∑∑∑∑ Thisarticlehasbeenacceptedforpublicationinafutureissueofthisjournal,buthasnotbeenfullyedited.Contentmaychangepriortofinalpublication.Citationinformation:DOI10.1109/TVT.2020.3006318,IEEE TransactionsonVehicularTechnology 6 TableII:Computationalcomplexitycomparisonofdifferentalgorithms 16 Complex-valuedmultiplications(10) AlgorithmsComputationalcomplexity N=50N=100 rr K+1 a2 ProposedStrOMPOf(K+1)JKNN+[JN(s+2s+9.617.6 atrr s=1 233 AUD 2(sN))+J(s+(sN))]g tt 2 AUDpartofTLSSCS[7]Of(K+1)[N(KN+J)+NJKN]+12.544.2 artrt K+1 a223 [N+2N(sN)+(sN)]g rrtt s=1 K a2 AUDlowerboundOfKJKNN+[JN(s+2s+7.113.2 atrr s=1 233 2(sN))+J(s+(sN))]g tt K a23 ProposedSIC-SSPOfJ[2sN(N+1)+14Ns+11s]g2.14.0 rtr s=1 23 DatadetectionpartofO[JNKN+2N(KN)+(KN)]0.150.28 ratratat Datadetection TLSSCS[7] 23 GSP[8]OfJ[2sN(N+1)+14NK+11K]g0.651.2 rtraa 23 BERlowerboundO(JNK+2NK+K)0.010.02 raraa 23 Benchmark1O(JNK+2NK+K)0.010.02 raraa 1 Thenumberofthecomplex-valuedmultiplicationsiscalculatedundertheparametersJ=12,N=4,K=100,K=8. ta BERperformanceversusthenumberofreceiveantennasN,REFERENCES r respectively.ObservefromFig.4thatwhenNbecomeslarge, r[1]C.Bockelmannetal.,“Massivemachine-typecommunicationsin5G: PhysicalandMAC-layersolutions,”IEEECommun.Mag.,vol.54,no. theAUDperformanceorBERoftheproposed“StrOMP+SIC- 9,pp.59-65,Sept.2016. SSP”solutionisbetterthanthatoftheTLSSCSdetectorand [2]B.K.Jeong,B.ShimandK.B.Lee,“MAP-basedactiveuseranddata the“StrOMP+GSP”solution.Thisindicatesthesuperiorityof detectionformassivemachine-typecommunications,”IEEETrans.Veh. Technol.,vol.67,no.9,pp.8481-8494,Sept.2018. theproposedsolutionforemploymentinmMIMO. [3]B.Wang,L.Dai,T.MirandZ.Wang,“Jointuseractivityanddata Thecomputationalcomplexityofdifferentsolutionsinour detectionbasedonstructuredcompressivesensingforNOMA,”IEEE simulationsarecomparedinTableII,wherethedifferent Commun.Lett.,vol.20,no.7,pp.1473-1476,Jul.2016. algorithmsaredividedintotwopartsbasedontheirfunctions[4]Y.Du,C.Cheng,B.Dong,Z.chen,X.Wang,J.FangandS.Li,“Block- sparsity-basedmultiuserdetectionforuplinkgrant-freeNOMA,”IEEE (i.e.,AUDordatadetection).Itisobviousthatthenumber Trans.WirelessCommun.,vol.17,no.12,pp.7894-7909,Dec.2018. ofcomplex-valuedmultiplicationsoftheproposedStrOMP [5]B.Wang,L.Dai,Y.Zhang,T.MirandJ.Li,“Dynamiccompressive algorithmisalittlelowerthanthatintheAUDpartofthesensing-basedmulti-userdetectionforuplinkgrant-freeNOMA,”IEEE Commun.Lett.,vol.20,no.11,pp.2320-2323,Nov.2016. TLSSCSalgorithm(i.e.,lines1-14ofAlgorithm1in[7]) [6]Y.Du,B.Dong,Z.Chen,X.Wang,Z.Liu,P.GaoandS.Li,“Ef?cient whenN=50.IfNisdoubled,thenumberofcomplex- rr multi-userdetectionforuplinkgrant-freeNOMA:Prior-information aidedadaptivecompressivesensingperspective,”IEEEJ.Select.Areas valuedmultiplicationsoftheproposedStrOMPalgorithm Commun.,vol.35,no.12,pp.2812-2828,Jul.2017. increaseslinearlywithN,whereasthecomplexityofthe r [7]X.Ma,J.Kim,D.YuanandH.Liu,“Two-levelsparsestructurebased AUDpartoftheTLSSCSalgorithmisnearlyproportionalto compressivesensingdetectorforuplinkspatialmodulationwithmassive connectivity,”IEEECommun.Lett.,vol.23,no.9,pp.1594-1597,Sept. thesquareofN.Hence,itisclearthatourStrOMPalgorithm r 2019. ismoresuitableformMIMOinconjunctionwithlargeantenna [8]Z.Gao,L.Dai,Z.Wang,S.ChenandL.Hanzo,“Compressive-sensing arrays.Furthermore,afterobtainingtheactiveMTDs,the basedmultiuserdetectorforthelarge-scaleSM-MIMOuplink,”IEEE datadetectionpartoftheTLSSCSalgorithmbecomesanLSTrans.Veh.Technol.,vol.65,no.10,pp.1860-1865,Feb.2017. [9]L.Xiao,P.Yang,Y.Xiao,S.Fan,M.DiRenzo,W.Xiangand operation(i.e.,line15ofAlgorithm1in[7])associatedwith S.Li,“Ef?cientcompressivesensingdetectorsforgeneralizedspatial alimitedBERperformanceforthemedia-modulatedsignal. modulationsystems,”IEEETrans.Veh.Technol.,vol.66,no.2,pp. Hence,ourproposedSIC-SSPalgorithmattainsabetterdata1284-1298,Feb.2017. [10]L.Xiao,Y.Xiao,P.Yang,J.Liu,S.LiandW.Xiang,“Space-timeblock detectionperformanceatthecostofahighercomputational codeddifferentialspatialmodulation,”IEEETrans.Veh.Technol.,vol. complexity. 66,no.10,pp.8821-8834,Oct.2017. [11]L.Zhang,M.ZhaoandL.Li,“Low-complexitymulti-userdetectionfor MBMinuplinklarge-scaleMIMOsystems,”IEEECommun.Lett.,vol. 22,no.8,pp.1568-1571,Aug.2018. V.CONCLUSIONS [12]B.Shamasundar,S.Jacob,L.N.TheagarajanandA.Chockalingam, “Media-basedmodulationfortheuplinkinmassiveMIMOsystems,” AmediamodulationbasedmMTCULschemerelyingon IEEETrans.Veh.Technol.,vol.67,no.9,pp.8169-8183,Sept.2018. mMIMOdetectionattheBSwasproposedforachieving [13]J.W.Choi,B.Shim,Y.Ding,B.Rao,D.I.Kim,“Compressedsensing reliablemassiveaccesswithanenhancedthroughput.Theforwirelesscommunications:Usefultipsandtricks”,Commun.Surveys Tuts.,vol.19,no.3,pp.1527-1550,2017. sparsenatureofthemMTCtraf?cmotivatedustopropose [14]A.K.Khandani,“Media-basedmodulation:Anewapproachtowireless aCS-basedsolution.First,anStrOMPalgorithmwaspro- transmission,”inProc.IEEEInt.Symp.Inf.Theory,Jul.2013,pp.3050- posedtodetecttheactiveMTDsexhibitingblock-sparsity3054. [15]Y.NareshandA.Chockalingam,“Onmedia-basedmodulationusingRF andstructuredsparsityoftheULsignals,whichimproved mirrors,”IEEETrans.Veh.Tech.,vol.66,no.6,pp.4967-4983,June theperformance.Then,anSIC-SSPalgorithmwasproposed 2017. [16]E.Basar,“Media-basedmodulationforfuturewirelesssystems:A fordetectingthedataofthedetectedMTDsbyexploitingthe tutorial,”IEEEWirelessCommun.,vol.26,no.5,pp.160-166,Oct. structuredsparsityofmedia-modulatedsymbolsforenhancing 2019. theperformance.Furthermore,weanalysedthecomputational [17]J.A.TroppandA.C.Gilbert,“Signalrecoveryfromrandommeasure- mentsviaorthogonalmatchingpursuit,”inIEEETrans.Inform.Theory, complexityoftheproposedalgorithms.Finally,oursimulation vol.53,no.12,pp.4655-4666,Dec.2007. quali?edthebene?tsoftheproposedsolution. 0018-9545(c)2020IEEE.Personaluseispermitted,butrepublication/redistributionrequiresIEEEpermission.Seehttp://www.ieee.org/publications_standards/publications/rights/index.htmlformoreinformation. |
|