配色: 字号:
半导体二极管
2022-06-22 | 阅:  转:  |  分享 
  
电子技术第5章半导体器件5.2半导体二极管5.3半导体三极管5.4场效应晶体管5.1半导体及PN结
5.1半导体的导电特性半导体的导电特性:(可做成温度敏感元件,如热敏电阻)。掺杂性:往纯净的半导体中掺入某些杂质,导电
能力明显改变(可做成各种不同用途的半导体器件,如二极管、三极管和晶闸管等)。光敏性:当受到光
照时,导电能力明显变化(可做成各种光敏元件,如光敏电阻、光敏二极管、光敏三极管等)。热敏性
:当环境温度升高时,导电能力显著增强5.1.1本征半导体完全纯净的、具有晶体结构的半导体,称为本征半导体。晶体中
原子的排列方式硅单晶中的共价健结构共价健共价键中的两个电子,称为价电子。SiSiSiSi价电子Si
SiSiSi价电子价电子在获得一定能量(温度升高或受光照)后,即可挣脱原子核的束缚,成为自由电子(带负电),
同时共价键中留下一个空位,称为空穴(带正电)。本征半导体的导电机理这一现象称为本征激发。空穴温度愈高,晶体中产
生的自由电子便愈多。自由电子在外电场的作用下,空穴吸引相邻原子的价电子来填补,而在该原子中出现一个空穴,其结果相当于
空穴的运动(相当于正电荷的移动)。动画动画本征半导体的导电机理当半导体两端加上外电压时,在半导体中将出现两
部分电流(1)自由电子作定向运动?电子电流(2)价电子递补空穴?空穴电流注意:(1)本征半导
体中载流子数目极少,其导电性能很差;(2)温度愈高,载流子的数目愈多,半导体的导电性能也就愈好。所以,温度对半导体器
件性能影响很大。自由电子和空穴都称为载流子。自由电子和空穴成对地产生的同时,又不断复合。在一定温度下,载流子的
产生和复合达到动态平衡,半导体中载流子便维持一定的数目。1.1.2N型半导体和P型半导体掺杂后自由电子数
目大量增加,自由电子导电成为这种半导体的主要导电方式,称为电子半导体或N型半导体。掺入五价元素SiSiSiSi
p+多余电子磷原子在常温下即可变为自由电子失去一个电子变为正离子在本征半导体中掺入微量的杂质(某种元素),形成杂
质半导体。在N型半导体中自由电子是多数载流子,空穴是少数载流子。动画5.1.2N型半导体和P型半导体
掺杂后空穴数目大量增加,空穴导电成为这种半导体的主要导电方式,称为空穴半导体或P型半导体。掺入三价元素SiSi
SiSi在P型半导体中空穴是多数载流子,自由电子是少数载流子。B–硼原子接受一个电子变为负离子空穴无论N型
或P型半导体都是中性的,对外不显电性。动画5.1.3PN结1.PN结的形成多子的扩散运动内电场少子的漂移运动
浓度差P型半导体N型半导体内电场越强,漂移运动越强,而漂移使空间电荷区变薄。扩散的结果使空间电荷区变宽
。空间电荷区也称PN结扩散和漂移这一对相反的运动最终达到动态平衡,空间电荷区的厚度固定不变。-----
-----------+++++++++++++++++++++
+++--------形成空间电荷区动画2.PN结的单向导电性1).PN结加正向电压
(正向偏置)PN结变窄P接正、N接负外电场IF内电场被削弱,多子的扩散加强,形成较大的扩散电流。
PN结加正向电压时,PN结变窄,正向电流较大,正向电阻较小,PN结处于导通状态。内电场PN------
------------+++++++++++++++++++–
动画2)PN结加反向电压(反向偏置)外电场P接负、N接正内电场PN+++------+
++++++++---------++++++---–+PN结变宽2)
PN结加反向电压(反向偏置)外电场内电场被加强,少子的漂移加强,由于少子数量很少,形成很小的反向电流。IR
P接负、N接正温度越高少子的数目越多,反向电流将随温度增加。–+PN结加反向电压时,PN结变宽,反向电流较小,
反向电阻较大,PN结处于截止状态。内电场PN+++------+++++++++--
-------++++++---动画5.2半导体二极管5.2.1基本结构(a)点接
触型(b)面接触型结面积小、结电容小、正向电流小。用于检波和变频等高频电路。结面积大、正向电流大、结电容大,
用于工频大电流整流电路。(c)平面型用于集成电路制作工艺中。PN结结面积可大可小,用于大功率整流和开关电路中。阴极
引线阳极引线二氧化硅保护层P型硅N型硅(c)平面型金属触丝阳极引线N型锗片阴极引线外壳(
a)点接触型铝合金小球N型硅阳极引线PN结金锑合金底座阴极引线(b)面接触型5.2
半导体二极管二极管的结构示意图阴极阳极(d)符号D5.2.2伏安特性硅管0.5V,锗管0.
1V。反向击穿电压U(BR)导通压降外加电压大于死区电压二极管才能导通。外加电压大于反向击穿电压二极管被击穿,失
去单向导电性。正向特性反向特性特点:非线性硅0.6~0.8V锗0.2~0.3VUI死区电压PN+–PN
–+反向电流在一定电压范围内保持常数。5.2.3主要参数1.最大整流电流IOM二极管长期使用时,允许流
过二极管的最大正向平均电流。2.反向工作峰值电压URWM是保证二极管不被击穿而给出的反向峰值电压,一般是二极管反向击穿电压U
BR的一半或三分之二。二极管击穿后单向导电性被破坏,甚至过热而烧坏。3.反向峰值电流IRM指二极管加最高反向工作电压时的反向
电流。反向电流大,说明管子的单向导电性差,IRM受温度的影响,温度越高反向电流越大。硅管的反向电流较小,锗管的反向电流较大,为硅管
的几十到几百倍。二极管的单向导电性1.二极管加正向电压(正向偏置,阳极接正、阴极接负)时,二极管处于正向导通状
态,二极管正向电阻较小,正向电流较大。2.二极管加反向电压(反向偏置,阳极接负、阴极接正)时,二极管处于反向截止
状态,二极管反向电阻较大,反向电流很小。3.外加电压大于反向击穿电压二极管被击穿,失去单向导电性。4.二极管的反向
电流受温度的影响,温度愈高反向电流愈大。二极管电路分析举例定性分析:判断二极管的工作状态导通截止否则,正向管压降硅0
.6~0.7V锗0.2~0.3V分析方法:将二极管断开,分析二极管两端电位的高低或所加电压UD的正负。若V阳>V
阴或UD为正(正向偏置),二极管导通若V阳向导通时正向管压降为零,反向截止时二极管相当于断开。电路如图,求:UABV阳=-6VV阴=-12
VV阳>V阴二极管导通若忽略管压降,二极管可看作短路,UAB=-6V否则,UAB低于-6V一个管压降,
为-6.3V或-6.7V例1:取B点作参考点,断开二极管,分析二极管阳极和阴极的电位。在这里,二极管起钳位
作用。D6V12V3k?BAUAB+–两个二极管的阴极接在一起取B点作参考点,断开二极管,分析二极管
阳极和阴极的电位。V1阳=-6V,V2阳=0V,V1阴=V2阴=-12VUD1=6V,UD2=12V
∵UD2>UD1∴D2优先导通,D1截止。若忽略管压降,二极管可看作短路,UAB=0V例2:
D1承受反向电压为-6V流过D2的电流为求:UAB在这里,D2起钳位作用,D1起隔离作用。BD1
6V12V3k?AD2UAB+–ui>8V,二极管导通,可看作短路uo=8Vui<8V,二
极管截止,可看作开路uo=ui已知:二极管是理想的,试画出uo波形。8V例3:二极管的用途:
整流、检波、限幅、钳位、开关、元件保护、温度补偿等。ui18V参考点二极管阴极电位为8VD8VRuoui++––5.2.4稳压二极管1.符号UZIZIZM?UZ?IZ2.伏安特性稳压管正常工作时加反向电压使用时要加限流电阻稳压管反向击穿后,电流变化很大,但其两端电压变化很小,利用此特性,稳压管在电路中可起稳压作用。_+UIO电子技术
献花(0)
+1
(本文系在羡智库首藏)