配色: 字号:
电位法和永停滴定法
2019-11-20 | 阅:  转:  |  分享 
  
第十章电位法和永停滴定法第一节电化学分析概述1.电化学分析:根据被测溶液所呈现的电化学性质
及其变化而建立的分析方法2.分类:根据所测电池的电物理量性质不同分为(1)电导分析法(2)
电解分析法(3)电位分析法:直接电位法,电位滴定法(4)库仑分析法(5)极谱分析法(6)伏安分析法续前电位分析
法:利用电极电位与化学电池电解质溶液中某种组分浓度的对应关系而实现定量测量的电化学分析法3.特点:(1)准确度高,重现性和稳
定性好(2)灵敏度高,10-4~10-8mol/L10-10~1
0-12mol/L(极谱,伏安)(3)选择性好(排除干扰)(4)应用广泛(常量、微量和痕量分析)(5)仪器设备简单,易于实
现自动化第二节电位法基本原理一、几个概念二、化学电池三、可逆电极和可逆电池四、指示电极和参比电极五、电极电位的测
量一、几个概念1.相界电位:两个不同物相接触的界面上的电位差2.液接电位:两个组成或浓度不同的电解质溶液相接触
的界面间所存在的微小电位差,称~。3.金属的电极电位:金属电极插入含该金属的电解质溶液中产生的金属与溶液的相界电位
,称~。4.电池电动势:构成化学电池的相互接触的各相界电位的代数和,称~。二、化学电池:一种电化学
反应器,由两个电极插入适当电解质溶液中组成(一)分类:1.原电池:将化学能转化为电能的装置(自发进
行)应用:直接电位法,电位滴定法2.电解池:将电能转化为化学能的装置(非自发进行)
应用:永停滴定法续前1(二)电池的表示形式与电池的电极反应1.表示形式:1)溶液注明活度2)用︱表示电池组成的每个
接界面3)用‖表示盐桥,表明具有两个接界面4)发生氧化反应的一极写在左发生还原反应的一极写在右Daniel电
池——铜锌电池结构2.原电池:(-)Zn︱Zn2+(1mol/L)‖Cu2+(1mol/L)︱Cu(+
)图示:原电池盐桥的组成和特点:高浓度电解质溶液正负离子迁移速度差不多盐桥的作用:1)防止两
种电解质溶液混和,消除液接电位,确保准确测定2)提供离子迁移通道(传递电子)续前3.
电解池:(阳)Cu︱Cu2+(1mol/L)‖Zn2+(1mol/L)︱Zn(阴)三、可逆电极和可逆电池可逆电极:无
限小电流通过时,电极反应可逆可逆电池:由两个可逆电极组成四、指示电极和参比电极(一)指示电极:电极电位随电解质溶液的浓度或活
度变化而改变的电极(φ与C有关)(二)参比电极:电极电位不受
溶剂组成影响,其值维持不变(φ与C无关)(一)指示电极1.
金属-金属离子电极:应用:测定金属离子例:Ag︱Ag+Ag++e→Ag2.金属-金属难溶
盐电极:应用:测定阴离子例:Ag︱AgCL︱CL-AgCL+e→Ag
+CL-续前3.惰性电极:应用:测定氧化型、还原型浓度或比值例:Pt︱Fe3+(aFe3+),Fe2+(aFe2+
)Fe3++e→Fe2+4.膜电极:应用:测定某种特定离子例:玻璃电极;各种
离子选择性电极特点(区别以上三种):1)无电子转移,靠离子扩散和离子交换产生膜电位2)对特定离子具有响应,选
择性好对指示电极的要求:电极电位与待测离子浓度或活度关系符合Nernst方程(二)参比电极1.标准氢电极(S
HE):电极反应2H++2e→H22.甘汞电极:Hg和甘汞糊,及一定浓度KCL溶液电
极表示式Hg︱Hg2CL2(s)︱KCL(xmol/L)电极反应Hg2CL2+2e
→2Hg+2CL-图示续前3.银-氯化银电极:电极表示式Ag︱AgCL︱CL-(xmol/L)
电极反应式AgCL+e→Ag+CL-对参比电极的要求:1)电极电位稳定,可逆
性好2)重现性好3)使用方便,寿命长五、电极电位的测量经与参比电极组成原电池,测得电池电动势,扣除参比电极电
位后求出待测电极电位第三节直接电位法直接电位法(离子选择性电极法):利用电池电动势与被测组分浓度的函数关系直接
测定试样中被测组分活度的电位法一、氢离子活度的测定(pH值的测定)二、其他离子活度的测量一、氢离子活度的测定(pH值的测
定)指示电极——玻璃电极(-);参比电极——饱和甘汞电极(SCE)(+)(一)玻璃电极(二)测量原理与方法(三)
注意事项(一)玻璃电极1.构造2.组成电池的表示形式3.工作原理4.性能1.构造软质球状玻璃膜:含Na2O、CaO和
SiO2厚度小于0.1mm
对H+选择性响应内部溶液:pH6—7的膜内缓冲溶液
0.1mol/L的KCL内参比溶液内参比电极:Ag-AgCL电极2.组
成电池的表示形式3.工作原理水泡前→干玻璃层水泡后→水化凝胶层→Na+与H+进行交换
→形成双电层→产生电位差→扩散达动态平衡→达稳定相界电位
(膜电位)续前注:φ玻与pH成线性关系,因而可用于测定溶液pH值4.性能(1)只对H+有选择性响应,可以测定
[H+](2)转换系数或电极斜率:溶液中pH变化一个单位引起玻璃电极的电位变化(3)线性与误差:
φ玻与pH在一定浓度范围(pH1~9)成线性关系碱差或钠差:pH>9,pH(电极选择性不好,对Na+也有响应)酸差:pH<1,pH>
pH实→正误差续前(4)不对称电位:当a1=a2(膜内外溶液pH值一致)
时,Em却不为0,称~产生原因:膜两侧表面性能不一致造成注:若Em存在,必须稳
定,才不影响电极的使用(5)膜电位来自离子交换(无电子交换),不受待测溶液有无氧化还原电对的影响(6)应
用特点优点:测量直接方便,不破坏溶液,适于有色、浑浊液体的pH值的
测定缺点:玻璃膜薄,易损(二)测量原理与方法1.原理(-)玻璃电极︱待测溶液([H+]xmol/L)
‖饱和甘汞电极(+)续前2.方法——两次测量法(将两个电极先后一起插入pH已知的标液和未知的待测溶液)应用两次测定法
前提→消除残余液接电位(两个液接电位之差)pHx与pHs应接近待测液与标液测定温度T应相同(三)注意事项1.玻璃电极的使用
范围:pH=1~9(不可在有酸差或碱差的范围内测定)2.标液pHs应与待测液pHx接近:⊿pH≤±33.标液与待测
液测定T应相同(以温度补偿钮调节)4.电极浸入溶液需足够的平衡稳定时间5.测准±0.02pH→aH+相对误差4.
5%6.间隔中用蒸馏水浸泡,以稳定其不对称电位二、其他离子
活度的测量(一)离子选择电极(二)性能(三)测量原理与方法(一)离子选择电极:对溶液中特定阴
阳离子有选择性响应能力的电极1.构造:电极敏感膜电极管内参比溶液和内参比电极2.工作原理:
电极膜浸入外部溶液时,膜内外有选择响应的离子,通过交换和扩散作用在膜两侧建立电位差,达平衡
后即形成稳定的膜电位(二)性能1.选择性:指电极对被测离子和共存干扰离子响
应程度的差异选择性系数:相同电位时提供待测离子与干扰离子的活度之比注:K
x,y↓小→电极对待测离子X响应能力↑大(选择性↑好),干扰离子Y的干扰↓小例:续前2.Nernst响应的
线性范围:电极电位随浓度或活度呈线性变化的浓度范围10-1~10-6mol/L3.检测限:电极电位随
浓度呈线性变化的最小浓度4.准确度:分析结果相对误差与电位测量误差关系讨论:a.离子选择性电极有利于低浓度溶液的测定
浓度测定的相对误差,决定于电位测定的绝对误差在电位测量范围内精度相同→浓度相对误差也相同b.离子选择性电极有利于
低价离子的检测假定⊿E为1mV,对一价离子,⊿C/C约为4%
对二价离子,⊿C/C约为8%图示续前5.稳定性:电极电位随时间发生变化的漂移量表明
电极的稳定性注:随时间变化越小,电极稳定性越高6.响应时间(或响应速度):电极给出稳定电位所
需的时间注:响应时间应尽量
短7.适用的pH范围注:超出有效的pH使用范围将产生严重误差8.应用:适用:采用直接电位法测定阴阳离子活度
及低浓度溶液组分优点:设备简单,操作方便,测定快速缺点:准确度较差(三)测量原理与方法1.原理续
前2.关于样品的前处理(1)试样组成固定,且试样基质不复杂(已知)两次测定待测溶液和标准溶液
(可以准确配制,以消除不确切造成的影响)(2)试样组成不固定,且基质复杂,变动性大等量加入TISAB(总离子
强度调节剂)→维持待测离子强度恒定,使活度系数固定以减小换算和保证测得值的准确
TISAB:直接电位法中加入的一种不含被测离子、不污损电极的浓电解质溶液,由固定离子强度、
保持液接电位稳定的离子强度调节剂、起pH缓冲作用的缓冲剂、掩蔽干扰离子的掩蔽剂组成续前3.方法(1)两次测
量法续前(2)标准曲线法以TISAB溶液稀释,配制浓度不同含被测物的标液,并分别与选定的指示电极和参比
电极组成化学电池,测定其电动势,绘制E~lgCi曲线;在相同条件下测定由试样溶液和电极组成电池的电动
势,并从标准曲线上求出待测离子浓度适用:可测范围广,适合批量样品分析优点:即使电极响应不完全服从Nernst方程的也可
得到满意结果要求:标液组成与试液组成相近,溶液温度相同标液与
试液离子强度一致,活度系数相同(等量加入TISAB)续前(3)标准加入法先测
定由试样溶液(CX,VX)和电极组成电池的电动势E1;再向试样溶液(CX,VX)中加入标准溶液(CS>100
CX,VS:试样基质组成复杂、变动大的样品优点:无须绘制标准曲线(仅需一种浓度标液)无需配制或添加TISAB(C
S↑↑,VS↓↓→⊿I↓↓)操作步骤简单、快速第四节电位滴定法一、定义利用电极电位
的突变指示滴定终点的滴定分析方法。二、确定滴定终点的方法1.E~V曲线法滴定终点:曲线上转折点(斜率最大处)对应V
特点:应用方便但要求计量点处电位突跃明显2.⊿E/⊿V~V曲线法曲线:具一个极大值的一
级微商曲线滴定终点:尖峰处(⊿E/⊿V极大值)所对应V特点:在计量点处变化较大,因而滴定准确;
但数据处理及作图麻烦3.⊿2E/⊿V2~V曲线法曲线:具二个极大值的二级微商曲线滴定终点:⊿2E/⊿V2由
极大正值到极大负值与纵坐标零线相交处对应的V续前三、特点:1.不用指
示剂而以电动势的变化确定终点2.不受样品溶液有色或浑浊的影响3.客观、准确,易于自动化4.操作和数据处理麻烦续
前四、应用用于无合适指示剂或滴定突跃较小的滴定分析或用于确定新指示剂的变色和终点颜色1.酸碱滴定法(p
Kin±1,2个pH以上的突跃)→玻璃电极+SCE准确度高2.沉淀滴定法:银量法AgN
O3滴定CL-→银电极(或玻璃电极)+SCE测C
L-,采用KNO3盐桥3.氧化还原滴定→Pt电极+SCE4.配位滴定:EDTA法→离子选择电极+SCE5.非水滴定
法:玻璃电极+SCE第五节永停滴定法一、永停滴定法:根据滴定过程中双铂电极的电流变化来确定化学计量
点的电流滴定法二、特点:1.电解反应2.当[Ox]=[Red]时,电流最大当[Ox]≠[Red
]时,电极电位取决于浓度较低的一方续前三、分类:根据滴定过程的电流变化,分为三种类型续前四、特点
准确度高,确定终点简便五、两种滴定方法对比电极
化学电池形式测量物理量电位滴定法指示电极+参比电极原电池
电压永停滴定法双铂指示电极电解池
电流X——响应离子;Y——干扰离子线性相关检测限(-)指示电极
EX
+待测溶液或标液→电池→测定→求aX,CX(+)参比电极
ES
适用:必须严格服从Nernst方程式,苛刻(K包括活度系数和副反应系数)VPVPVP
三、测定原理:将两个相同Pt电极插入样品溶液中,在两极间外加低电压,连电流计,进行滴定,通过电流计指针的变化确定SPb
.标准→可逆样品→不可逆I2→Na2S2O3开始无电流,近终点电流↑↑a.标准→不可逆
样品→可逆Na2S2O3→I2开始有电流,近终点电流为0c.标准→可逆,
样品→可逆Ce4+→Fe2+开始电流先↑近终点前电流↓终点后电流↑↑VPVPVPI2
+2S2O32-2I-+S4O62-Ce4++Fe2+
Ce3++Fe3+Zn→Zn2+双电层动态平衡
稳定的电位差电极反应(-)Zn极Zn–2eZn2+(氧
化反应)(+)Cu极Cu2++2eCu(还原反应)电池反应
Zn+Cu2+Zn2++Cu(氧化还原反应)End盐桥End电流电子e
电极反应——外加电压(阴极)Zn极Zn2++2eZn(还原反应)(阳极)Cu极Cu-2eCu2+(氧化反应)电池反应Zn2++CuZn+Cu2+(被动氧化还原反应)End可忽略电压降(-)Ag,AgCl︱缓冲溶液(PH4或7)︱膜︱H+(xmol/L)‖KCL(饱和)︱Hg2CL2,Hg(+)玻璃电极外参比电极玻璃膜内参比电极指示电极待测溶液++++--------++++H+→H+→H+→H+→←H+←H+←H+←H+(-)玻璃电极︱标准缓冲溶液‖饱和甘汞电极(+)液接电位1液接电位2注:K”随玻璃电极不同、使用时间不同及内充物组成不同而变化,使pHX不确定,应采用标准缓冲溶液(pHs一定)校准仪器,以消除K’’不确定引起的误差,得到准确的pHX注:阳离子“+”;阴离子“-”K→活度电极常数K’→浓度电极常数
献花(0)
+1
(本文系水71ox9xtcf...首藏)