配色: 字号:
浙江省2017年中考数学真题分类解析汇编专题6:二次函数
2018-01-29 | 阅:  转:  |  分享 
  


2017年浙江中考真题分类汇编(数学):专题06二次函数

一、单选题(共6题;共12分)

1、(2017?宁波)抛物线(m是常数)的顶点在???????????(??????)

A、第一象限

B、第二象限

C、第三象限

D、第四象限

2、(2017·金华)对于二次函数y=?(x?1)2+2的图象与性质,下列说法正确的是(??????)

A、对称轴是直线x=1,最小值是2

B、对称轴是直线x=1,最大值是2

C、对称轴是直线x=?1,最小值是2

D、对称轴是直线x=?1,最大值是221教育网

3、(2017?杭州)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,(??)

A、若m>1,则(m﹣1)a+b>0

B、若m>1,则(m﹣1)a+b<0

C、若m<1,则(m﹣1)a+b>0

D、若m<1,则(m﹣1)a+b<0【来源:21·世纪·教育·网】

4、(2017?绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为(???)

A、y=x2+8x+14

B、y=x2-8x+14

C、y=x2+4x+3

D、y=x2-4x+3

5、(2017·嘉兴)下列关于函数的四个命题:①当时,有最小值10;②为任意实数,时的函数值大于时的函数值;③若,且是整数,当时,的整数值有个;④若函数图象过点和,其中,,则.其中真命题的序号是(??)www.21-cn-jy.com

A、①

B、②

C、③

D、④

6、(2017·丽水)将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是(???)

A、向左平移1个单位

B、向右平移3个单位

C、向上平移3个单位

D、向下平移1个单位

二、填空题(共1题;共2分)

7、(2017·金华)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).

①如图1,若BC=4m,则S=________m.

②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为________m.



三、解答题(共12题;共156分)

8、(2017?绍兴)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为为50m.设饲养室长为x(m),占地面积为y(m2).





(1)如图1,问饲养室长x为多少时,占地面积y最大?

(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大。小敏说:“只要饲养室长比(1)中的长多2m就行了.”www-2-1-cnjy-com

9、(2017·嘉兴)如图,某日的钱塘江观潮信息如表:





按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离(千米)与时间(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点,点坐标为,曲线可用二次函数(,是常数)刻画.

(1)求的值,并求出潮头从甲地到乙地的速度;

(2)11:59时,小红骑单车从乙地出发,沿江边公路以千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?

(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度,是加速前的速度).

10、(2017·丽水)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A—C—B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.



(1)求a的值;

(2)求图2中图象C2段的函数表达式;

(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.21·cn·jy·com

11、(2017?温州)如图,过抛物线y=x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.



(1)求抛物线的对称轴和点B的坐标;

(2)在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;

①连结BD,求BD的最小值;

②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.

12、(2017?杭州)在平面直角坐标系中,设二次函数y1=(x+a)(x﹣a﹣1),其中a≠0.

(1)若函数y1的图象经过点(1,﹣2),求函数y1的表达式;

(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;

(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m<n,求x0的取值范围.

13、(2017?湖州)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养天的总成本为万元;放养天的总成本为万元(总成本=放养总费用+收购成本).21世纪教育网版权所有

(1)设每天的放养费用是万元,收购成本为万元,求和的值;

(2)设这批淡水鱼放养天后的质量为(),销售单价为元/.根据以往经验可知:与的函数关系为;与的函数关系如图所示.



①分别求出当和时,与的函数关系式;

②设将这批淡水鱼放养天后一次性出售所得利润为元,求当为何值时,最大?并求出最大值.(利润=销售总额-总成本)

14、(2017?宁波)如图,抛物线与x轴的负半轴交于点A,与y轴交于点B,连结AB.点C在抛物线上,直线AC与y轴交于点D.



(1)求c的值及直线AC的函数表达式;

(2)点P在x轴的正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.

①求证:△APM∽△AON;

②设点M的横坐标为m,求AN的长(用含m的代数式表示).

15、(2017·台州)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程,操作步骤是:

第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);

第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;

第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1)

第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标为n即为该方程的另一个实数根。



(1)在图2中,按照“第四步“的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹)

(2)结合图1,请证明“第三步”操作得到的m就是方程的一个实数根;

(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程的实数根,请你直接写出一对固定点的坐标;

(4)实际上,(3)中的固定点有无数对,一般地,当,,,与a,b,c之间满足怎样的关系时,点P(,),Q(,)就是符合要求的一对固定点?【版权所有:21教育】

16、(2017·台州)交通工程学理论把在单向道路上行驶的汽车看成连续的液体,并用流量、速度、密度三个概念描述车流的基本特征。其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度(辆/千米)指通过道路指定断面单位长度内的车辆数,为配合大数据治堵行动,测得某路段流量q与速度v之间的部分数据如下表:

速度v(千米/小时) … 5 10 20 32 40 48 … 流量q(辆/小时) … 550 1000 1600 1792 1600 1152 … (1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是________(只需填上正确答案的序号)①?②????③21cnjy.com

(2)请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大?最大流量是多少?

(3)已知q,v,k满足,请结合(1)中选取的函数关系式继续解决下列问题:

①市交通运行监控平台显示,当时道路出现轻度拥堵,试分析当车流密度k在什么范围时,该路段出现轻度拥堵;

②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值

17、(2017·衢州)定义:如图1,抛物线与轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果△ABP的三边满足,则称点P为抛物线的勾股点。

2·1·c·n·j·y

(1)直接写出抛物线的勾股点的坐标;

(2)如图2,已知抛物线C:与轴交于A,B两点,点P(1,)是抛物线C的勾股点,求抛物线C的函数表达式;21·世纪教育网

(3)在(2)的条件下,点Q在抛物线C上,求满足条件的点Q(异于点P)的坐标

18、(2017·金华)(本题12分)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3,),B(9,5),C(14,0).动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA?AB?BC运动,在OA,AB,BC上运动的速度分别为3,,(单位长度/秒)﹒当P,Q中的一点到达C点时,两点同时停止运动.

【来源:21cnjy.com】

(1)求AB所在直线的函数表达式.

(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值.

(3)在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.

19、(2017·金华)(本题8分)甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分.如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式,已知点O与球网的水平距离为5m,球网的高度1.55m.

21cnjycom

(1)当a=?时,①求h的值.②通过计算判断此球能否过网.

(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【出处:21教育名师】



答案解析部分

一、单选题

1、【答案】A

【考点】坐标确定位置,二次函数的性质

【解析】【解答】解:∵y=x2-2x+m2+2.

∴y=(x-1)2+m2+1.

∴顶点坐标(1,m2+1).

∴顶点坐标在第一象限.

故答案为A.

【分析】根据配方法得出顶点坐标,从而判断出象限.21教育名师原创作品

2、【答案】B

【考点】二次函数的性质

【解析】【解答】解:∵y=-+2,

∴抛物线开口向下,顶点坐标为(1,2),对称轴为x=1,

∴当x=1时,y有最大值2,

故选B。

【分析】由抛物线的解析式可确定其开口方向、对称轴、顶点坐标及最值,则可求得答案。

3、【答案】C

【考点】二次函数图象与系数的关系

【解析】【解答】解:由对称轴,得

b=﹣2a.

(m﹣1)a+b=ma﹣a﹣2a=(m﹣3)a

∵a<0

当m<1时,(m﹣3)a>0,

故选:C.

【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.2-1-c-n-j-y

4、【答案】A

【考点】二次函数的图象

【解析】【解答】解:如图,A(2,1),则可得C(-2,-1).



由A(2,1)到C(-2,-1),需要向左平移4个单位,向下平移2个单位,

则抛物线的函数表达式为y=x2,经过平移变为y=(x+4)2-2=x2+8x+14,

故选A.

【分析】题中的意思就是将抛物线y=x2平移后,点A平移到了点C,由A的坐标不难得出C的坐标,由平移的性质可得点A怎样平移到点C,那么抛物线y=x2,就怎样平移到新的抛物线.

5、【答案】C

【考点】二次函数图象上点的坐标特征

【解析】【解答】解:①错,理由:当x=时,y取得最小值;

②错,理由:因为,即横坐标分别为x=3+n,x=3?n的两点的纵坐标相等,即它们的函数值相等;

③对,理由:若n>3,则当x=n时,y=n2?6n+10>1,

当x=n+1时,y=(n+1)2?6(n+1)+10=n2?4n+5,

则n2?4n+5-(n2?6n+10)=2n-5,

因为当n为整数时,n2?6n+10也是整数,2n-5也是整数,n2?4n+5也是整数,

故y有2n-5+1=2n-4个整数值;

④错,理由:当x<3时,y随x的增大而减小,所以当a<3,b<3时,因为y0b,故错误;

故答案选C.

【分析】①二次项系数为正数,故y有最小值,运用公式x=解出x的值,即可解答;

②横坐标分别为x=3+n,x=3?n的两点是关于对称轴对称的;

③分别求出x=n,x=n+1的y值,这两个y值是整数,用后者与前都作差,可得它们的差,差加1即为整数值个数;

④当这两点在对称轴的左侧时,明示有a
6、【答案】D

【考点】二次函数的图象,二次函数的性质,二次函数的应用

【解析】【解答】解:A.向左平移1个单位后,得到y=(x+1)2,当x=1时,y=4,则平移后的图象经过A(1,4);

B.向右平移3个单位,得到y=(x-3)2,当x=1时,y=4,则平移后的图象经过A(1,4);

C.向上平移3个单位,得到y=x2+3,当x=1时,y=4,则平移后的图象经过A(1,4);

D.向下平移1个单位,得到y=x2-1,当x=1时,y=0,则平移后的图象不经过A(1,4);

故选.

【分析】遵循“对于水平平移时,x要左加右减”“对于上下平移时,y要上加下减”的原则分别写出平移后的函数解析式,将x=1代入解析式,检验y是否等于4.

二、填空题

7、【答案】88;

【考点】二次函数的最值,扇形面积的计算,圆的综合题

【解析】【解答】解:(1)在B点处是以点B为圆心,10为半径的个圆;在A处是以A为圆心,4为半径的个圆;在C处是以C为圆心,6为半径的个圆;

∴S=..+..+..=88;

(2)设BC=x,则AB=10-x;

∴S=..+..+..;

???=(-10x+250)

当x=时,S最小,

∴BC=

【分析】(1)在B点处是以点B为圆心,10为半径的个圆;在A处是以A为圆心,4为半径的个圆;在C处是以C为圆心,6为半径的个圆;这样就可以求出S的值;

(2)在B点处是以点B为圆心,10为半径的个圆;在A处是以A为圆心,x为半径的个圆;在C处是以C为圆心,10-x为半径的个圆;这样就可以得出一个S关于x的二次函数,根据二次函数的性质在顶点处取得最小值,求出BC值。

三、解答题

8、【答案】(1)解:因为,

所以当x=25时,占地面积y最大,

即当饲养室长为25m时,占地面积最大.

(2)解:因为,

所以当x=26时,占地面积y最大,

即饲养室长为26m时,占地面积最大.

因为26-25=1≠2,

所以小敏的说法不正确.

【考点】一元二次方程的应用

【解析】【分析】(1)根据矩形的面积=长×高,已知长为x,则宽为,代入求出y关于x的函数解析式,配成二次函数的顶点式,即可求出x的值时,y有最大值;(2)长虽然不变,但长用料用了(x-2)m,所以宽变成了,由(1)同理,代入求出y关于x的函数解析式,配成二次函数的顶点式,即可求出x的值时,y有最大值.

9、【答案】(1)解:11:40到12:10的时间是30分钟,则B(30,0),

潮头从甲地到乙地的速度==0.4(千米/分钟).

(2)解:∵潮头的速度为0.4千米/分钟,

∴到11:59时,潮头已前进19×0.4=7.6(千米),

∴此时潮头离乙地=12-7.6=4.4(千米),

设小红出发x分钟与潮头相遇,

∴0.4x+0.48x=4.4,

∴x=5,

∴小红5分钟后与潮头相遇.

(3)解:把(30,0),C(55,15)代入s=,

解得b=,c=,

∴s=.

∵v0=0.4,∴v=,

当潮头的速度达到单车最高速度0.48千米/分,即v=0.48时,

=0.48,∴t=35,

∴当t=35时,s=,

∴从t=35分钟(12:15时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,但小红仍以0.48千米/分的速度匀速追赶潮头.

设小红离乙地的距离为s1,则s1与时间t的函数关系式为s1=0.48t+h(t≥35),

当t=35时,s1=s=,代入得:h=,

所以s1=

最后潮头与小红相距1.8千米时,即s-s1=1.8,

所以,,

解得t1=50,t2=20(不符合题意,舍去)

∴t=50,

小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时6分钟,

∴共需要时间为6+50-30=26分钟,

∴小红与潮头相遇到潮头离她1.8千米外共需26分钟.

?

【考点】二次函数的应用,二次函数与一次函数的交点问题

【解析】【分析】(1)11:40到12:10的时间是30分钟,由图3可得甲乙两地的距离是12km,则可求出速度;

(2)此题是相遇问题,求出小红出发时,她与潮头的距离;再根据速度和×时间=两者的距离,即可求出时间;

(3)由(2)中可得小红与潮头相遇的时间是在12:04,则后面的运动过程为12:04开始,小红与潮头并行6分钟到12:10到达乙地,这时潮头开始从0.4千米/分加速到0.48千米/分钟,由题可得潮头到达乙后的速度为v=,在这段加速的过程,小红与潮头还是并行,求出这时的时间t1,从这时开始,写出小红离乙地关于时间t的关系式s1,由s-s1=1.8,可解出的时间t2(从潮头生成开始到现在的时间),所以可得所求时间=6+t2-30。

10、【答案】(1)解:在图1中,过P作PD⊥AB于D,∵∠A=30°,PA=2x,

∴PD=PA·sin30°=2x·=x,

∴y==.

由图象得,当x=1时,y=,则=.

∴a=1.



(2)解:当点P在BC上时(如图2),PB=5×2-2x=10-2x.

∴PD=PB·sinB=(10-2x)·sinB,

∴y=AQ·PD=x·(10-2x)·sinB.

由图象得,当x=4时,y=,

∴×4×(10-8)·sinB=,

∴sinB=.

∴y=x·(10-2x)·=.



(3)解:由C1,C2的函数表达式,得=,

解得x1=0(舍去),x2=2,

由图易得,当x=2时,函数y=的最大值为y=.

将y=2代入函数y=,得2=.

解得x1=2,x2=3,

∴由图象得,x的取值范围是2
【考点】二次函数的图象,二次函数的性质,二次函数的应用

【解析】【分析】(1)C1段的函数解析式是点P在AC线段时y与x的关系,由S=AQ·(AQ上的高),而AQ=ax,由∠A=30°,PA=2x,可过P作PD⊥AB于D,则PD=PA·sin30°=2x·=x,则可写出y关于x的解析式,代入点(1,)即可解出;(2)作法与(1)同理,求出用sinB表示出PD,再写出y与x的解析式,代入点(4,),即可求出sinB,即可解答;(3)题中表示在某x的取值范围内C1
11、【答案】(1)解:由题意A(﹣2,5),对称轴x=﹣=4,

∵A、B关于对称轴对称,

∴B(10,5).

(2)解:①如图1中,



由题意点D在以O为圆心OC为半径的圆上,

∴当O、D、B共线时,BD的最小值=OB﹣OD=﹣5=5﹣5.

②如图中,



当点D在对称轴上时,在Rt△ODE中,OD=OC=5,OE=4,

∴DE===3,

∴点D的坐标为(4,3).

设PC=PD=x,在Rt△PDK中,x2=(4﹣x)2+22,

∴x=,

∴P(,5),

∴直线PD的解析式为y=﹣x+.

【考点】待定系数法求二次函数解析式,抛物线与x轴的交点

【解析】【分析】(1)思想确定点A的坐标,利用对称轴公式求出对称轴,再根据对称性可得点B坐标;(2)①由题意点D在以O为圆心OC为半径的圆上,推出当O、D、B共线时,BD的最小值=OB﹣OD;②当点D在对称轴上时,在Rt△OD=OC=5,OE=4,可得DE===3,求出P、D的坐标即可解决问题;

12、【答案】(1)解:函数y1的图象经过点(1,﹣2),得

(a+1)(﹣a)=﹣2,

解得a=﹣2,a=1,

函数y1的表达式y=(x﹣2)(x+2﹣1),化简,得y=x2﹣x﹣2;

函数y1的表达式y=(x+1)(x﹣2)化简,得y=x2﹣x﹣2,

综上所述:函数y1的表达式y=x2﹣x﹣2

(2)解:当y=0时x2﹣x﹣2=0,解得x1=﹣1,x2=2,

y1的图象与x轴的交点是(﹣1,0)(2,0),

当y2=ax+b经过(﹣1,0)时,﹣a+b=0,即a=b;

当y2=ax+b经过(2,0)时,2a+b=0,即b=﹣2a

(3)解:当P在对称轴的左侧时,y随x的增大而增大,

(1,n)与(0,n)关于对称轴对称,

由m<n,得x0<0;

当时P在对称轴的右侧时,y随x的增大而减小,

由m<n,得x0>1,

综上所述:m<n,求x0的取值范围x0<0或x0>1

【考点】二次函数的性质,待定系数法求二次函数解析式

【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象上的点满足函数解析式,可得答案(3)根据二次函数的性质,可得答案.

13、【答案】(1)解:依题可得:

解得

答:a的值为0.04,b的值为30.

(2)解:①当0≤t≤50时,设y与t的函数关系式为y=k1t+n1.

把点(0,15),(50,25)的坐标分别代入得:

解得:

∴y与t的函数关系式为y=t+15.

当50<t≤100时,设y与t的函数关系式为y=k2t+n2.

把点(50,25)和(100,20)的坐标分别代入得?:

解得:

∴y与t的函数关系式为y=-t+30.

②由题意得,当0≤t≤50时,

W=20000×(t+15)-(400t+300000)=3600t

∵3600>0,∴当t=50时,W最大值=180000(元)

当50<t≤100时,W=(100t+15000)(-t+30)-(400t+300000)=-10t2+1100t+150000=-10(t-55)2+180250

∵-10<0,∴当t=55时,W最大值=180250

综上所述,当t为55天时,W最大,最大值为180250元.

【考点】解二元一次方程组,待定系数法求一次函数解析式,二次函数的最值

【解析】【分析】(1)根据题意,列方程组求解即可.

(2)通过图像找到相应的点的坐标,根据待定系数法分类列出方程组即可得到函数解析式;然后根据利润=销售总额-总成本=销售单价×销售天数-(放养总费用+收购成本),然后根据一次函数的特点和二次函数的最值求解即可.

14、【答案】(1)解:把点C(6,)代入抛物线得:=9++c.

解得c=-3.

当y=0时,x2+x-3=0.

解得:x1=-4,x2=3.

∴A(-4,0).

设直线AC的函数表达式为:y=kx+b(k≠0).

把A(-4,0),C(6,)代入得:



解得:

∴直线AC的函数表达式为:y=x+3.

(2)①证明:∵在Rt△AOB中,tan∠OAB==.

??????????在Rt△AOB中,tan∠OAD==.

?????????∴∠OAB=∠OAD.

?????????∵在Rt△POQ中,M为PQ中点.

??????∴OM=MP.

????????∴∠MOP=∠MPO.

????????又∵∠MOP=∠AON.

???????∴∠APM=∠AON.

?????????∴△APM∽△AON.

②解:如下图,过点M作ME⊥x轴于点E.

∵OM=MP.

∴OE=EP.

又∵点M的横坐标为m.

∴AE=m+4,AP=2m+4.

∵tan∠OAD=.

∴cos∠EAM=cos∠OAD=.

∴AM=AE=.

∵△APM∽△AON.

∴=.

∴AN==.



【考点】待定系数法求一次函数解析式,相似三角形的判定与性质,解直角三角形

【解析】【分析】(1)把点C(6,)代入抛物线求出c的值,令y=0求出A点坐标,再用待定系数法求出直线AC的函数表达式.

(2)①在Rt△AOB中,tan∠OAB==.?在Rt△AOB中,tan∠OAD==.从而得出∠OAB=∠OAD;在Rt△POQ中,M为PQ中点得出OM=MP.∠APM=∠AON;从而证明△APM∽△AON.

②如上图,过点M作ME⊥x轴于点E;由OM=MP.得出OE=EP;点M的横坐标为m;得出AE=m+4,AP=2m+4.

根据tan∠OAD=.求出cos∠EAM=cos∠OAD=;再根据△APM∽△AON;得出AN==.

15、【答案】(1)解:如图2所示:



(2)证明:在图1中,过点B作BD⊥x轴,交x轴于点D.

根据题意可证△AOC∽△CDB.

∴.

∴.

∴m(5-m)=2.

∴m2-5m+2=0.

∴m是方程x2-5x+2=0的实数根.

(3)解:方程ax2+bx+c=0(a≠0)可化为

x2+x+=0.

模仿研究小组作法可得:A(0,1),B(-,)或A(0,),B(-,c)等.

(4)解:以图3为例:P(m1,n1)Q(m2,n2),

设方程的根为x,根据三角形相似可得.=.

上式可化为x2-(m1+m2)x+m1m2+n1n2=0.

又ax2+bx+c=0,

即x2+x+=0.

比较系数可得:m1+m2=-.

m1m2+n1n2=.



【考点】一元二次方程的解,根与系数的关系,作图—基本作图,相似三角形的判定与性质

【解析】【分析】(1)根据题目中给的操作步骤操作即可得出图2中的图.

(2)在图1中,过点B作BD⊥x轴,交x轴于点D.依题意可证△AOC∽△CDB.然后根据相似三角形对应边的比相等列出式子,化简后为m2-5m+2=0,从而得证。

(3)将方程ax2+bx+c=0(a≠0)可化为x2+x+=0.模仿研究小组作法即可得答案。

(4)以图3为例:P(m1,n1)Q(m2,n2),设方程的根为x,根据三角形相似可得.=.化简后为x2-(m1+m2)x+m1m2+n1n2=0.

又x2+x+=0.再依据相对应的系数相等即可求出。

16、【答案】(1)③

(2)解:∵q=-2v2+120v=-2(v-30)2+1800.

∴当v=30时,q最大=1800.

(3)解:①∵q=vk,

∴k===-2v+120.

∴v=-k+60.

∵12≤v<18,

∴12≤-k+60<18.

解得:84<k≤96.

②∵当v=30时,q最大=1800.

又∵v=-k+60,

∴k=60.

∴d==.

∴流量最大时d的值为米.

【考点】一次函数的应用,二次函数的最值,待定系数法求二次函数解析式

【解析】【解答】(1)解:设q与v的函数关系式为q=av2+bv,依题可得:

,

解得,

∴q=-2v2+120v.

故答案为③.

【分析】(1)设q与v的函数关系式为q=av2+bv,依题可得二元一次方程组求出q与v的函数关系式,即可得出答案.

(2)由(1)得到的二次函数关系式,根据其图像性质即可求出答案.

(3)①根据q=vk即可得出v=-k+60代入12≤v<18即可求出k的范围.

②根据v=30时,q最大=1800,再将v值代入v=-k+60求出k=60,从而得出d==.

17、【答案】(1)解:勾股点的坐标为(0,1)

(2)解:抛物线y=ax2+bx(a≠0)过原点(0,0),即A(0,0),

如图作PG⊥x轴于点G,连接PA,PB,

∵点P(1,),

∴AG=1,PG=,

∴PA=2,tan∠PAB=,

∴∠PAB=60°,

∴在Rt△PAB中,AB==4,

∴点B(4,0),

设y=ax(x-4),当x=1时,y=,

解得a=-,

∴y=-x(x-4)=-x2+x.



(3)解:①当点Q在x轴上方,由S△ABQ=S△ABP,易知点Q的纵坐标为,

∴-x2+x=,解得x1=3,x2=1(不合题意,舍去),

∴Q(3,),

②当点Q在x轴下方,由S△ABQ=S△ABP,易知点Q的纵坐标为-,

∴-x2+x=-,解得x1=2+,x2=2-,

∴Q(2+,-)Q(2-,-),

综上,满足条件的点Q有三个:Q(3,)Q(2+,-)Q(2-,-).

【考点】待定系数法求二次函数解析式,与二次函数有关的动态几何问题

【解析】【解答】(1)解:y=-x2+1与x轴交于A(-1,0),B(1,0),与y轴交于P(0,1),

∴AB=2,AP=BP=,

∴AP2+BP2=AB2

∴勾股点P(0,1),

【分析】(1)根据题目中给出勾股点的定义可以直接写出答案。

(2)由抛物线y=ax2+bx(a≠0)过原点(0,0),得出A(0,0),作PG⊥x轴于点G,连接PA,PB,由点P(1,3)是抛物线C的勾股点,得出AG=1,PG=,PA=2,再将P(1,3),B(4,0)代入抛物线得出解析式。

(3)分①当点Q在x轴上方,由S△ABQ=S△ABP,易知点Q的纵坐标为,②当点Q在x轴下方,由S△ABQ=S△ABP,易知点Q的纵坐标为-分别代入抛物线(2)的解析式,得出Q点坐标。

18、【答案】(1)解:把A(3,3),B(9,5)代入y=kx+b,

得;解得:;

∴y=x+2;

(2)解:在△PQC中,PC=14-t,PC边上的高线长为;



∴当t=5时,S有最大值;最大值为.

(3)解:a.当0<t≤2时,线段PQ的中垂线经过点C(如图1);

可得方程

解得:,(舍去),此时t=.

b.当2<t≤6时,线段PQ的中垂线经过点A(如图2)

可得方程,

解得:;(舍去),此时;

c.当6<t≤10时,

①线段PQ的中垂线经过点C(如图3)

可得方程14-t=25-;

解得:t=.

②线段PQ的中垂线经过点B(如图4)

可得方程;

解得,(舍去);

此时;

综上所述:t的值为,,,.



【考点】待定系数法求一次函数解析式,二次函数的最值,二次函数的应用,与一次函数有关的动态几何问题,与二次函数有关的动态几何问题

【解析】【分析】(1)用待定系数法求直线AB方程即可。

(2)根据三角形的面积公式得到关于t的二次三项式,再由二次函数图像的性质求出S的最大值即可。

(3)根据t的值分情况讨论,依题意列出不同的方程从而求出t的值。

19、【答案】(1)解:①∵a=?,P(0,1);

∴1=+h;

∴h=;

②把x=5代入y=得:

y==1.625;

∵1.625>1.55;

∴此球能过网.

(2)解:把(0,1),(7,)代入y=a得:;

;解得:;

∴a=.

【考点】二次函数的应用

【解析】【分析】(1)①利用a=,将点(0,1)代入解析式即可求出h的值;②利用x=5代入解析式求出y,再与1.55比较大小即可判断是否过网;

(2)将点(0,1),(7,)代入解析式得到一个二元一次方程组求解即可得出a的值。

www.czsx.com.cn















































献花(0)
+1
(本文系guqy2008首藏)