1.用一副三角板不能画出的角是()A.75°B.105°C.110°D.135°2.若∠α与∠β互补(∠α<∠β),则∠α与(∠β﹣∠α )的关系是()A.互补B.互余C.和为45°D.和为22.5°3.如图,两块三角板的直角顶点O重合在一起,∠BOD=35°,则 ∠AOC的度数为()A.35°B.45°C.55°D.65°4.如图,∠AOD=120°,OC平分∠AOD,OB平分∠AOC. 下列结论:①∠AOC=∠COD;②∠COD=2∠BOC;③∠AOB与∠COD互余;④∠AOC与∠AOD互补.其中,正确的个数是( )A.1B.2C.3D.45.如图,直线AB与直线CD交于点O.OE、OC分别是∠AOC与∠BOE的角平分线,则∠AOD为( )A.45°B.50°C.55°D.60°6.如图,点P在直线l外,点A、B在直线l上,若PA=4,PB=7,则点P到直线l的距离 可能是()A.3B.4C.5D.77.如图,∠AOD=∠DOB=∠COE=90°,互补的角有()A.5对B.6对C.7对D .8对8.计算:1800′=()A.10°B.18°C.20°D.30°9.在同一平面上,若∠BOA=60°,∠BOC=20° ,则∠AOC的度数是()A.80°B.40°C.20°或40°D.80°或40°10.一个角的余角比这个角的一半大15°, 则这个角的度数为()A.70°B.60°C.50°D.35°11.计算:90°﹣44°14′15″=.12.已知∠1与∠ 2互余,∠2与∠3互补,若∠1=33°27'',则∠3=.13.如图,直线AB、CD相交于点O,∠COE是直角,OF平分∠AO D,若∠BOE=42°,则∠AOF的度数是.14.计算:48°47''+53°35''=.15.钟表上的时间是8:30时, 时针与分针的夹角为度.16.若∠α的余角比它的补角的一半还少10°,那么∠α=°.17.如图,点A,O,B在同一条直线 上,射线OD和射线OE分别平分∠AOC和∠BOC,这时有∠BOC=2∠BOE=2,∠COD=∠AOD=,∠DOE= °.18.如图,已知OM平分∠AOC,ON平分∠BOC,∠AOB=90°,∠BOC=30°.则∠MON的度数为.19.(1 )如图1,∠AOC:∠COD:∠BOD=4:2:1,若∠AOB=140°,求∠BOC的度数;(2)如图2,∠AOC:∠COD:∠B OD=4:2:1,OP平分∠AOB,若∠AOB=β,求∠COP的度数(用含β的的代数式表示);(3)如图3,∠AOC=80°,∠B OD=20°,OE平分∠AOD,OF平分∠BOC,求∠EOF的度数.20.如图,OB是∠AOC的平分线,OD是∠COE的平分线.( 1)若∠AOB=42°,∠DOE=36°,求∠BOD的度数;(2)若∠AOD与∠BOD互补,且∠DOE=30°,求∠AOC的度数. 21.如图,已知△ACD和△BCE是两个直角三角形,∠ACD=90°,∠BCE=90°.∠ACB=150°,求∠DCE的度数.22 .如图,点A、O、E在同一直线上,∠AOB=50°,∠EOD=28°42'',OD平分∠COE.(1)∠AOB的余角是多少度?(2) 求∠COB的度数.23.如图,已知∠AOB=90°,∠COD=90°,OE为∠BOD的平分线,∠BOE=18°,求∠AOC的度数. 24.如图,直线AB、CD相交于点O,∠AOD=2∠BOD,OE平分∠BOD,OF平分∠COE.(1)求∠DOE的度数;(2)求∠ AOF的度数.参考答案1.解:75°可以用三角板的30°和45°画出,105°可以用三角板的45°和60°画出,110°用一副三角 板不能画出,135°可以用三角板的45°和90°画出.故选:C.2.解:因为∠α与∠β互补(∠α<∠β),所以∠α+∠β=180° ,所以∠α+(∠β﹣∠α)=,所以∠α与(∠β﹣∠α)的关系是互余.故选:B.3.解:∵两块三角板的直角顶点O重合在一起,∴∠BO D和∠AOC是同角的余角,∵∠BOD=35°,∴∠AOC=35°.故选:A.4.解:①∵OC平分∠AOD,∴∠AOC=∠COD=∠ AOD=60°,故①正确.②∵OB平分∠AOC,∴∠AOC=2∠BOC,∴∠COD=2∠BOC,故②正确;③∠AOB=∠BOC=∠ AOC=30°,∴∠AOB+∠COD=90°,∴∠AOB与∠COD互余,故③正确.④∵∠AOC+∠AOD=60°+120°=180 °,∴∠AOC与∠AOD互补,故④正确.故选:D.5.解:∵OE、OC分别是∠AOC与∠BOE的角平分线,∴∠AOE=∠EOC,∠ EOC=∠BOC,∴∠AOE=∠EOC=∠BOC,∵∠AOE+∠EOC+∠BOC=180°,∴∠AOE=∠EOC=∠BOC=60° ,∴∠AOD=60°.故选:D.6.解:因为垂线段最短,∴点P到直线l的距离小于4,故选:A.7.解:互补的角有:∠AOD与∠BO D,∠AOD与∠COE,∠COE与∠BOD,∠AOC与∠BOC,∠AOE与∠BOE共5对,故选:A.8.解:1800′=(1800 ÷60)°=30°,故选:D.9.解:(1)如图所示:当OC边在∠BOA的外部时,∠AOC=∠BOA+∠BOC=60°+20°=8 0°;(2)如图所示:当OC边在∠BOA的内部时,∠AOC=∠BOA﹣∠BOC=60°﹣20°=40°.故选:D.10.解:设这个 角为x°,则这个角的余角为(90°﹣x°),根据题意,得90﹣x=x+15,解得:x=50.所以这个角的度数为50°,故选:C.1 1.解:90°﹣44°14′15″=89°59′60″﹣44°14′15″=45°45′45″.故答案是:45°45′45″.12 .解:∵∠1与∠2互余,∴∠2=90°﹣∠1,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣(90°﹣∠1)=90°+∠1, ∵∠1=33°27'',∴∠3=123°27'',故答案为:123°27''.13.解:∵∠COE是直角,∴∠COE=90°,∴∠DOE =180°﹣90°=90°,∵∠BOE=42°,∴∠BOD=∠DOE﹣∠BOE=90°﹣42°=48°,∴∠AOD=180°﹣∠B OD=180°﹣48°=132°,∵OF平分∠AOD,∠AOF=∠AOD=×132°=66°.故答案为:66°.14.解:48°4 7''+53°35''=101°82′=102°22′,故答案为:102°22′.15.解:8:30时,钟表的时针与分针相距2.5份, 8:30时,钟表的时针与分针所夹小于平角的角为30°×2.5=75°.故答案为:75.16.解:由题意得,90°﹣∠α=(180° ﹣∠α)﹣10°,解得:∠α=20°,故答案为:20°.17.解:∵射线OD和射线OE分别平分∠AOC和∠BOC,∴∠BOC=2∠ BOE=2∠COE,∠COD=∠AOD=∠AOC,∴∠DOE=∠COE+∠COD=(∠BOC+∠COA)=180°=90°.故答案 为:∠COE,∠AOC,90°.18.解:∵∠AOC=∠AOB+∠BOC=90°+30°=120°.∵OM平分∠AOC,ON平分∠ BOC,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°.∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°.故答案为 :45°.19.解:(1)由∠AOC:∠COD:∠BOD=4:2:1,设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,∵∠ AOB=140°,∴x+2x+4x=140,解得:x=20,∴∠BOD=20°,∠COD=40°,∠AOC=80°,∴∠BOC=2 0°+40°=60°;(2)设∠BOD=x°,则∠AOC=4x°,∠COD=2x°,∴x+2x+4x=β,∴x=β,∴∠AOC=β ;∵OP平分∠AOB,∴∠AOP=,∴∠COP=β﹣=β;(3)∵OF平分∠BOC,∠BOD=20°,∴∠COF=(∠BOD+∠C OD)=10°+COD,∵OE平分∠AOD,∠AOC=80°,∴∠AOE=(∠AOC+∠COD)=40°+COD,∴∠COE=∠A OC﹣∠AOE=80°﹣(40°+COD)=40°﹣COD,∴∠EOF=∠COE+∠COF=40°﹣COD+10°+COD=50° .20.解:(1)∵OB是∠AOC的平分线,OD是∠COE的平分线,∠AOB=42°,∠DOE=36°,∴∠AOB=∠BOC==4 2°,∠COD=∠DOE=36°,∴∠BOD=∠BOC+∠DOC=42°+36°=78°;(2)∵∠AOD与∠BOD互补,∠BOC =,∴∠AOD+∠BOD=180°,∴∠AOC+∠COD+∠AOC+∠COD=180°,∵∠DOE=30°,∴∠COD=30°,∴ ,∴=180°,∴∠AOC=80°.21.解:∵∠ACD=90°,∠ACB=150°,∴∠BCD=∠ACB﹣∠ACD=150°﹣9 0°=60°,∴∠DCE=∠BCE﹣∠BCD=90°﹣60°=30°.∴∠DCE的度数为30°.22.解:(1)∵∠AOB=50° ,∴∠AOB的余角为:90°﹣50°=40°;(2)∵OD平分∠COE,∴∠EOC=2∠EOD=2×28°42''=57°24'',又 ∵∠AOE=∠AOB+∠COB+∠EOC,而且点A、O、E在同一直线上,∴∠AOE=180°,∴∠COB=∠AOE﹣∠AOB﹣∠E OC=180°﹣57°24''=72°36''.23.解:因为OE为∠BOD的平分线,所以∠BOD=2∠BOE,因为∠BOE=18°, 所以∠BOD=36°,又因为∠AOB=∠COD=90°,∠AOB+∠COD+∠AOC+∠BOD=360°,所以∠AOC=360°﹣ ∠AOB﹣∠COD﹣∠BOD(4分)=360°﹣90°﹣90°﹣36°=144°.24.解:(1)∵∠AOD+∠BOD=180°,∠AOD=2∠BOD,∴∠AOD=180°×=120°,∠BOD=180°×=60°,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=30°,(2)∵∠COE+∠DOE=180°,∴∠COE=180°﹣∠DOE=190°﹣30°=150°,∵OF平分∠COE,∴∠COF=∠EOF=∠COE=×150°=75°,又∵∠AOC=∠BOD=60°,∴∠AOF=∠AOC+∠COF=60°+75°=135° |
|