智慧农业(中英文)SmartAgricultureVol.3,No.2 22 proximalremotesensing[J].EuropeanJournalofLIZ,YANGG,WANGJ,etal.Remotesensingof Agronomy,2015,71:53-62.grainproteincontentincereal:Areview[J].ChinaAg‐ [15]LIZ,WANGJ,XUX,etal.Assimilationoftwovari‐riculturalInformatics,2018,30(1):46-54. ablesderivedfromhyperspectraldataintotheDSSAT-[17]FELDSTAINA,WOLTMANH,MACKAYJC,etal. CERESmodelforgrainyieldandqualityestima‐Anintroductiontohierarchicallinearmodeling[J].Tu‐ tion[J].RemoteSensing,2015,7(9):12400-12418.torialsinQuantitativeMethodsforPsychology,2012,8 [16]李振海,杨贵军,王纪华,等.作物籽粒蛋白质含量遥(1):62-69. 感监测预报研究进展[J].中国农业信息,2018,30(1):[18]YED,NGYK,LIANY.Cultureandhappiness[J].So‐ 46-54.cialIndicatorsResearch,2015,123(2):519-547. EstimatingGrainProteinContentofWinterWheatin ProducingAreasBasedonRemoteSensingand MeteorologicalData 1,2341,251,2 WANGLin,LIANGJian,MENGFanyu,MENGYang,ZHANGYongtao,LIZhenhai (1.KeyLaboratoryofQuantitativeRemoteSensinginMinistryofAgricultureandRuralAffairs/BeijingResearch CenterforInformationTechnologyinAgriculture,Beijing100097,China;2.NationalEngineeringResearchCenter forInformationTechnologyinAgriculture,Beijing100097,China;3.NationalAgro-techExtensionandServiceCen‐ ter,Beijing100125,China;4.BeijingAgricultureTechnologyExtensionStation,Beijing100029,China;5.Jiangsu NonidtAgriculturalScienceandTechnologyCo.Ltd,Nanjing210001,China) Abstract:Withtherapiddevelopmentofeconomyandpeople''slivingstandards,people''sdemandsforcropshavechangedfrom quantitytoquality.Theriseandrapiddevelopmentofremotesensingtechnologyprovidesaneffectivemethodforcropmonitor‐ ing.Accuratelypredictingwheatqualitybeforeharvestishighlydesirabletooptimizemanagementforfarmers,gradingharvest andcategorizedstoragefortheenterprise,futuretradingprice,andpolicyplanning.Inthisresearch,themainproducingareasof winterwheat(Henan,Shandong,Hebei,AnhuiandJiangsuprovinces)werechosedastheresearchareas,withcollected898 samplesofwinterwheatovergrowingseasonsof2008,2009and2019.AHierarchicalLinearmodel(HLM)forestimating grainproteincontent(GPC)ofwinterwheatatheading-floweringstagewasconstructedtoestimatetheGPCofwinterwheatin 2019byusingmeteorologicalfactors,remotesensingimageryandglutentypeofwinterwheat,whereremotesensingdataand glutentypewereinputvariablesatthefirstlevelofHLMandthemeteorologicaldatawasusedasthesecondlevelofHLM.To solvetheproblemofdeviationininterannualandspatialexpansionofGPCestimationmodel,maximumvaluesofEnhanced VegetationIndex(EVI)fromApriltoMaycalculatedbymoderate-resolution-imagingspectroradiometerwerecomputedtorep‐ resentthecropgrowthstatusandusedintheGPCestimationmodel.Criticalmeteorologicalfactors(temperature,precipitation, radiation)andtheircombinationsforGPSestimationwerecomparedandthebestestimationmodelwasusedinthisstudy.The resultsshowedthattheaccuracyofGPCconsideringthreemeteorologicalfactorsperformedhigheraccuracy(Calibratedset: 22 R=0.39,RMSE=1.04%;Verificationset:R=0.43,RMSE=0.94%)thantheothersGPCmodelwithtwometeorologicalfac‐ torsorsinglemeteorologicalfactor.Therefore,threemeteorologicalfactorswereusedasinputvariablestobuildawinterwheat GPCforecastmodelfortheregionalwinterwheatGPCforecastinthisresearch.TheGPCestimationmodelwasappliedtothe GPCremotesensingestimationofthemainwinterwheat-producingareas,andtheGPCpredictionmapofthemainwinter wheatproducingareasin2019wasobtained,whichcouldobtainthedistributionofwinterwheatqualityintheHuang-Huai-Hai region.Theresultsofthisstudycouldprovidedatasupportforsubsequentwheatplantingregionalizationtoachievegreen,high- yield,high-qualityandefficientgrainproduction. Keywords:winterwheat;grainproteincontent(GPC);remotesensing;hierarchicallinearmodel(HLM);meteorologicaldata (登陆www.smartag.net.cn免费获取电子版全文) |
|