmodification.Inbrief,100μLCuSO

4

aqueous

solution(10mM),100μLneocuproineethanolicsolution

(7.5mM)and400μLCH

3

COONH

4

buffersolution(100

mM,pH7.0)werebroughttotesttubeswithdifferent

volumesofsamples(0.1mg/mL,15-75μL).Then,thetotal

volumewasadjustedto800μLwiththebufferandmixed

vigorously.Absorbanceagainstabufferblankwasmeasured

at450nmafter15min.Therelativereducingpowerofthe

sampleascomparedwiththemaximumabsorbance,was

calculatedusingtheformula:

Relativereducingpower%=

Here,A

max

isthemaximumabsorbanceinthetestandA

min

istheminimumabsorbanceinthetest.Aistheabsorbance

ofsample.

StatisticalAnalysis.Eachexperimentwasperformedin

triplicateandthedatawererecordedasmean±SD(standard

deviation).TheIC

50

valuewasdefinedasthefinalconcen-

trationof50%radicalinhibition(relativereducingpower,or

chelatingeffect).Statisticalcomparisonsweremadebyone-

wayANOVAtodetectsignificantdifferenceusingSPSS

13.0(SPSSInc.,Chicago,IL)forWindows.P<0.05was

consideredtobestatisticallysignificant.

ResultsandDiscussion

Inthepresentstudy,weusedFentonreaction(Equation1)

toproduce?OHradicalsfortheinvestigationonthepro-

tectiveeffectof[6]-gingerolagainstoxidativeDNAdamage.

Fe

2+

+H

2

O

2

→Fe

3+

+?OH



+OH

?

(1)

Thedataindicatedthat[6]-gingerolandthepositivecontrols

dose-dependentlyincreasedtheprotectiveeffectagainst

oxidativeDNAdamageat0-200μg/mL(Fig.2).Basedon

theIC

50

values(328.60±24.41and690.76±12.31μM,

respectivelyfor[6]-gingerolandTrolox,Table1),itcanbe

inferredthat[6]-gingerolpresented2.10timeshigherpro-

tectiveeffectthanthestandardantioxidantTroloxinour

model.Thisisconsistentwiththepreviousstudy,inwhich

[6]-gingerolwasfoundtopreventUVB-inducedROSpro-

ductionandoxidativeDNAdamage.

24

Itsprotectiveeffect

againstDNAoxidativedamagemaybeprimarilyresponsible

forthepharmacologicaleffects,includinganti-inflammatory

andanti-cancereffects.

4-8

Infact,oxidativeDNAdamage

hasbeenobservedtoplayakeyroleininflammation-related

carcinogenesis.

25

Previousworkhasshownthattherearetwoapproaches

fornaturalphenolicantioxidantstoprotectagainstoxidative

DNAdamage:oneistoscavengethe?OHradicalpriorto

DNAdamage;andtheotheristopreventtheDNAradicals

resultingfrom?OHradicalattack.

26



Tofurtherconfirmwhethertheprotectiveeffectof[6]-

gingerolagainstoxidativeDNAdamageisrelevanttoits

A

0

A–

A

0

---------------100%×

AA

min



A

max

A

min



-------------------------100%×

Figure2.TheprotectiveeffectagainstOHradical-inducedDNA

damageof[6]-gingerolandpositivecontrolTrolox(Eachvalueis

expressedasmean±SD,n=3).

1636Bull.KoreanChem.Soc.2014,Vol.35,No.6JingLinetal.

radical-scavengingability,wethendeterminedtheradical-

scavengingabilitiesof[6]-gingerolon?OHand?O

2

?

.Inthe

?OHradical-scavenging



assay(Suppl.Fig.S1),[6]-gingerol

couldeffectivelyscavenge?OHradicalsat0-22.5μg/mL(0-

77.7μm)anditsIC

50

valuewascalculatedas70.39±1.23;

Inthe?O

2

?

radical-scavenging



assay(Suppl.Fig.S2),[6]-

gingerolalongwiththepositivecontrolsalmostlinearly

increasedthe?O

2

?

radical-scavengingpercentages,andthe

IC

50

valueof[6]-gingerolwas228.40±9.20μM(Table1).

ThesedataclearlysuggestthatROS-scavenging(especially

?OH-scavenging)isonepossiblemechanismfor[6]-gin-

geroltoprotectagainstoxidativeDNAdamage.

Toexplorethepossiblemechanismfor[6]-gingerolto

scavengeROS,wefurtherexploredtheradical-scavenging

effectonDPPH?andABTS

+

?radicals.

TheDPPHassayrevealedthat[6]-gingerolpossesseda

concentration-dependenteffectat0-10μg/mL(0-34.01μM,

Suppl.Fig.S3),andtheIC

50

wascalculatedas27.35±1.44

μM(Table1).Itmeansthat[6]-gingerolcaneffectively

eliminateDPPH?radical.

Inordertofurtherexplorethemechanismfor[6]-gingerol

toscavengeDPPH?radical,thereactionproductof[6]-

gingerolwithDPPH?wasmeasuredusingHPLC(Fig.3).

TheHPLCprofileclearlyindicatedapeakastheproductat

11.98min(retentiontime).

Whentheproductwasfurtheranalyzedbymassspectro-

metry,itgaveamolecularionpeakatm/z316[M+Na

+

]

whichwasobviouslyonelessthanreactant[6]-gingerolat

m/z317[M+Na

+

].Itindicatedahydrogenatomtransferof

[6]-gingeroltoproduct.Inaddition,fragmentunitsofm/z

302.30,274.27,and246.24intheproductwerealsoobserved.

Obviously,thesefragmentunitsshowedalossofC=O(m/z

28)whichisregardedasthecharacteristicdiagnosticfrag-

mentlossforquinone(Fig.4(a)).Ontheotherhand,the

reactant[6]-gingerol,however,didnotexhibitthecharac-

teristiclossesatm/z28(Fig.4(b)).Inaword,thehydrogen

atomhasbeenshowntobetransferredfrom[6]-gingerolto

DPPH?,and[6]-gingerolhasbeenoxidizedtosemi-quinone

orquinonebyDPPH?.

Basedontheabovedata,andpreviousreportwhichDPPH?

maybescavengedthroughhydrogenatom(H?)transfer

(HAT)toformDPPH-Hmolecule,

27

theproposedreaction

of[6]-gingerolwithDPPH?canbeillustratedinFigure5.As

showninFigure5,thereactionof[6]-gingerolwithDPPH?

wasthoughttoyieldaphenoxylradical(I),whichcanbe

convertedtosemi-quinone(II).Semi-quinone(II),however,

possessedvariousresonancesformula,e.g.semi-quinone

(III),semi-quinone(IV),andphenoxylradical(I)whichis

someextentstableastablespecies.Thus,step1for[6]-

gingeroltotransferahydrogenatomiseasilytobeinitiated.

UndertheconditionsofexcessiveDPPH?,however,semi-

quinone(IV)maybefurtherbeextractedhydrogenatomto

Figure3.TypicalHPLCchromatogramofthereactionproductof

[6]-gingerolwithDPPH(1,1-Diphenyl-2-picrylhydrazylradical).

Figure4Massspectraofthereactionproduct[6]-gingerolwith

DPPH(a),and[6]-gingerol(b).

Figure5.Theproposedreactionof[6]-gingerolwithDPPHvia

HAT(hydrogenatomtransfer)mechanismbasedonmassspectro-

metryanalysis.

[6]-GingerolProtectsagainstDNADamage&AntioxidantMechanismBull.KoreanChem.Soc.2014,Vol.35,No.61637

producebenzoquinone.However,sincetheortho-positionof

–OHis–OCH

3

not–OH,thehydrogenextractionisn’tso

easy,therefore,theyieldofbenzoquinoneisveryless,and

thepeakatm/z246.24isverylowinMSspectrometry(Fig.

4(a)).

BesidesDPPH?scavenging,ABTS

+

?scavenginghasalso

beenusedforinvestigationontheantioxidantmechanismof

[6]-gingerolinthestudy.AsseeninSuppl.Fig.S4,[6]-

gingerollinearly(R=0.99925)increaseditsABTS

+

?scaven-

gingpercentagesat0-1.33μg/mL(0-4.55μM)anditsIC

50

was2.53±0.070μM(Table1).Asweknow,ABTS

+

?

scavengingisanelectron(e)transferprocess.

28

Inthepro-

cess,etransferisalwaysaccompaniedbydeprotonation,so

itistermedasequentialelectronprotontransfer(SEPT)

mechanism,

29

orprotoncoupledelectron-transfer(PCET)

mechanism,

30

sequentialprotonlosssingleelectrontransfer

(SPLET).

31

TheSEPTmechanismfor[6]-gingeroltoscavenge

ABTS

+

?wasproposedasdescribedinFigure6.Through

SEPTmechanism,[6]-gingerolmightchangetophenoxyl

radical(I).TheSEPTmechanismisalsosupportedbyCu

2+

assay,inwhich[6]-gingerolincreasedthereducingpercent-

ageinadose-dependentmanner(Suppl.Fig.S5)withIC

50

valuebeing11.97±0.68μM(Table1).Asweknow,reduc-

ingreactionsareactuallyanelectron(e)transferprocess.

Similarly,phenoxylradical(I)wasthoughttobefurther

convertedintosemi-quinones,evenquinoneunderexcess

ABTS

+

?radicalsorCu

2+

ions.

Thefactthat[6]-gingerolcouldeffectivelyscavengeboth

ABTS?

+

andDPPH?radicals,suggeststheprocessof[6]-

gingerolscavengingofROS(especially?OHradicals)in

cellswouldbemediatedviaHATandSEPTmechanisms.

AsshowninEq.(1),thegenerationof?OHradicalsmay

alsobringaboutequalOH

?

ionsincells.Therefore,athigh

levelsof?OHradicals,massiveOH

?

ionscouldalkalizethe

cellularenvironment.Underalkalineconditions,however,

theaciditymaypredominateoverthechemicalactionof[6]-

gingerol.Asaphenol,[6]-gingerolpresentsaweakacidity

(pK

a

~10).

32

Thus,[6]-gingerolmighteasilyionizetoyield

H

+

ions,and[6]-gingerol

?

anionwhichcouldfurtherdonate

anelectron(e)to?OHradicalstoformphenoxylradical(I)

(Fig.7),evensemi-quinonesandbenzoquinone.Thisisa

possiblemechanismfor[6]-gingeroltodirectlyscavenge

?OHviatheSEPTmechanism.Themechanismissimilarto

thatoftrans-resveratroltoward?OHradicals.

33



However,atlowlevelsof?OHradicals,thecellularenviron-

mentwasalmostneutralandtheaciditycouldnotpredo-

minateoverthechemicalactionof[6]-gingerol.Therapid

anddirectattackof?OHradicalsmaycausehomolysisof

[6]-gingeroltogeneratephenoxylradical(I)andhydrogen

atom(?H).Hydrogenatom,however,wouldimmediatelybe

donatedto?OHtoformthestableH

2

Omolecule(Fig.8).

Figure6.Theproposedreactionof[6]-gingerolwithABTS

+





via

SEPT(sequentialelectronprotontransfer)mechanism.

Figure7.Theproposedreactionfor[6]-gingeroltoscavengeOH

viaSEPT(sequentialelectronprotontransfer)mechanism.

Figure8.Theproposedreactionfor[6]-gingeroltoscavengeOH

viaHAT(hydrogenatomtransfer)mechanism.

Table1.TheIC

50

valuesof[6]-gingerol,Trolox,andBHAinvariousassays(μM)

Assays[6]-Gingerol

Positivecontrols

Ratio

TroloxBHA

DNAprotection328.60±24.41

a

690.76±12.31

b

N.D.2.10

OHscavenging70.39±1.23

a

93.00±1.35

b

124.62±3.68

c

1.32

O

2

?

scavenging228.40±9.20

a

226.54±6.35

a

358.97±11.41

b

0.99

DPPHscavenging27.35±1.44

a

29.26±0.59

a

34.71±0.81

b

1.07

ABTS

+

scavenging2.53±0.070

a

7.36±0.43

c

3.41±0.10

b

2.91

Cu

2+

reducing11.97±0.68

a

36.83±1.43

c

23.16±0.21

b

3.08

Average1.91

IC50valueisdefinedastheconcentrationof50%effectpercentageandcalculatedbylinearregressionanalysisandexpressedasmean±SD(n=3).The

linearregressionwasanalyzedbyOrigin6.0professionalsoftware.Meansvalueswithdifferentsuperscriptsinthesamerowaresignificantlydifferent

(p<0.05),whilewithsamesuperscriptsarenotsignificantlydifferent(p<0.05).ThepositivecontrolisSodiumcitrate.Ratio=IC50,Trolox:IC50,[6]-

gingerol.Thedoseresponsecurvesof[6]-gingerolinantioxidantassaywereshowninSupplemental1.N.D.,notdetermined.BHA,butylated

hydroxyanisole.

1638Bull.KoreanChem.Soc.2014,Vol.35,No.6JingLinetal.

Meanwhile,phenoxylradical(I)changedintosemi-quinones.

ThismaybetheHATmechanismfor[6]-gingeroltodirectly

scavenge?OH.Thismechanismagreeswiththeprevious

findingsthatthedopaminereactiontowards?OHismainly

viaHATatphysiologicalpH7.4.

28



Toquantitativelyevaluatetherelativeantioxidantlevelof

[6]-gingerol,theratiovaluewasdefinedasIC

50,Trolox

/IC

50,[6]-

gingerol

.AsshowninTable1,theratiovaluesofoxidative

DNAdamage,?OH-scavenging,·O

2

?

scavenging,DPPH?

scavenging,ABTS

+

?scavenging,andCu

2+

-reducingwere

2.10,1.32,0.99,1.07,2.91,and3.08,respectively.Theaver-

ageratiovaluewascalculatedas1.91(Table1).Itimplies

that[6]-gingerolhad1.91timeshigherthetotalantioxidant

capacitythanthestandardantioxidantTrolox.

ItmustbeemphasizedthattheIC

50

valuesof[6]-gingerol

inour·O

2

?

and?OHscavengingassayswererespectively

228.40±9.20and70.39±1.23μM,whiletheywerecalcu-

latedas4.05and4.62μMrespectivelyintheprevious

literature.

11

Undoubtedly,thereisaconsiderablydifference.

However,theIC

50

valuesinDPPHscavengingassayare

generallyidentical:AsshowninTable1,itwaslistedas

27.35±1.44μMinourstudy,whilethepreviousliterature

shownas26.3μM.

11

ItclearlyindicatedthatDMSOusedas

asolventinthepreviousworkindeedbroughtabout

considerableinterferencewiththe·O

2

?

and?OHscavenging

assays.

11



Conclusion

Basedontheabovediscussion,itcanbeconcludedthat:

(i)asthemajorbioactiveconstituentofginger,[6]-gingerol

caneffectivelyprotectagainst?OH-inducedDNAdamage;

(ii)apossiblemechanismfor[6]-gingeroltoprotectagainst

oxidativedamageis?OHradicalscavenging;(iii)[6]-gin-

gerolscavenges?OHradicalspossiblythroughhydrogen

atom(H?)transfer(HAT)andsequentialelectron(e)proton

transfer(SEPT)mechanisms;and(iv)radicalscavenging

makes[6]-gingerolbeoxidizedtosemi-quinoneorquinone

forms.

SupplementaryMaterials:Doseresponsecurvesof

antioxidantassaysof[6]-gingerolandpositivecontrols.

ConflictofInterestStatement.Theauthorsconfirmthat

therearenoconflictsofinterest.

Acknowledgments.Thisworkwassupportedbythe

NationalNatureScienceFoundationofChina(81273896).

References

1.Hashizume,O.;Shimizu,A.;Yokota,M.;Sugiyama,A.;Nakada,

K.;Miyoshi,H.;Itami,M.;Ohira,M.;Nagase,H.;Takenaga,K.

Proc.Natl.Acad.Sci.2012,109,10528-10533.

2.Bhattacharjee,S.;Deterding,L.J.;Chatterjee,S.;Jiang,J.;

Ehrenshaft,M.;Lardinois,O.;Ramirez,D.C.;Tomer,K.B.;

Mason,R.P.FreeRadic.Biol.Med.2011,50,1536-1545.

3.Butt,M.S.;Sultan,M.T.Crit.Rev.FoodSci.Nutr.2011,51,383-

393.

4.Surh,Y.J.FoodChem.Toxicol.2002,8,1091-1097.

5.Bode,A.M.;Ma,W.Y.;Surh,Y.H.;Dong,Z.G.CancerRes.

2001,61,850.

6.Shukla,Y.;Prasad,S.;Tripathi,C.;Singh,M.;George,J.;Kalra,

N.Mol.Nutr.FoodRes.2007,12,1492-1502.

7.Park,K.K.;Chun,K.S.;Lee,J.M.;Lee,S.S.;Surh,Y.J.Cancer

Letters1998,19,139-144.

8.Lin,C.B.;Lin,C.C.;Tsay,G.J.Evid.BasedComplement

Alternat.Med.2012,7,1-7.

9.Lee,C.;Park,G.H.;Kim,C.Y.;Jang,J.H.FoodChem.Toxicol.

2011,6,1261-1269.

10.Yang,G.;Zhong,L.;Jiang,L.;Geng,C.;Cao,J.;Sun,X.;Chen,

M.;Ma,Y.PhytotherRes.2011,10,1480-1485.

11.Swrnalatha,D.;Mallikarjuna,R.P.;Vishna,D.N.;Madhu,K.B.;

Satyanarayana,T.;Jayaveera,N.K.J.Ethnopharmacol.2010,

127,515-520.

12.Li,X.C.FoodChem.2013,3,2083-2088.

13.Doroshow,J.H.Proc.Natl.Acad.Sci.USA1986,83,4514-4518.

14.Repine,J.E.;Pfenninger,O.W.;Talmage,D.W.;Berger,E.M.;

Pettijohn,D.E.Proc.Natl.Acad.Sci.USA1981,78,1001-1003.

15.Nakai,K.;Kadiiska,M.B.;Jiang,J.J.;Stadler,K.;Mason,R.P.

Proc.Natl.Acad.Sci.USA2006,103,4616-4621.

16.Chan,J.;Fujiwara,T.;Brennan,P.;McNeil,M.;Turco,S.J.;

Sibille,J.C.;Snapper,M.;Aisen,P.;Bloom,B.R.Proc.Natl.

Acad.Sci.USA1989,86,2453-2457.

17.Qiao,X.L.;Chen,S.M.;Tan,L.;Zheng,H.;Ding,Y.D.;Ping,Z.

H.Magn.Reson.Chem.2001,39,207-211.

18.Hyland,K.;Voisin,E.;Banoun,H.;Auclair,C.Anal.Biochem.

1983,2,280-287.

19.Luga,C.;Alvarez-ldaboy,J.R.;Russo,N.J.Org.Chem.2012,8,

3868-3877.

20.Boudier,A.;Tournebize,J.;Bartosz,G.;Bengueddour,R.;Leroy,

P.Anal.Chim.Acta2012,20,97-116.

21.Li,X.C.;Mai,W.Q.;Wang,L.;Han,W.J.Anal.Biochem.2013,

438,29-31.

22.Li,X.C.J.Agric.FoodChem.2012,25,6418-6424.

23.Li,X.C.;Fang,Q.;Lin,J.;Yuan,Z.P.;Han,L.;Gao,Y.X.Bull.

KoreanChem.Soc.2014,35,117-122.

24.Kim,J.K.;Kim,Y.;Na,K.M.;Surh,Y.J.;Kim,T.Y.FreeRadic.

Res.2007,5,603-614.

25.Ohnishi,S.;Ma,N.;Thanan,R.;Pinlaor,S.;Hammam,O.;

Murata,M.;Kawanishi,S.Oxid.Med.Cell.Longev.2013,2013,

387014.

26.Zheng,R.L.,Huang,Z.Y.FreeRadicalBiology;HigherEducation

Press:Beijing,2007;p143.

27.Bondet,V.;Berset,C.LWT-FoodSci.Technol.1997,30,609-615.

28.Aliaga,C.;Lissi,E.A.Int.J.Chem.Kinet.1998,30,565-570.

29.Iuga,C.;Alvarez-Idaboy,J.R.;Vivier-Bunge,A.J.Phys.Chem.

B2011,115,12234-12246.

30.Nguyen,T.X.;Grampp,G.;Yurkovskaya,A.V.;Lukzen,N.J.

Phys.Chem.A2013,33,7655-7660.

31.López-Munguía,A.;Hernandez-Romero,Y.;Pedraza-Chaverri,

J.;Miranda-Molina,A.;Regla,I.;Martinez,A.;Castillo,E.PLoS.

One.2011,6,e20115.

32.GrahamSolomons,T.W.;Fryhle,C.B.OrganicChemistry;Chemical

industryPress:Beijing,2003;p1008.

33.Iuga,C.;Alvarez-Idaboy,J.R.;Russo,N.J.Org.Chem.2012,77,

3868-3877.

献花(0)
+1
(本文系小小雨露yea...首藏)