配色: 字号:
2020年中考二轮专题复习:一次函数综合题(与面积有关) 解析版
2023-01-01 | 阅:  转:  |  分享 
  
中考专题复习:一次函数综合题(与面积有关)1.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B,C两点,∠ABO=30
°,OB=3OC.(1)证明:AC⊥AB;(2)将△ABC沿直线AB翻折得到△ABD,求直线BD的函数解析式;(3)在(2)的条件
下,设直线BD交x轴于点E,嘉淇认为△ADE的面积与△AOB的面积相同,请判断嘉淇的观点是否正确.2.如图,直线l与x轴、y轴分别
交于点A(3,0)、点B(0,2),以线段AB为直角边在第一象限内作等腰直角三角形ABC,∠BAC=90°,点P(1,a)为坐标系
中的一个动点.(1)请直接写出直线l的表达式;(2)求出△ABC的面积;(3)当△ABC与△ABP面积相等时,求实数a的值.3.如
图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,
交OE于点H,线段BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC.(1)求直线BD的解析式;(2)求△OFH的面积;
(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明
理由.4.一次函数y=kx+b的图象与x轴的负半轴相交于点A,与y轴的正半轴相交于点B,且sin∠ABO=.△OAB的外接圆的圆心
M的横坐标为﹣3.(1)求一次函数的解析式;(2)求图中阴影部分的面积.5.如图1,在平面直角坐标系中,点O是坐标原点,直线y=2
x+6交x轴于点B,交y轴于点A,且AO=BC.(1)求直线AC的解析式;(2)如图2,点P在线段AC上,连接PB交OA于点D,设
点P的横坐标为t,△ABP的面积为S,求S与t之间的函数解析式;(3)如图3,在(2)的条件下,过点A作∠CAO的平分线交DP于点
E,点L在BP的延长线上,连接CE、CL,若∠ABP=2∠ACE,CL=AC,求DL的长.6.如图1,在平面直角坐标系中,点O为坐
标原点,直线y=kx+4交x轴、y轴分别于点A、点B,且△ABO的面积为8.(1)如图2,求k的值;(2)如图3,点P是第一象限直
线AB上的一个动点,连接PO,将线段OP绕点O顺时针旋转90°至线段OC,设点P的横坐标为t,点C的横坐标为m,求m与t之间的函数
关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点B作直线BM⊥OP,交x轴于点M,垂足为点N,点K在线段MB的
延长线上,连接PK,且PK+KB=OP,∠PMB=2∠KPB,连接MC,求四边形BOCM的面积.7.如图,直线y=kx+b与x轴,
y轴分别交于点A,点B,点A的坐标为(﹣2,0),且2OA=OB.(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长
度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.8.如图:一次函数y=﹣x+3的图象与坐标轴交于A、
B两点,点P是函数y=﹣x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面
积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.9.如图,直角坐标系xOy中,A(0,5),直线x=﹣5与
x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB
的解析式;(2)设面积的和S=S△CDE+S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折
到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积不更快捷吗?”但大家经反复演
算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.10.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA
、OC的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点
C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的
速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.11.直线y=x﹣6与x轴、y
轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作E
F∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点
E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD
交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函
数解析式,并求出S的最大值.12.如图,直线与x轴,y轴分别交于点A(6,0),B.点C(0,t)是线段OB上一点,作直线AC.(
1)若BC=2,求直线AC的函数解析式;(2)当1≤t≤4时,求△ABC面积的取值范围;(3)若AC平分∠OAB,记△ABC的周长
为m,△AOC的周长为n,求m﹣n的值.13.如图,在平面直角坐标系中,Rt△AOC的直角边OA在y轴正半轴上,且顶点O与坐标原点
重合,点C的坐标为(1,2),直线y=﹣x+b过点C,与x轴交于点B,与y轴交于点D.(1)B点的坐标为   ,D点的坐标为   
;(2)动点P从点O出发,以每秒1个单位长度的速度,沿O→A→C的路线向点C运动,同时动点Q从点B出发,以相同速度沿BO的方向向点
O运动,过点Q作QH⊥x轴,交线段BC或线段CO于点H.当点P到达点C时,点P和点Q都停止运动,在运动过程中,设动点P运动的时间为
t秒:①设△CPH的面积为S,求S关于t的函数关系式;②是否存在以Q、P、H为顶点的三角形的面积与S相等?若存在,直接写出t的值;
若不存在,请说明理由.14.阅读下列两则材料,回答问题:材料一:定义直线y=kx+b(kb≠0)与直线y=bx+k(kb≠0)互为
“对称直线”.例如,直线y=x+2与直线y=2x+1互为“对称直线”;直线y=kx+b中,k称为斜率,若A(x1,y1),B(x2
,y2)为直线y=kx+b上任意两点(x1≠x2),则斜率k=材料二:对于平面直角坐标系中的任意两点(x1,y1),B(x2,y2
),定义一种新的运算:L(A,B)=x1x2+y1y2,例如:A(﹣3,1)、B(2,4),(A,B)=﹣3×2+1×4=﹣2(1
)若点A(﹣3,1)、B(2,4)在直线y=kx+b上,则k=   ;直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的
点,求点P的坐标.(2)对于直线y=kx+b上的任意一点M(m,n),都有点N(2m,6n﹣34)在y=kx+b的“对称直线”上:
横坐标互不相同的三个点C,D,E满足L(C,D)=L(D,E),且D点的坐标为(2,2),过点D作DF∥y轴,交直线CE于点F,若
DF=6,请求出直线CE、直线y=kx+b与x轴围成的三角形的面积.15.问题探究(1)如图①,在Rt△ABC中,∠B=90°,请
你过点A作一条直线AD,其中点D为BC上一点,使直线AD平分△ABC的面积;(2)如图②,点P为?ABCD外一点,AB=6,BC=
12,∠B=45°,请过点P作一条直线l,使其平分?ABCD的面积,并求出?ABCD的面积;问题解决(3)如图③,在平面直角坐标系
中,四边形OABC是李爷爷家一块土地的示意图,其中OA∥BC,点P处有一个休息站点(占地面积忽略不计),李爷爷打算过点P修一条笔直
的小路l(路的宽度不计),使直线l将四边形OABC分成面积相等的两部分,分别用来种植不同的农作物.已知点A(8,8)、B(6,12
)、P(3,6).你认为直线1是否存在?若存在,求出直线l的表达式;若不存在,请说明理由.16.在平面直角坐标系xOy中,直线l1
:y=k1x+6与x轴、y轴分别交于A、B两点,且OB=OA,直线l2:y=k2x+b经过点C(,1),与x轴、y轴、直线AB分别
交于点E、F、D三点.(1)求直线l1的解析式;(2)如图1,连接CB,当CD⊥AB时,求点D的坐标和△BCD的面积;(3)如图2
,当点D在直线AB上运动时,在坐标轴上是否存在点Q,使△QCD是以CD为底边的等腰直角三角形?若存在,请直接写出点Q的坐标,若不存
在,请说明理由.17.如图,在平面直角坐标系中,一次函数y=﹣x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线
段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN
.设运动时间为t秒.(1)当t=秒时,点Q的坐标是   ;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与
t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.18.如图,已知△ABC的顶点坐
标分别为A(3,0),B(0,4),C(﹣3,0).动点M,N同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度
的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动的时间记为t秒.连接MN.(1)求直线BC的解析式;(2)移动过
程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;(3)当点M,N移动时,记△ABC在直线MN右
侧部分的面积为S,求S关于时间t的函数关系式.19.如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求
k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S
,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线上,若OQ+AB=(B
Q﹣OP),求此时直线PQ的解析式.20.如图,等腰梯形OBCD中,DC∥OB,OD=CB,∠DOB=∠CBO,BD⊥OD,在平面
直角坐标系中,等腰梯形OBCD的下底OB在x轴正半轴上,O为坐标原点,点B的坐标为(a,0),C、D两点落在第一象限,且BD=2a
.点P以每秒1个单位长度的速度在对角线BD上由点B向点D运动(点P不与点B、点D重合),过点P作PE⊥BD,交下底OB于点E,交腰
BC(或上底CD)于点F.(1)线段BC的长是   (用含a的代数式表示);(2)已知直线PE经过点C时,直线PE的解析式为y=2
x﹣,求a的值,并直接写出点B、C、D的坐标;(3)在(2)的条件下,设动点P运动时间为t(秒),在点P运动过程中,请直接写出△B
EF为等腰三角形时t的值(或取值范围),并直接写出等腰△BEF面积的最大值.参考答案1.解:(1)证明:∵A(﹣,0),则OA=,
∵∠ABO=30°,∴OB==3,∵OB=3OC,∴OC=1,∴点B的坐标为(0,3),点C的坐标为(0,﹣1),∴tan∠ACB
==,∴∠ACB=60°,∴∠ACB+∠ABC=90°,∴∠BAC=90°,即AC⊥AB.(2)∵△ABD是由△ABC折叠得到的,
∴∠ADB=∠ACB=60°,∠ABD=∠ABC=30°,∴∠DBC=60°,∴△BCD是等边三角形,∴BD=BC=4,如图1,过
点D作DF⊥BC于F,则BF=2,DF=2,∴点D的坐标为(﹣2,1),设直线BD的函数解析式为y=kx+b(k≠0),将点B,D
的坐标代入得:,解得:,∴直线BD的函数解析式为y=x+3.(3)如图2,∵点E是直线BD与x轴的交点,∴令y=x+3=0,解得x
=﹣3,故OE=3,而AO=,∴AE=EO﹣AO=3﹣=2,∴S△AED=AE?yD=×2×1=,∵S△AOB=AO?OB=××3
=,∴S△AED≠S△AOB,∴嘉淇的观点错误.2.解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线
l的表达式为:;(2)在Rt△ABC中,由勾股定理得:AB2=OA2+OB2=32+22=13∵△ABC为等腰直角三角形,∴S△A
BC=AB2=;(3)连接BP,PO,PA,则:①若点P在第一象限时,如图1:∵S△ABO=3,S△APO=a,S△BOP=1,∴
S△ABP=S△BOP+S△APO﹣S△ABO=,即,解得;②若点P在第四象限时,如图2:∵S△ABO=3,S△APO=﹣a,S△
BOP=1,∴S△ABP=S△AOB+S△APO﹣S△BOP=,即,解得a=﹣3;故:当△ABC与△ABP面积相等时,实数a的值为
或﹣3.3.解:(1)解方程x2﹣6x+8=0可得x=2或x=4,∵BC、OC的长是方程x2﹣6x+8=0的两个根,且OC>BC,
∴BC=2,OC=4,∴B(﹣2,4),∵△ODE是△OCB绕点O顺时针旋转90°得到的,∴OD=OC=4,DE=BC=2,∴D(
4,0),设直线BD解析式为y=kx+b,把B、D坐标代入可得,解得,∴直线BD的解析式为y=﹣x+;(2)由(1)可知E(4,2
),设直线OE解析式为y=mx,把E点坐标代入可求得m=,∴直线OE解析式为y=x,令﹣x+=x,解得x=,∴H点到y轴的距离为,
又由(1)可得F(0,),∴OF=,∴S△OFH=××=;(3)∵以点D、F、M、N为顶点的四边形是矩形,∴△DFM为直角三角形,
①当∠MFD=90°时,则M只能在x轴上,连接FN交MD于点G,如图1,由(2)可知OF=,OD=4,则有△MOF∽△FOD,∴=
,即=,解得OM=,∴M(﹣,0),且D(4,0),∴G(,0),设N点坐标为(x,y),则=,=0,解得x=,y=﹣,此时N点坐
标为(,﹣);②当∠MDF=90°时,则M只能在y轴上,连接DN交MF于点G,如图2,则有△FOD∽△DOM,∴=,即=,解得OM
=6,∴M(0,﹣6),且F(0,),∴MG=MF=,则OG=OM﹣MG=6﹣=,∴G(0,﹣),设N点坐标为(x,y),则=0,
=﹣,解得x=﹣4,y=﹣,此时N(﹣4,﹣);③当∠FMD=90°时,则可知M点为O点,如图3,∵四边形MFND为矩形,∴NF=
OD=4,ND=OF=,可求得N(4,);综上可知存在满足条件的N点,其坐标为(,﹣)或(﹣4,﹣)或(4,).4.解:(1)作M
N⊥BO,由垂径定理得:点N为OB的中点,∴MN=OA,∵MN=3,∴OA=6,即A(﹣6,0),∵sin∠ABO=,OA=6,∴
OB=,即B(0,),设y=kx+b,将A、B代入得:,(2)NB=OB=,MN=3,tan∠BMN==,则∠BMN=30°,∴∠
ABO=60°,∴∠AMO=120°∴阴影部分面积为.5.解:(1)由题可求A(0,6),B(﹣3,0),∴AO=6,BO=3,∵
AO=BC,∴BC=6,∴CO=BC﹣BO=3,∴C(3,0),设直线AC的解析式为y=kx+b,将点C与A代入,可得,∴,∴y=
﹣2x+6;(2)过点P作PM⊥x轴交于点M,∵点P的横坐标为t,∴P(t,﹣2t+6),∴PM=﹣2t+6,∴S△PBC=BC?
PM=×6×(﹣2t+6)=﹣6t+18,S△ABC=BC?AO=18,∴S=S△ABC﹣S△PBC=6t;(3)过点B作BF平分
∠ABD,且BF=CE,连接AF∵∠ABD=2∠ACE,∴∠ABF=∠ACE∵BO=CO,AO⊥BC,∴AB=AC,∴△ABF≌△
ACE(SAS),∴AF=AE,∠BAF=∠CAE,∵AE平分∠OAC,∴∠OAE=∠CAE,∵∠BAO=∠CAO,∴∠BAF=∠
FAO,过点F作FG⊥AB于点G,FK⊥AD于点K,FH⊥BD于点H,∵AF平分∠BAD,∴FG=FK,∵BF平分∠ABD,∴FG
=FH,∴FH=FK,∴DF平分∠ADB,∴∠BDF=∠ADF,∵AF=AE,∠FAD=∠EAD,AD=AD,∴△AFD≌△AED
(SAS),∴∠ADF=∠ADE,∴∠ADF=∠ADE=∠BDF=60°,∴∠CDP=∠CDO=60°,过点C作CN⊥BP于点N,
∵CO⊥AO,∴CN=CO=3,∵CA=CL,∴△AOC≌△LNC(HL),∴NL=AO=6,∵tan∠NDC=,∴=,∴DN=,
∴DL=6+.6.解:(1)把x=0代入y=kx+4,y=4,∴OB=4,∵△ABO的面积为8,∴=8,∴AO=4,∴A(﹣4,0
),把x=﹣4,y=0代入y=kx+4,∴k=1;(2)把x=t代入y=x+4,∴P(t,t+4),如图1,过点P作PD⊥x轴,垂
直为D过点C作CE⊥x轴,垂直为E;∴∠PDO=∠CEO=90°,∴∠POD=∠OPD=90°,∵线段OP绕点O顺时针旋转90°至
线段OC,∴∠POC=90°,OP=OC,∴∠POD+∠EOC=90°,∴∠OPD=∠EOC,∴△OPD≌△OCE,∴OE=PD,
m=t+4;(3)如图2,过点O作直线TO⊥AB,交直线BM于点Q,垂足为点T,连接QP,由(1)知,AO=BO=4,∴∠BOA=
90°,∴△ABO为直角三角形,∴∠ABO=∠BAO=45°,∠BOT=90°﹣∠ABO=45°=∠ABO,∴BT=TO,∵∠BT
O=90°,∴∠TPO+∠TOP=90°,∵OP⊥BM,∴∠BNO=90°,∴∠BQT=∠TPO,∴△QTB≌△PTO,∴QT=T
P,PO=BQ,∴∠PQT=∠QPT,∵OP=PK+KB,∴QB=KP+KB,QK=KP,∴∠KQP=∠KPQ,∴∠PQT﹣∠KQ
P=∠QPT﹣∠KPQ,∠TQB=∠TPK,∴∠KPB=∠BPN,设∠KPB=x°,∴∠BPN=x°,∵∠PMB=2∠KPB,∴∠
PMB=2x°,∠POM=∠PAO+∠APO=45°+x°,∠NMO=90°﹣∠POM=45°﹣x°,∴∠PMO=∠PMB+∠NM
O=45°+x°=∠POM,∴PO=PM,过点P作PD⊥x轴,垂直为点D,∴OM=2OD=2t,∴∠OPD=90°﹣∠POD=45
°﹣x°=∠BMO,∴tan∠OPD=tan∠BMO,∴,,∴t=4或t=﹣2(舍),∴OM=8,由(2)知:m=t+4=8=OM
,∴CM∥y轴,∵∠PNM=∠POC=90°,∴BM∥OC,∴四边形BOCM是平行四边形,∴四边形BOCM的面BO×OM=4×8=
32;7.解:(1)∵点A的坐标为(﹣2,0),∴OA=2,∵OB=2OA=4,∴B(0,4),把A(﹣2,0)和B(0,4)代入
y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=
6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积=+4×6=28.8.解:(1)
令点P的坐标为P(x0,y0)∵PM⊥y轴∴S△OPM=OM?PM=将代入得S△OPM==﹣(x﹣2)2+∴当x0=2时,△OPM
的面积,有最大值Smax=,即:PM=2,∴PM∥OB,∴即∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴O
A=3,OB=4,∴AB=5,∴AP=;(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵PM∥OB,∴∴,将代入代入
中,得∴P(,);②在△BOP中,当OP=BP时,如图,过点P作PN⊥OB于点N∵OP=BP,∴ON=将ON=2代入中得,NP=∴
点P的坐标为P(2,),即:点P的坐标为(,)或(2,).9.解:(1)在直线y=﹣x﹣中,令y=0,则有0=﹣x﹣,∴x=﹣13
,∴C(﹣13,0),令x=﹣5,则有y=﹣×(﹣5)﹣=﹣3,∴E(﹣5,﹣3),∵点B,E关于x轴对称,∴B(﹣5,3),∵A
(0,5),∴设直线AB的解析式为y=kx+5,∴﹣5k+5=3,∴k=,∴直线AB的解析式为y=x+5;(2)由(1)知,E(﹣
5,﹣3),∴DE=3,∵C(﹣13,0),∴CD=﹣5﹣(﹣13)=8,∴S△CDE=CD×DE=12,由题意知,OA=5,OD
=5,BD=3,∴S四边形ABDO=(BD+OA)×OD=20,∴S=S△CDE+S四边形ABDO=12+20=32,(3)由(2
)知,S=32,在△AOC中,OA=5,OC=13,∴S△AOC=OA×OC==32.5,∴S≠S△AOC,理由:由(1)知,直线
AB的解析式为y=x+5,令y=0,则0=x+5,∴x=﹣≠﹣13,∴点C不在直线AB上,即:点A,B,C不在同一条直线上,∴S△
AOC≠S.10.解:(1)∵|x﹣15|+=0,∴x=15,y=13,∴OA=BC=15,AB=OC=13,∴B(15,13);
(2)如图1,过D作EF⊥OA于点E,交CB于点F,由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,∵tan∠CBD
=,∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4
,∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,∴∠ONM=∠CBD,∴=,∵DE∥O
N,∴==,且OE=3,∴=,解得OM=6,∴ON=8,即N(0,8),把N、B的坐标代入y=kx+b可得,解得,∴直线BN的解析
式为y=x+8;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方,即0<t≤8时,如图2,由题意可知四边形
BNN′B′为平行四边形,且NN′=t,∴S=NN′?OA=15t;当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴
于点G,如图3,∵NN′=t,∴可设直线B′N′解析式为y=x+8﹣t,令y=0,可得x=3t﹣24,∴OG=3t﹣24,∵ON=
8,NN′=t,∴ON′=t﹣8,∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96
;综上可知S与t的函数关系式为S=.11.解:(1)如图1:(2)如图2:,由折叠的性质,得∠C=∠A=∠COA=45°,AF=B
E=CF=t,S△CFG=CF?FG=t2=,解得t=,t=﹣(不符合题意,舍);(3)分两种情况讨论:①当0<t≤3时,如图2:
四边形DCFE落在第一象限内的图形是△DFG,∴S=t2,∵S=t2,在t>0时,S随t增大而增大,∴t=3时,S最大=;②当3<
t<6时,如图3:,四边形DCFE落在第一象限内的图形是四边形CHOF,∴S四边形CHOF=S△CGF﹣S△HGO,∴S=t2﹣2
(2t﹣6)2=﹣t2+12t﹣18=﹣(t﹣4)2+6,∵a=﹣<0,∴S有最大值,∴当t=4时,S最大=6,综上所述,当t=4
时,S最大值为6.12.解:(1)将A(6,0)代入y=﹣x+b,得:0=﹣×6+b,解得:b=8,∴点B的坐标为(0,8).∵B
C=2,点C在线段OB上,∴点C的坐标为(0,6).设直线AC的函数解析式为y=mx+n(m≠0),将点A(6,0),C(0,6)
代入y=mx+n,得:,解得:,∴直线AC的函数解析式为y=﹣x+6;(2)∵点C的坐标为(0,t),∴OC=t,BC=OB﹣OC
=8﹣t,∴S△ABC=OA?BC=×6×(8﹣t)=﹣3t+24.∵1≤t≤4,∴12≤﹣3t+24≤21,∴△ABC面积的取值
范围是12≤S△ABC≤21;(3)在Rt△AOB中,OA=6,OB=8,∴AB==10.过点C作CD⊥AB于点D,如图所示.∵A
C平分∠OAB,∴CD=CO=t.∵∠CBD=∠ABO,∠CDB=∠AOB=90°,∴△BCD~△BAO,∴=,即=,解得:t=3
,∴BC=5,∴m=AB+BC+AC=15+AC,n=AC+OC+OA=AC+9,∴m﹣n=(15+AC)﹣(AC+9)=6.13
.解:(1)∵直线y=﹣x+b过点C(1,2)∴﹣1+b=2∴b=3,即直线为y=﹣x+3当y=0时,﹣x+3=0,得x=3;当x
=0时,y=3∴B(3,0),D(0,3)故答案为:(3,0);(0,3).(2)①∵Rt△AOC中,∠OAC=90°,C(1,2
)∴A(0,2),OA=2,AC=1∵OB=OD=3,∠BOD=90°∴OA+AC=OB=3,∠OBD=45°∴0≤t<3,且t≠
2i)当0≤t<2时,点P在线段OA上,点H在线段BC上,如图1∴OP=BQ=t∴AP=OA﹣OP=2﹣t,OQ=OB﹣BQ=3﹣
t∵HQ⊥x轴于点Q∴∠BQH=90°∴△BQH是等腰直角三角形∴HQ=BQ=t∴HQ∥OP且HQ=OP∴四边形OPHQ是平行四边
形∴PH∥x轴,PH=OQ=3﹣t∴S=S△CPH=PH?AP=(3﹣t)(2﹣t)=t2﹣t+3ii)当2<t<3时,点P在线段
AC上,点H在线段OC上,如图2∴CP=OA+AC﹣t=3﹣t,xH=OQ=3﹣t∵直线OC解析式为:y=2x∴QH=yH=2(3
﹣t)=6﹣2t∴点H到CP的距离h=2﹣(6﹣2t)=2t﹣4∴S=S△CPH=CP?h=(3﹣t)(2t﹣4)=﹣t2+5t﹣
6综上所述,S关于t的函数关系式为S=②存在以Q、P、H为顶点的三角形的面积与S相等.i)当0≤t<2时,如图3∵S△CPH=S△
QPH,两三角形有公共底边为PH∴点C和点Q到PH距离相等,即AP=OP∴t=2﹣t∴t=1ii)当2<t≤2.5时,如图4,延长
QH交AC于点E∴AE=OQ=3﹣t,AP=t﹣2,QH=6﹣2t∴PE=AE﹣AP=(3﹣t)﹣(t﹣2)=5﹣2t∴S△QPH
=QH?PE=(6﹣2t)(5﹣2t)=2t2﹣11t+15∵S△CPH=S△QPH∴﹣t2+5t﹣6=2t2﹣11t+15解得:
t1=3(舍去),t2=iii)当2.5<t<3时,如图5,延长QH交AC于点E∴PE=AP﹣AE=(t﹣2)﹣(3﹣t)=2t﹣
5∴S△QPH=QH?PE=(6﹣2t)(2t﹣5)=﹣2t2+11t﹣15∴﹣t2+5t﹣6=﹣2t2+11t﹣15解得:t1=
t2=3(舍去)综上所述,t=1或时,以Q、P、H为顶点的三角形的面积与S相等.14.解:(1)把A(﹣3,1)、B(2,4)分别
代入y=kx+b,得.解得.∵直线y=2x+3上的一点P(x,y)又是它的“对称直线”上的点,∴点P(x,y)是直线y=2x+3与
直线y=3x+2的交点.∴.解得.∴P(1,5)故答案是:;(2)∵点M(m,n)是直线y=kx+b上的任意一点,∴km+b=n①
,∵点N(2m,6n﹣34)在y=kx+b的“对称直线”上,即N(2m,6n﹣34)在直线y=bx+k上∴2bm+k=6n﹣34②
,将①代入②得,2bm+k=6km+6b﹣34,整理得:(2b﹣6k)m=6b﹣k﹣34,∵对于任意一点M(m,n)等式均成立,∴
,解得,∴y=2x+6.∴B(﹣3,0).设点C,E的坐标分别为(x1,y1),(x2,y2)(x1≠x2),∵L(C,D)=L(
D,E),且D点的坐标为(2,2),∴2x1+2y1=2x2+2y2,即x1+y1=x2+y2,由材料一可知:直线CE的斜率为kC
E=﹣1,故设直线CE的解析式为:y=﹣x+d(c≠0)∵DF=6,DF∥y轴,∴F(2,﹣4).∴﹣2+d=﹣4.则d=﹣2.故
直线CE的解析式是:y=﹣x﹣2.易得A(﹣2,0).由得到:,即G(﹣,).∴S△ABG=AB?|yG|=×1×=;同理,当直线
C′E′的解析式为:y=﹣x+10时,B′(12,0),G′(,),此时S△AB′F=AB′?|yG|=×13×=;综上所述,直线
CE、直线y=kx+b与x轴围成的三角形的面积是或.15.解:(1)如图1,点D为BC的中点,作直线AD,直线AD则平分△ABC的
面积;(2)如图2,连接AC、BD,AC与BD交于点O,则点O为平行四边形ABCD的对称中心,作直线OP,直线OP即为所求;如图3
,过A作AE⊥BC于E,∵∠ABC=45°,∴△ABE是等腰直角三角形,∴AE===3,∵BC=12,∴?ABCD的面积=BC?A
E=12×3=36;(3)∵A(8,8),∴直线OA的解析式为:y=x,过点B作BD⊥x轴于点D,交AO于E,连接OB,则E(6,
6),∵B(6,12),点P(3,6),∴点P为线段OB的中点.∵OA∥BC,BE∥OC,∴四边形OEBC是平行四边形.∴点P是平
行四边形OEBC的对称中心,∴过点P的直线平分平行四边形OEBC.∴过点P的直线PF只要平分△BEA的面积即可.设直线PF的表达式
为y=kx+b,且过点P(3,6),∴3k+b=6,即b=6﹣3k,∴y=kx+6﹣3k.设直线AB的表达式为y=mx+n,且过点
B(6,12),A(8,8),则,解得:,∴直线AB的函数表达式为y=﹣2x+24.∴,解得:x=,∴F的横坐标为,把x=6代入y
=kx+6﹣3k得y=3k+6,∴G(6,3k+6)同理得直线AP的解析式为y=x+,当x=6时,y=,∴<3k+6<12,解得<
k<2,∵S△BFG=BG?(Fx﹣6)=(12﹣3k﹣6)(﹣6)=(8﹣6)(12﹣6),解得k=或k=4(舍去),∴直线l的
表达式为y=x+4.16.解:(1)y=k1x+6,当x=0时,y=6,∴OB=6,∵OB=OA,∴OA=2,∴A(﹣2,0),把
A(﹣2,0)代入:y=k1x+6中得:﹣2k1+6=0,k1=,∴直线l1的解析式为:y=x+6;(2)如图1,过C作CH⊥x轴
于H,∵C(,1),∴OH=,CH=1,Rt△ABO中,AB==4,∴AB=2OA,∴∠OBA=30°,∠OAB=60°,∵CD⊥
AB,∴∠ADE=90°,∴∠AED=30°,∴EH=,∴OE=OH+EH=2,∴E(2,0),把E(2,0)和C(,1)代入y=
k2x+b中得:,解得:,∴直线l2:y=﹣x+2,∴F(0,2)即BF=6﹣2=4,则,解得,∴D(﹣,3),∴S△BCD=BF
(xC﹣xD)==4;(3)分四种情况:①当Q在y轴的正半轴上时,如图2,过D作DM⊥y轴于M,过C作CN⊥y轴于N,∵△QCD是
以CD为底边的等腰直角三角形,∴∠CQD=90°,CQ=DQ,∴∠DMQ=∠CNQ=90°,∴∠MDQ=∠CQN,∴△DMQ≌△Q
NC(AAS),∴DM=QN,QM=CN=,设D(m,m+6)(m<0),则Q(0,﹣m+1),∴OQ=QN+ON=OM+QM,即
﹣m+1=m+6+,m==1﹣2,∴Q(0,2);②当Q在x轴的负半轴上时,如图3,过D作DM⊥x轴于M,过C作CN⊥x轴于N,同
理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m+1,0),∴OQ=QN﹣
ON=OM﹣QM,即m+6﹣=﹣m﹣1,m=5﹣4,∴Q(6﹣4,0);③当Q在x轴的负半轴上时,如图4,过D作DM⊥x轴于M,过
C作CN⊥x轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=1,设D(m,m+6)(m<0),则Q(m﹣1
,0),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6﹣=﹣m+1,m=﹣4﹣5,∴Q(﹣4﹣6,0);④当Q在y轴的负半轴上时,如图
5,过D作DM⊥y轴于M,过C作CN⊥y轴于N,同理得:△DMQ≌△QNC(AAS),∴DM=QN,QM=CN=,设D(m,m+6
)(m<0),则Q(0,m+1),∴OQ=QN﹣ON=OM+QM,即﹣m﹣6+=﹣m﹣1,m=﹣2﹣1,∴Q(0,﹣2);综上,存
在点Q,使△QCD是以CD为底边的等腰直角三角形,点Q的坐标是(0,±2)或(6﹣4,0)或(﹣4﹣6,0).17.解:(1)令y
=0,∴﹣x+4=0,∴x=6,∴A(6,0),当t=秒时,AP=3×=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q
(4,0);故答案为(4,0);(2)当点Q在原点O时,OA=6,∴AP=OA=3,∴t=3÷3=1,①当0<t≤1时,如图1,令
x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB==,由运动知,AP=3
t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在R
t△APD中,tan∠OAB===,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN===,∴CN=t
,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣t×t=t2;②当1<t≤时,如图2,同①的方法得,DN=t,CN=t,∴S=S
矩形OENP﹣S△CDN=3t×(6﹣3t)﹣t×t=﹣t2+18t;③当<t≤2时,如图3,S=S梯形OBDP=(2t+4)(6
﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6﹣3t,0),Q(6﹣6t,0),∴M(6﹣6t,3t),∵T是正方形PQ
MN的对角线交点,∴T(6﹣t,t),∴点T是直线y=﹣x+2上的一段线段,(﹣3≤x<6),∵A(6,0)∴点N是直线AG:y=
﹣x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG=6,在Rt△AOG中,OA=6=OG,∴
∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T正方形PQMN的对
角线的交点,∴TN=TP,∴OT+TP=OT+TN,∴点O,T,N在同一条直线上(点Q与点O重合时),且ON⊥AG时,OT+TN最
小,即:OT+TN最小,∵S△OAG=OA×OG=AG×ON,∴ON==3.即:OT+PT的最小值为3.18.解:(1)设直线BC
的解析式为y=kx+b,则,解得,∴直线BC的解析式为y=x+4.(2)如图,连接AD交MN于点O′.由题意:四边形AMDN是菱形
,M(3﹣t,0),N(3﹣t,t),∴O′(3﹣t,t),D(3﹣t,t),∵点D在BC上,∴t=×(3﹣t)+4,解得t=.∴t=s时,点A恰好落在BC边上点D处,此时D(﹣,).(3)如图2中,当0<t≤5时,△ABC在直线MN右侧部分是△AMN,S=?t?t=t2.如图3中,当5<t≤6时,△ABC在直线MN右侧部分是四边形ABNM.S=×6×4﹣×(6﹣t)?[4﹣(t﹣5)]=﹣t2+t﹣12.19.解:(1)对于直线y=kx+k,令y=0,可得x=﹣1,∴A(﹣1,0),∴OA=1,∵AB=2,∴OB==,∴k=.(2)如图,∵tan∠BAO==,∴∠BAO=60°,∵PQ⊥AB,∴∠APQ=90°,∴∠AQP=30°,∴AQ=2AP=2t,当0<t<时,S=?OQ?Py=(1﹣2t)?t=﹣t2+t.当t>时,S=OQ?Py=(2t﹣1)?t=t2﹣t.(3)∵OQ+AB=(BQ﹣OP),∴2t﹣1+2=(﹣),∴2t+1=?,∴4t2+4t+1=7t2﹣7t+7,∴3t2﹣11t+6=0,解得t=3或(舍弃),∴P(,),Q(5,0),设直线PQ的解析式为y=kx+b,则有,解得,∴直线PQ的解析式为y=﹣x+.20.解:(1)如图1中,∵BD⊥OD,∴∠BDO=90°,∵BD=2a,AB=a,∴OD==a,∵四边形ODCB是等腰梯形,∴BD=OD=a.故答案为a.(2)如图2中,作DM⊥OB于M,CN⊥OB于N.∵∠DOB=∠CBO,BC=a,∴sin∠CBO=sin∠DOB==a=,∴CN=a,BN==a,∴ON=OB﹣BN=a,∴C(a,a),∵直线y=2x﹣经过点C,∴a=a﹣,∴a=1.∴B(,0),C(,),D(,).(3)如图3﹣1中,当点F在线段BC上时,∵EF⊥BD,OD⊥BD,∴EF∥OD,∴∠FEB=∠DOB,∵∠DOB=∠CBO,∴FEB=∠FBE,∴FE=FB,∴△FEB是等腰三角形,如图2中,当直线EF经过点C时,E(,0),此时EB=,∴PB=EB?cos∠EBP=?=,共线图形可知当0<t≤时,△BFE是等腰三角形.如图3﹣2中,当点F在线段CD上,EF=BE时,1=t,∴t=.如图3﹣3中,当点F在线段CD上,BF=BE时,易证:PE=PF,∴t=,∴t=1,综上所述,t的值为0<t≤或或1时,△BEF是等腰三角形.当t=1时,△BEF的面积最大,最大值=××=.
献花(0)
+1
(本文系新智慧教育首藏)