配色: 字号:
1_《矩形的性质》教案设计-第一次教学设计
2021-06-25 | 阅:  转:  |  分享 
  
《矩形

一、教学目标:

1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.

2.会初步运用矩形的概念和性质来解决有关问题.

3.渗透运动联系、从量变到质变的观点.

二、重点、难点

1.重点:矩形的性质.

2.难点:矩形的性质的灵活应用.

三、课堂引入

1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?











2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)

3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.

矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).

矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.

【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.

①随着∠α的变化,两条对角线的长度分别是怎样变化的?

②当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?







操作,思考、交流、归纳后得到矩形的性质.

矩形性质1矩形的四个角都是直角.

矩形性质2矩形的对角线相等.



如图,在矩形ABCD中,AC、BD相交于点O,由性质2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.





四、例习题分析

例1(教材P104例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.

分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.

解:∵四边形ABCD是矩形,

∴AC与BD相等且互相平分.

∴OA=OB.

又∠AOB=60°,

∴△OAB是等边三角形.

∴矩形的对角线长AC=BD=2OA=2×4=8(cm).

例2(补充)已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.

分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.

证明:∵四边形ABCD是矩形,

∴∠B=90°,且AD∥BC.∴∠1=∠2.

∵DF⊥AE,∴∠AFD=90°.

∴∠B=∠AFD.又AD=AE,

∴△ABE≌△DFA(AAS).

∴AF=BE.

∴EF=EC.

五、随堂练习

1.(填空)

(1)矩形的定义中有两个条件:一是,二是.

(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.

(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为cm,cm,cm,cm.

2.(选择)

(1)下列说法错误的是().

(A)矩形的对角线互相平分(B)矩形的对角线相等

(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形

(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().

(A)2对(B)4对(C)6对(D)8对

3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.















1







献花(0)
+1
(本文系张莹图书馆z...首藏)