配色: 字号:
基于遥感与气象数据的冬小麦主产区籽粒蛋白质含量预报
2022-04-24 | 阅:  转:  |  分享 
  
智慧农业(中英文)SmartAgricultureVol.3,No.2
22
proximalremotesensing[J].EuropeanJournalofLIZ,YANGG,WANGJ,etal.Remotesensingof
Agronomy,2015,71:53-62.grainproteincontentincereal:Areview[J].ChinaAg‐
[15]LIZ,WANGJ,XUX,etal.Assimilationoftwovari‐riculturalInformatics,2018,30(1):46-54.
ablesderivedfromhyperspectraldataintotheDSSAT-[17]FELDSTAINA,WOLTMANH,MACKAYJC,etal.
CERESmodelforgrainyieldandqualityestima‐Anintroductiontohierarchicallinearmodeling[J].Tu‐
tion[J].RemoteSensing,2015,7(9):12400-12418.torialsinQuantitativeMethodsforPsychology,2012,8
[16]李振海,杨贵军,王纪华,等.作物籽粒蛋白质含量遥(1):62-69.
感监测预报研究进展[J].中国农业信息,2018,30(1):[18]YED,NGYK,LIANY.Cultureandhappiness[J].So‐
46-54.cialIndicatorsResearch,2015,123(2):519-547.
EstimatingGrainProteinContentofWinterWheatin
ProducingAreasBasedonRemoteSensingand
MeteorologicalData
1,2341,251,2
WANGLin,LIANGJian,MENGFanyu,MENGYang,ZHANGYongtao,LIZhenhai
(1.KeyLaboratoryofQuantitativeRemoteSensinginMinistryofAgricultureandRuralAffairs/BeijingResearch
CenterforInformationTechnologyinAgriculture,Beijing100097,China;2.NationalEngineeringResearchCenter
forInformationTechnologyinAgriculture,Beijing100097,China;3.NationalAgro-techExtensionandServiceCen‐
ter,Beijing100125,China;4.BeijingAgricultureTechnologyExtensionStation,Beijing100029,China;5.Jiangsu
NonidtAgriculturalScienceandTechnologyCo.Ltd,Nanjing210001,China)
Abstract:Withtherapiddevelopmentofeconomyandpeople''slivingstandards,people''sdemandsforcropshavechangedfrom
quantitytoquality.Theriseandrapiddevelopmentofremotesensingtechnologyprovidesaneffectivemethodforcropmonitor‐
ing.Accuratelypredictingwheatqualitybeforeharvestishighlydesirabletooptimizemanagementforfarmers,gradingharvest
andcategorizedstoragefortheenterprise,futuretradingprice,andpolicyplanning.Inthisresearch,themainproducingareasof
winterwheat(Henan,Shandong,Hebei,AnhuiandJiangsuprovinces)werechosedastheresearchareas,withcollected898
samplesofwinterwheatovergrowingseasonsof2008,2009and2019.AHierarchicalLinearmodel(HLM)forestimating
grainproteincontent(GPC)ofwinterwheatatheading-floweringstagewasconstructedtoestimatetheGPCofwinterwheatin
2019byusingmeteorologicalfactors,remotesensingimageryandglutentypeofwinterwheat,whereremotesensingdataand
glutentypewereinputvariablesatthefirstlevelofHLMandthemeteorologicaldatawasusedasthesecondlevelofHLM.To
solvetheproblemofdeviationininterannualandspatialexpansionofGPCestimationmodel,maximumvaluesofEnhanced
VegetationIndex(EVI)fromApriltoMaycalculatedbymoderate-resolution-imagingspectroradiometerwerecomputedtorep‐
resentthecropgrowthstatusandusedintheGPCestimationmodel.Criticalmeteorologicalfactors(temperature,precipitation,
radiation)andtheircombinationsforGPSestimationwerecomparedandthebestestimationmodelwasusedinthisstudy.The
resultsshowedthattheaccuracyofGPCconsideringthreemeteorologicalfactorsperformedhigheraccuracy(Calibratedset:
22
R=0.39,RMSE=1.04%;Verificationset:R=0.43,RMSE=0.94%)thantheothersGPCmodelwithtwometeorologicalfac‐
torsorsinglemeteorologicalfactor.Therefore,threemeteorologicalfactorswereusedasinputvariablestobuildawinterwheat
GPCforecastmodelfortheregionalwinterwheatGPCforecastinthisresearch.TheGPCestimationmodelwasappliedtothe
GPCremotesensingestimationofthemainwinterwheat-producingareas,andtheGPCpredictionmapofthemainwinter
wheatproducingareasin2019wasobtained,whichcouldobtainthedistributionofwinterwheatqualityintheHuang-Huai-Hai
region.Theresultsofthisstudycouldprovidedatasupportforsubsequentwheatplantingregionalizationtoachievegreen,high-
yield,high-qualityandefficientgrainproduction.
Keywords:winterwheat;grainproteincontent(GPC);remotesensing;hierarchicallinearmodel(HLM);meteorologicaldata
(登陆www.smartag.net.cn免费获取电子版全文)
献花(0)
+1
(本文系智慧农业资...原创)