|
九年级上册数学 人教版 概率初步复习教案 |
|
|
概率初步复习教案
学生 学校 年级 初三 次数 科目 数学 教师 日期 时段 课题 概率初步 教学重点 生活中的随机事件及概率的计算、
图标法与树状图、概率的分析、理解与应用、 教学难点 1、概率的理解、分析、综合应用、
2、概率的分析、利用实验的方法进行概率估算、 教学目标 1.掌握随机事件、概率、用列举法表示概率、用频率估计概率等知识
2.熟练应用解题、计算准确。
教
学
步
骤
及
教
学
内
容
一、检查评讲作业
1、检查学生的作业、及时指点
2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容
二、教学内容:概率初步
知识点1:随机事件和概率
知识点2:用列举法表示概率
知识点3:用频率估计概率
知识点4:树状图和列表法
三、课堂练习,小结
1、掌握随机事件和必然事件及概率
2、掌握用列举法表示概率、用频率估计概率
四、作业布置
管理人员签字:日期:年月日
【上次课错题回顾】
8、(2010·陕西中考)如图,在RT△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE
(1)若BE是△DEC的外接圆的切线,求∠C的大小?
(2)当AB=1,BC=2是求△DEC外界圆的半径
【相似题巩固】
1.(2010福建省南平)如图,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.
抛掷结果 5次 50次 300次 800次 3200次 6000次 9999次 出现正面的频数 1 31 135 408 1580 2980 5006 出现正面的频率 20% 62% 45% 51% 49.4% 49.7% 50.1% ,这意味着().
A.在两次重复实验中该事件必有一次发生B.在一次实验中没有发生,下次肯定发生
C.在一次实验中已经发生,下次肯定不发生D.每次实验中事件发生的可能性是50%
4.在生产的100件产品中,有95件正品,5件次品.从中任抽一件是次品的概率为().
A.0.05 B.0.5 C.0.95 D.95
5.从不透明的口袋中摸出红球的概率为,若袋中红球有3个,则袋中共有球().
A.5个 B.8个 C.10个 D.15个
6.柜子里有5双鞋,取出一只鞋是右脚鞋的概率是().
A. B. C. D.
7.袋子中装有3个白球和2个红球,共5个球,每个球除颜色外都相同,从袋子中任意摸出一个球,则:(1)摸到白球的概率等于______;(2)摸到红球的概率等于______;
(3)摸到绿球的概率等于______;(4)摸到白球或红球的概率等于______;
(5)摸到红球的机会______于摸到白球的机会(填“大”或“小”).
知识点3用列举法求概率(一)
1.一个袋中装有10个红球、3个黄球,每个球只有颜色不同,现在任意摸出一个球,摸到______球的可能性较大.
2.掷一枚均匀正方体骰子,6个面上分别标有数字1,2,3,4,5,6,则有:
(1)P(掷出的数字是1)=______;(2)P(掷出的数字大于4)=______.
3.一道选择题共有4个答案,其中有且只有一个是正确的,有一位同学随意地选了一个答案,那么他选对的概率为().
A.1 B. C. D.
4.掷一枚均匀的正方体骰子,骰子6个面分别标有数字1,1,2,2,3,3,则“3”朝上的概率为().
A. B. C. D.
5.一个口袋共有50个球,其中白球20个,红球20个,蓝球10个,则摸到不是白球的概率是().
A. B. C. D.
6.设袋中有4个乒乓球,一个涂白色,一个涂红色,一个涂蓝、白两色,另一个涂白、红、蓝三色,今从袋中随机地取出一球.①取到的球上涂有白色的概率为;②取到的球上涂有红色的概率为③取到的球上涂有蓝色的概率为④取到的球上涂有红色、蓝色的概率为以上四个命题中正确的有().
A.4个 B.3个 C.2个 D.1个
三、解答题
7.随意安排甲、乙、丙3人在3天节日中值班,每人值班1天.
(1)这3人的值班顺序共有多少种不同的排列方法?
(2)其中甲排在乙之前的排法有多少种?(3)甲排在乙之前的概率是多少?
8.甲、乙、丙三人参加科技知识竞赛,已知这三人分别获得了一、二、三等奖.在不知谁获一等奖、谁获二等奖、谁获三等奖的情况下,“小灵通”凭猜测事先写下了获奖证书,则“小灵通”写对获奖名次的概率是多少?
9.有两组相同的牌,每组4张,它们的牌面数字分别是1,2,3,4,那么从每组中各摸出一张牌,两张牌的牌面数字之和等于5的概率是多少?两张牌的牌面数字之和等于几的概率最小?
知识点4用列举法求概率(二)
1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球的概率是().
A. B. C. D.
2.号码锁上有3个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是().
A.1 B. C. D.
3.有三条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色,第三条的一头是白色,另一头是黑色.若任意选取这三条带子的一头,颜色各不相同的概率是().
A. B. C. D.
4.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是().
A. B. C. D.
5.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是
求:(1)口袋里黄球的个数;(2)任意摸出1个红球的概率.
3.在一个布口袋中装着只有颜色不同,其他都相同的白、红、黑三种颜色的小球各1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.
(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;
(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中获胜的概率.
4.一个袋子中装有红、黄、蓝三个小球,它们除颜色外均相同.
(1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?
(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色.当两个小球的颜色相同时,小王赢;当两个小球的颜色不同时,小李赢.请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明.
5.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.
6.“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能地做这三种手势,那么:
(1)一次比赛中三人不分胜负的概率是多少?
(2)比赛中一人胜,二人负的概率是多少?
7、红花中学现要从甲、乙两位男生和丙、丁两位女生中选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛甲、乙、丙三人之间相互传球球从一个人手中随机传到另一个人手中共传球三次.(1)若开始时球在甲手中求经过三次传球后球传回甲手中的概率是多少?(2)若乙想使球经过三次传递后球落在自己手中的概率最大乙会让球开始时在谁手中?请说明理由.抽取球数n 50 100 500 1000 5000 优等品数m 45 92 455 890 4500 优等品频率 总条数 50 45 60 48 10 30 42 38 15 10 标记数 2 1 3 2 0 1 1 2 0 1 总条数 53 36 27 34 43 26 18 22 25 47 标记数 2 1 2 1 2 1 1 2 1 2
徐汉杰2017.11.18(100分)45minute正确率:
1.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是()
A. B. C. D.
2.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼()
A.8000条 B.4000条 C.2000条 D.1000条
3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率 0.58 0.64 0.58 0.59 0.605 0.601
4.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:
掷子次数 50次 150次 300次 石子落在⊙O内(含⊙O上)的次数m 14 43 93 石子落在图形内的次数n 19 85 186
9
·
第1题
A
B
C
O
D
|
|
|
|
|
|
|
|
|
|
|