第2课时用计算器求算术平方根及其大小比较
1.会比较两个数的算术平方根的大小;(重点)会估算一个数的算术平方根的大致范围掌握估算的方法形成估算的意识;(难点)会用计算器求一个数的算术平方根.
一、情境导入请大家四个人为一组拿出自己准备好1的正方形纸片和剪刀按虚线剪开拼成一个大的正方形.
因为两个小正方形面积之和等于大正方形的面积所以根据正方形面积公式可知a=2那么a是多少?这个数是多大呢?二、合作探究探究点一:算术平方根的估算【类型一】估算算术平方根的大致范围估算-2的值()在1和2之间B.在2和3之间在3和4之间D.在4和5之间解析:因为4所以4<所以2<-2<3.故选方法总结:本题利用被开方数两边比较接近的完全平方数的算术平方根估计这个数的算术平方根的大小.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型确定算术平方根的整数部分与小数部分已知a是的整数部分是的小数部分求(-a)+(b+2)的值.解析:本题综合考查有理数与无理数的关系.因为2<所以的整数部分是2即a=2.是无限不循环小数它的小数部分应是-2即b=-2再a,b代入代数式求值.解:因为2<是的整数部分所以a=2.因为b是的小数部分所以b=-2.所以(-a)+(b+2)=(-2)+(-2+2)=-8+8=0.方法总结:解此题的关键是确定的整数部分和小数部分(用这个无理数减去它的整数部分即为小数变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型三】用估算法比较数的大小通过估算比较下列各组数的大小:(1)与1.9;(2)与1.5.解析:(1)估算的大小或求1.9的平方比较5与1.9的大小;(2)先估算的大小再比较与2的大小从而进一步比较与1.5的大小.解:(1)因为5>4所以,即所以;(2)因为6>4所以,所以所以=1.5即方法总结:比较两数的大小常用方法有:①作差比较法;②求值比较法;③移因式于根号内再比较大小;④利用平方法比较无理数的大小等.比较无理数与有理数的大小时要先估算无理数的近似值再比较它与有理数的大小.变式训练:见《学练优》本课时练习“课后巩固提升”第6题探究点二:用计算器求算术平方根用计算器计算:(1);(2(精确到0.001);(3)(精确到0.001).解析:(1)按键:“=”即可;(2)按键:“=”再取近似值即可;(3)按键:“=”再取近似值即可.解:(1)=35;(2);(3≈3.606.
方法总结:取近似值时要看精确到的位数的下一位再四舍五入.探究点三:算术平方根的实际应用全球气候变暖导致一些冰川融化并消失在冰川消失12年后一种低等植物苔藓开始在岩石上生长.每个苔藓都会长成近似圆形苔藓的直径和冰川消失的时间近似地满足如下关系式:d=7×(t≥12).其中d代表苔藓的直径单位是厘米;t代表(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米则冰川约是在多少年前消失的?解析:(1)根据题意可知是求当t=16时d的值直接把对应数值代入关系式即可求解;(2)根据题意可知是求当d=35时t的值直接把对应数值代入关系式即可求解.解:(1)当t=16时=7×=7×2=(厘米).答:冰川消失16年后苔藓的直径是14厘米;(2)当d=35时=5即t-12=25解得t=37(年).答:冰川约是在37年前消失的.方法总结:本题考查算术平方根的实际应用注意实际问题中涉及开平方通常取算术平方根.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计估算用计算器求一个正数的算术平方根
在解决问题的同时引导学生对解决方法进行总结和学生一起归纳出估算的方法.让学生从被动学习到主动探究激发学生的学习热情培养学生自主学习数学的能力.通过独立思考与小组讨论相结合的方式解决新的实际问题让学生初步体会数学知识的实际应用价值
第1页共2页
|
|