2019年高考数学(文)高频考点名师揭秘与仿真测试
15函数函数模型和函数的综合应用
【考点讲解】
具本目标:函数模型及其应用
(1)了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.
(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
考点解析:1.掌握一次函数、二次函数、指数函数、对数函数、幂函数以及其他函数模型;会从实际问题中抽象出函数模型,进而利用函数知识求解.高考对函数应用的考查常与二次函数、基本不等式及导数等知识交汇以解答题为主要形式出现.
高考对一次函数、二次函数模型的考查主要有以下两个命题角度:
(1)单一考查一次函数或二次函数模型的建立及最值问题;
(2)以分段函数的形式考查一次函数和二次函数.
常见的几种函数模型
(1)一次函数模型:.
(2)反比例函数模型:.
(3)二次函数模型:.
(4)指数函数模型:.(5)对数函数模型:.
解决函数模型应用的解答题,还有以下几点容易造成失分,在备考中要高度关注:
读不懂实际背景,不能将实际问题转化为函数模型.
对涉及的相关公式,记忆错误.
在求解的过程中计算错误.另外需要熟练掌握求解方程、不等式、函数最值的方法,才能快速正确地求解1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来表示.
2应用指数函数模型时,关键是对模型的判断,先设定模型将有关数据代入验证,确定参数,从而确定函数模型.
3y=a(1+x)n通常利用指数运算与对数函数的性质求解.
4对于直线上升、指数增长、对数增长的特点要注意区分:
直线上升:匀速增长,其增长量固定不变;指数增长:先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;对数增长:先快后慢,其增长速度缓慢.公司的利润选择直线上升或指数模型增长,而员工奖金选择对数模型增长.底高(上底高底高单价数量营业额成本货物单价数量成本本金利率本息总和本金利息利率本金
(4)在解决实际问题时要注意变量的取值范围应与实际情况相符,例如:涉及到个数时,变量应取正整数。涉及到钱,速度等问题,变量的取值应该为正数。
5.使用线性规划模型解决实际问题
(1)题目特点:叙述中也有两个核心变量,但条件多为涉及两核心变量的不等关系,且所求是关于两个核心变量的表达式,这类问题通常使用线性规划模型来解决问题
(2)与函数模型的不同之处
①函数模型:体现两核心变量之间的等量关系,根据一个变量的范围求另一个变量的范围(或最值)
②线性规划模型:体现关于两变量的不等关系,从而可列出不等式组,要解决的是含两个变量的表达式的最值。
(3)解题步骤:根据题目叙述确定未知变量(通常选择两个核心变量,其余变量用这两个进行表示),并列出约束条件和目标函数,然后利用数形结合的方式进行解决
(4)注意事项:在实际问题中,变量的取值有可能为整数,若最优解不是整数,则可在最优解附近寻找几对整点,代入到目标函数中并比较大小
6.使用三角函数模型解决实际问题
(1)题目特点:题目以几何图形(主要是三角形)作为基础,条件多与边角相关
(2)需要用到的数学工具与知识点:
①正弦定理:设三边所对的角分别为则有和对角为例
③三角函数表达式的化简与变形
④函数的值域
1.【2015高考新课标2文理】如图,长方形的边,,是的中点,点沿着边,与运动,.将动到两点距离之和表示为的函数,则的图大致为
【答案】B
2.【2014高考北京文第8题】加工爆米花,爆开且不糊的粒粒的百分比称为“可率”.特定条件下,可食用率加工时间单位:分钟满足的函数关系、、是常数,下图记录了实验的数据上述函数模型和实验数据,可以得到最佳加工时间为
A.分钟B.分钟C.分钟D.分钟
【答案】B
【变式】【2015高考四川,文8】某食品的保鲜时间(单位:小时)与储藏温度(单位:℃)满足函数关系(为自然对数的底数,为常数).若该食品在℃的保鲜时间是小时,在℃的保鲜时间是小时,则该食品在℃的保鲜时间是()
A.16小时B.20小时C.24小时D.21小时
【解析】本题考查指数函数的概念及其性质,考查函数模型在现实生活中的应用,考查整体思想,考查学生应用函数思想解决实际问题的能力.
由题意,得,于是当x=33时,y=e33k+b=(e11k)3·eb=×192=24(小时)
【答案】C
3.【2014福建,文9】要制作一个容积为,高为1m的无盖长方体容器,已知该溶器的底面造价是每平方米20元,侧面造价是是每平方米10元,则该容器的最低总造价是()
A.80元B.120元C.160元D.240元
【答案】C
4.【优选题】某工厂产品的年产量在吨至吨之间,年生产的总成本(万元)与年产量(吨)之间的关系可近似表示为,则每吨的成本最低时的年产量为()
吨吨吨吨
【解析】本题考点是函数模型在实际问题中的应用,由题意可知,成本,当且仅当即时取“”.
【答案】B
5.【优选题】一个人以6米/秒的速度去追赶停在交通灯前的的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为米,那么,此人()
A可在7秒内追上汽车可在9秒内追上汽车
不能追上汽车,但其间最近距离为14米不能追上汽车,但其间最近距离为7米
秒追上汽车,有,方程无解,因此不能追上汽车,由二次函数的性质可知,,最近距离为7米,故选D.
【答案】
6.【2016兰州模拟】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元.
(1)分别写出两类产品的收益与投资额的函数关系;
(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?
(2)设投资债券产品为万元,则投资股票类产品为万元,
依题意得;.
令;则;.
所以当,即时,收益最大3万元.
【答案】(1);(2)即时,收益最大3万元.
7.【2016衡水一中】研究表明:使全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中使CO2浓度增加.据测,2010年、2011年、2012年大气中的CO2浓度分别比2009年增加了1个可比单位、3个可比单位、6个可比单位.若用一个函数模拟每年CO2浓度增加的可比单位数与年份增加数x的关系,模拟函数可选用二次函数f(x)=px2+qx+r(其中p,q,r为常数)或函数g(x)=a·bx+c(其中a,b,c为常数),且又知2014年大气中的CO2浓度比2009年增加了16个可比单位,请问用以上哪个函数作为模拟函数较好?
【解析】:若以f(x)=px2+qx+r作模拟函数,则依题意得:
解得p=,q=,r=0,所以f(x)=x2+x.
若以g(x)=a·bx+c作模拟函数,则
解得a=,b=,c=-3.所以
利用f(x),g(x)对2014年的CO2浓度作估算,则其数值分别为:f(5)=15可比单位,g(5)=17.25可比单位,
∵|f(5)-16|<|g(5)-16|,故选f(x)=x2+x作为模拟函数较好.
【答案】选f(x)=x2+x作为模拟函数较好.
%B.增加%C.减少9.5%D.不增不减
【解析】设原来的商品价格为1个单位,则四年后的价格为:,减少了%,故选A.
【答案】A
4.为迎接校庆,学校准备投入a元建造一个花圃(如图).已知矩形ABCD所围区域的造价为40元/,其余的两个半圆及两个圆(直径等于AB)所围区域的造价为20元/.由于矩形ABCD区域要种名贵花卉,故建造时要求矩形ABCD的面积越大越好.那么,当矩形ABCD的面积达到最大时,()
A.B.C.D.
【解析】设依题意,有
,
即.由均值不等式,得
,
从而有,
等号当且仅当即时成立.
所以,当时,矩形ABCD的面积达到最大.故答案为D.校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量y(单位:千套)与销售价格(单位:元/套)满足的关系式,其中为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资、办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
解代入关系式可得.
(2)思路:依题意可得售出一套,所得利润为元所以总的利润,其中,利用导数判定的单调性进而可求得最大值点
【答案】(1))在取得最大值即.如图,某海滨浴场的岸边可近似地看成直线,位于岸边A处的救生员发现海中B处有人求救,救生员没有直接从A处游向B处,而是沿岸边自A跑到距离B最近的D处,然后游向B处,若救生员在岸边的行进速度为6米/秒,在海中的行进速度为2米/秒,。
(1)分析救生员的选择是否正确;
(2)在AD上找一点C,使救生员从A到B的时间为最短,并求出最短时间
(2)思路:要求得时间的最值,考虑创设一个变量,并构造出时间关于的函数再求出的最小值即可,则,所以时间,再求导求出的最小值即可,则,设所用时间为
令,即解不等式,解得
在单调递减在单调递增(秒时救生员所用的时间最短为秒天内每件的销售价格(元)与时间(天)的函数关系用如图表示,该商品在天内日销售量(件)与时间(天)之间的关系如下表:
(表
(1)根据提供的图象(如图),写出该商品每件的销售价格与时间的函数关系式;
(2)根据表提供的数据,写出日销售量与时间的一次函数关系式;
(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是天中的第几天.(日销售金额每件的销售价格日销售量)
【解析】(1)
(2)
可设日销售量与时间的一次函数关系式为,将,代入易求得,,
日销售量与时间的一个函数关系式为(,).
(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是天中的第几天.(日销售金额每件的销售价格日销售量)
当,时,
(天)时,(元),
当,时,
在时,函数递减.(天)时,(元).
,(元).
答:日销售金额的最大值为元,且在最近天中的第天日销售金额最大.
D
P
C
B
O
A
x
|
|