配色: 字号:
01222004数学(文)
2022-12-10 | 阅:  转:  |  分享 
  


2004年普通高等学校招生全国统一考试

数学(文史类)(福建卷)



第Ⅰ卷(选择题 共60分)

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则 (A∩B)等于( )

A.{1,2,4} B.{4} C.{3,5} D.

2.的值是 ( )

A.2 B.2+ C.4 D.

3.命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充要条件;

命题q:函数y=的定义域是(-∞,-1∪[3,+∞.则 ( )

A.“p或q”为假 B.“p且q”为真

C.p真q假 D.p假q真

4.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是 ( )

A. B. C. D.

5.设Sn是等差数列的前n项和,若 ( )

A.1 B.-1 C.2 D.

6.已知m、n是不重合的直线,α、β是不重合的平面,有下列命题:

①若mα,n∥α,则m∥n;

②若m∥α,m∥β,则α∥β;

③若α∩β=n,m∥n,则m∥α且m∥β;

④若m⊥α,m⊥β,则α∥β.

其中真命题的个数是 ( )

A.0 B.1 C.2 D.3

7.已知函数y=log2x的反函数是y=f—1(x),则函数y= f—1(1-x)的图象是 ( )



8.已知a、b是非零向量且满足(a-2b) ⊥a,(b-2a) ⊥b,则a与b的夹角是 ( )

A. B. C. D.

9.已知展开式中常数项为1120,其中实数a是常数,则展开式中各项系数的和是

( )

A.28 B.38 C.1或38 D.1或28

10.如图,A、B、C是表面积为48π的球面上三点,

AB=2,BC=4,∠ABC=60o,O为球心,则直线

OA与截面ABC所成的角是( )

A.arcsin B.arccos

C.arcsin D.arccos

11.定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)= x-2,则 ( )

A.f(sin)f(cos)

C.f(sin1)f(cos)

12.如图,B地在A地的正东方向4 km处,C

地在B地的北偏东30°方向2 km处,河流

的沿岸PQ(曲线)上任意一点到A的距离

比到B的距离远2km,现要在曲线PQ上任

意选一处M建一座码头,向B、C两地转运

货物,经测算,从M到B、C两地修建公路

的费用都是a万元/km、那么修建这两条公路

的总费用最低是( )

A.(+1)a万元 B.(2-2) a万元

C.2a万元 D.(-1) a万元

第Ⅱ卷(非选择题 共90分)

二、填空题:本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.

13.直线x+2y=0被曲线x2+y2-6x-2y-15=0所截得的弦长等于 .

14.设函数则实数a的取值范围是 .

15.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是 .

16.图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器(图2).当这个正六棱柱容器的底面边长为 时,其容积最大.

















三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.

17.(本小题满分12分)

设函数f(x)=a·b,其中向量a=(2cosx,1),b=(cosx,sin2x),x∈R.

(Ⅰ)若f(x)=1-且x∈[-,],求x;

(Ⅱ)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值.















18.(本小题满分12分)

甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.

(Ⅰ)分别求甲、乙两人考试合格的概率;

(Ⅱ)求甲、乙两人至少有一人考试合格的概率.





































































19.(本小题满分12分)

在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M为AB的中点.

(Ⅰ)证明:AC⊥SB;

(Ⅱ)求二面角N—CM—B的大小;

(Ⅲ)求点B到平面SCM的距离.



































































20.(本小题满分12分)

某企业2003年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降.若不能进行技术改造,预测从今年起每年比上一年纯利润减少20万元,今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+)万元(n为正整数).

(Ⅰ)设从今年起的前n年,若该企业不进行技术改造的累计纯利润为An万元,进行技术改造后的累计纯利润为Bn万元(须扣除技术改造资金),求An、Bn的表达式;

(Ⅱ)依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?





























































21.(本小题满分12分)

如图,P是抛物线C:y=x2上一点,直线l过点P并与抛物线C在点P的切线垂直,l与抛物线C相交于另一点Q.

(Ⅰ)当点P的横坐标为2时,求直线l的方程;

(Ⅱ)当点P在抛物线C上移动时,求线段PQ中点M的轨迹方程,并求点M到x轴的最短距离.



































































22.(本小题满分14分)

已知f(x)=在区间[-1,1]上是增函数.

(Ⅰ)求实数a的值组成的集合A;

(Ⅱ)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.



































































2004年普通高等学校招生全国统一考试

数学答案(文史类)(福建卷)



一、1.A 2.C 3.D 4.B 5.A 6.B 7.C 8.B 9.C 10.D 11.C 12.B

二、13.4 14.(-∞,-1) 15.63 16.2/3

三、

17. 本小题主要考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,考查运算能力.满分12分.

解:(Ⅰ)依题设,f(x)=2cos2x+sin2x=1+2sin(2x+).

由1+2sin(2x+)=1-,得sin(2x+)=-.

∵-≤x≤,∴-≤2x+≤,∴2x+=-,

即x=-.

(Ⅱ)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.

由(Ⅰ)得 f(x)=2sin2(x+)+1. ∵|m|<,∴m=-,n=1.

18.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.

解:(Ⅰ)设甲、乙两人考试合格的事件分别为A、B,则

P(A)===, P(B)===.

答:甲、乙两人考试合格的概率分别为

(Ⅱ)解法一、因为事件A、B相互独立,所以甲、乙两人考试均不合格的概率为

P()=P()P()=(1-)(1-)=.

∴甲、乙两人至少有一人考试合格的概率为

P=1-P()=1-=.

答:甲、乙两人至少有一人考试合格的概率为.

解法二:因为事件A、B相互独立,所以甲、乙两人至少有一人考试合格的概率为

P=P(A·)+P(·B)+P(A·B)=P(A)P()+P()P(B)+P(A)P(B)

=×+×+×=.

答:甲、乙两人至少有一人考试合格的概率为.

19.本小题主要考查直线与直线,直线与平面,二面角,点到平面的距离等基础知识,考查空间想象能力和逻辑推理能力.满分12分.

解法一:(Ⅰ)取AC中点D,连结DS、DB.

∵SA=SC,BA=BC,

∴AC⊥SD且AC⊥DB,

∴AC⊥平面SDB,又SB平面SDB,

∴AC⊥SB.

(Ⅱ)∵SD⊥AC,平面SAC⊥平面ABC,

∴SD⊥平面ABC.

过D作DE⊥CM于E,连结SE,则SE⊥CM,CM-A的平面角.

由已知有,所以DE=1,又SA=SC=2,AC=4,∴SD=2.

在Rt△SDE中,tan∠SED==2,

∴二面角S-CM—A的大小为arctan2.

(Ⅲ)在Rt△SDE中,SE=,CM是边长为4 正△ABC的中线,

. ∴S△SCM=CM·SE=,

设点B到平面SCM的距离为h,

由VB-SCM=VS-CMB,SD⊥平面ABC, 得S△SCM·h=S△CMB·SD,

∴h= 即点B到平面SCM的距离为

解法二:(Ⅰ)取AC中点O,连结OS、OB.

∵SA=SC,BA=BC,

∴AC⊥SO且AC⊥BO.

∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC

∴SO⊥面ABC,∴SO⊥BO.

如图所示建立空间直角坐标系O-xyz.

则A(2,0,0),C(-2,0,0),

S(0,0,2),B(0,2,0).

∴=(-4,0,0),=(0,-2,2),

∵·=(-4,0,0)·(0,-2,2)=0,

∴AC⊥BS.

(Ⅱ)由(Ⅰ)得M(1,,0),,

=(2,0,2). 设n=(x,y,z)为平面SCM的一个法向量,



∴n=(-1,,1), 又=(0,0,2)为平面ABC的一个法向量,

∴cos(n,)==

∴二面角S-CM-A的大小为arccos

(Ⅲ)由(Ⅰ)(Ⅱ)得=(2,2,0),

n=(-1,,1)为平面SCM的一个法向量,

∴点B到平面SCM的距离d=

20.本小题主要考查建立函数关系式、数列求和、不等式的等基础知识,考查运用数学知识解决实际问题的能力.满分12分.

解:(Ⅰ)依题设,An=(500-20)+(500-40)+…+(500-20n)=490n-10n2;

Bn=500[(1+)+(1+)+…+(1+)]-600=500n--100.

(Ⅱ)Bn-An=(500n--100) -(490n-10n2)

=10n2+10n--100=10[n(n+1) - -10].

因为函数y=x(x+1) - -10在(0,+∞)上为增函数,

当1≤n≤3时,n(n+1) - -10≤12--10<0;

当n≥4时,n(n+1) - -10≥20--10>0.

∴仅当n≥4时,Bn>An.

答:至少经过4年,该企业进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润.

21. 本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力.满分12分.

解:(Ⅰ)把x=2代入,得y=2, ∴点P坐标为(2,2).

由 , ① 得, ∴过点P的切线的斜率k切=2,

直线l的斜率kl=-= ∴直线l的方程为y-2=-(x-2),

即 x+2y-6=0.

(Ⅱ)设

∵ 过点P的切线斜率k初=x0,当x0=0时不合题意,

∴ 直线l的斜率kl=-=,

直线l的方程为 ②

方法一:联立①②消去y,得x2+x-x02-2=0. 设Q

∵M是PQ的中点,



消去x0,得y=x2+(x≠0)就是所求的轨迹方程.

由x≠0知

上式等号仅当时成立,所以点M到x轴的最短距离是

方法二:

设Q则

由y0=x02,y1=x12,x=

∴ y0-y1=x02-x12=(x0+x1)(x0-x1)=x(x0-x1),

∴ ∴

将上式代入②并整理,得 y=x2+(x≠0)就是所求的轨迹方程.

由x≠0知

上式等号仅当时成立,所以点M到x轴的最短距离是

22.本题主要考查函数的单调性,导数的应用和不等式等有关知识,考查数形结合及分类讨论思想和灵活运用数学知识分析问题和解决问题的能力.满分14分.

解:(Ⅰ)f'(x)=4+2 ∵f(x)在[-1,1]上是增函数,

∴f'(x)≥0对x∈[-1,1]恒成立,

即x2-ax-2≤0对x∈[-1,1]恒成立. ①

设(x)=x2-ax-2,

方法一:

(1)=1-a-2≤0,

① -1≤a≤1,

(-1)=1+a-2≤0.

∵对x∈[-1,1],只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0

∴A={a|-1≤a≤1}.

方法二:

≥0, <0,

① 或

(-1)=1+a-2≤0 (1)=1-a-2≤0

0≤a≤1 或 -1≤a<0

-1≤a≤1.

∵对x∈[-1,1],只有当a=1时,f'(-1)=0以及当a=-1时,f'(1)=0

∴A={a|-1≤a≤1}.

(Ⅱ)由

∵△=a2+8>0

∴x1,x2是方程x2-ax-2=0的两非零实根,

x1+x2=a,

∴ 从而|x1-x2|==.

x1x2=-2,

∵-1≤a≤1,∴|x1-x2|=≤3.

要使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,

当且仅当m2+tm+1≥3对任意t∈[-1,1]恒成立,

即m2+tm-2≥0对任意t∈[-1,1]恒成立. ②

设g(t)=m2+tm-2=mt+(m2-2),

方法一:

g(-1)=m2-m-2≥0,



g(1)=m2+m-2≥0,

m≥2或m≤-2.

所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.

方法二:

当m=0时,②显然不成立;

当m≠0时,

m>0, m<0,

② 或

g(-1)=m2-m-2≥0 g(1)=m2+m-2≥0

m≥2或m≤-2.

所以,存在实数m,使不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立,其取值范围是{m|m≥2,或m≤-2}.







11



















图1































献花(0)
+1
(本文系昵称6917986...首藏)