配色: 字号:
看原子之间的电场
2023-07-11 | 阅:  转:  |  分享 
  
看原子之间的电场Atom and Molecule Form Quantum “Blockade”July 7, 2023??Physic
s?16, 120Researchers take a step toward a new form of quantum com
putation by demonstrating an interaction called a Rydberg blockad
e between an atom and a molecule.A. Guttridge/University of Durha
mSpelling it out.?Researchers have demonstrated precise control o
f rubidium atoms and rubidium-cesium molecules using laser-based
traps called optical tweezers. Here, the tweezers have been used
to arrange atoms in a pattern that spells out the molecu...?https
://physics.aps.org/articles/v16/120?utm_campaign=weekly&utm_mediu
m=email&utm_source=emailalertShow moreTo perform quantum computat
ions using the quantum states of atoms, those states need to be e
ntangled, making them interdependent. One way to do that uses an
effect called the Rydberg blockade, whereby two atoms are coupled
such that only one of them can be in a highly excited (“Rydberg”
) state at any moment. Such coupling has now been demonstrated fo
r the pairing of an atom with a molecule [https://physics.aps.org
/articles/v16/120?utm_campaign=weekly&utm_medium=email&utm_source
=emailalert1], a system that offers advantages over using atoms a
lone. The result opens the way to implementing quantum logic gate
s using such atom–molecule pairs and to fundamental investigation
s involving the precision control and measurement of the quantum
states of molecules.In a Rydberg state, an electron is boosted in
to a very high energy level, orbiting far from the nucleus so tha
t the atom has a much larger size than normal, with a width that
approaches a micrometer or so. Atoms can be placed in these state
s using an excitation laser. However, if two such atoms are close
enough to interact through their electric fields, then the Rydbe
rg transition of one atom will shift out of resonance with the ex
citation laser [https://physics.aps.org/articles/v16/120?utm_camp
aign=weekly&utm_medium=email&utm_source=emailalert2,?https://phys
ics.aps.org/articles/v16/120?utm_campaign=weekly&utm_medium=email
&utm_source=emailalert3] . As a result of this Rydberg blockade,
only one atom can be excited by the laser—but it is not possible
to identify which one. This uncertainty means that the two atoms
become quantum entangled and can be used as logic gates for quant
um information processing [https://physics.aps.org/articles/v16/1
20?utm_campaign=weekly&utm_medium=email&utm_source=emailalert4]—a
lthough researchers have yet to perform quantum computing tasks w
ith Rydberg atoms.The Rydberg blockade can also be induced by int
eractions with another kind of particle, such as a molecule. If a
molecule comes close enough to an atom, the atom’s Rydberg trans
ition can be turned off. The advantage of such a hybrid Rydberg a
tom–molecule system, says physicist Alexander Guttridge of the Un
iversity of Durham in the UK, is that there’s more scope for sele
ctive and precise control of the two components. “Molecules have
vastly different transition wavelengths to atoms” he says, “so it
is possible to independently manipulate the two species and read
out the atomic state without affecting the molecule.”For quantum
information processing with such a hybrid system, information wo
uld be encoded in an excited state of the molecule—say, in a part
icular rotational state. Two molecules, in effect acting as the q
uantum bits (qubits), could be entangled by using a single Rydber
g atom placed between them [https://physics.aps.org/articles/v16/
120?utm_campaign=weekly&utm_medium=email&utm_source=emailalert5].
If both molecules are in their ground state (encoding a 0), the
intervening atom’s Rydberg transition can be excited. But if eith
er molecule is in the excited state (encoding a 1), the transitio
n is suppressed by the blockade. These molecular states can be lo
ng-lived: a key requirement for carrying out complex quantum comp
utations.The principles of the hybrid scenario are clear enough,
but putting them into practice experimentally is another matter.
A key challenge is to position a molecule and an atom close enoug
h to activate the blockade—typically a few hundred nanometers—and
to be able to manipulate this separation precisely. Guttridge an
d colleagues have now achieved that by holding the molecule and t
he atom in separate “optical tweezers” created from laser beams.翻
译软件是有道翻译的原子分子形成量子“封锁”2023年7月7日?物理 研究人员向量子计算的新形式迈出了一步,展示了原子和分子之间被称
为里德伯封锁的相互作用。为了使用原子的量子态进行量子计算,这些状态需要纠缠在一起,使它们相互依赖。一种方法是使用一种叫做里德伯封锁
的效应,即两个原子耦合在一起,在任何时刻只有一个原子处于高激发态(“里德伯”)。这种耦合现在已被证明用于原子与分子的配对[1],该
系统比单独使用原子具有优势。该结果为使用这种原子-分子对实现量子逻辑门以及涉及分子量子态精确控制和测量的基础研究开辟了道路。在里德
伯态中,电子被提升到一个非常高的能级,在远离原子核的轨道上运行,因此原子的尺寸比正常情况下大得多,宽度接近一微米左右。利用激发激光
可以使原子处于这些状态。然而,如果两个这样的原子足够近,可以通过它们的电场相互作用,那么一个原子的里德堡跃迁将与激发激光发生共振[
2,3]。由于里德伯封锁,激光只能激发一个原子,但无法确定是哪一个原子。这种不确定性意味着两个原子会发生量子纠缠,可以用作量子信息
处理的逻辑门[4]——尽管研究人员尚未使用里德伯原子执行量子计算任务。里德伯封锁也可以通过与另一种粒子(如分子)的相互作用引起。如
果一个分子离原子足够近,原子的里德伯跃迁就会被关闭。英国达勒姆大学(University of Durham)的物理学家亚历山大·
古特里奇(Alexander gutridge)说,这种里德堡原子-分子混合系统的优势在于,它有更多的空间对这两个组成部分进行选择
性和精确控制。“分子与原子的跃迁波长大不相同,”他说,“因此,在不影响分子的情况下,独立操纵这两种物质并读出原子状态是可能的。”对
于这种混合系统的量子信息处理,信息将被编码在分子的激发态中——比如,在一个特定的旋转状态中。两个分子,实际上作为量子比特(量子位)
,可以通过在它们之间放置一个里德伯原子来纠缠[5]。如果两个分子都处于基态(编码0),则中间原子的里德伯跃迁可以被激发。但如果任何
一个分子处于激发态(编码1),跃迁就会被阻滞抑制。这些分子状态可以长期存在:这是进行复杂量子计算的关键要求。混合方案的原理已经很清
楚了,但是把它们付诸实验是另一回事。一个关键的挑战是将一个分子和一个原子放置在足够近的位置以激活封锁-通常是几百纳米-并且能够精确
地操纵这种分离。gutridge和他的同事们现在已经通过将分子和原子分别放在由激光束制造的“光镊”中实现了这一目标。看了文章:如果
两个这样的原子足够近,可以通过它们的电场相互作用,那么一个原子的里德堡跃迁将与激发激光发生共振。原子之间是电场,说明原子是带电的,
与我们的研究发现一致的。任何物体任何两点都有变化的电参数,说明原子是带电的,原子是带电的,物体、物质是带电的。 中子是带电的,有电
磁结构。 原子与激光作用是原子与电磁波的作用,是电磁力的作用。粒子之间同样是电场,是电磁力的作用,粒子、物质、物体、星球是电磁物质
聚集体。Read the article:If two such atoms are close enough to intera
ct through their electric fields, then one atom''s Rydberg transit
ion will resonate with the excitation laser.The electric field be
tween the atoms indicates that the atoms are charged, which is co
nsistent with our research findings. Any two points of any object have changing electrical parameters, indicating that atoms are charged, atoms are charged, objects, substances are charged.Neutrons are electrically charged and have an electromagnetic structure.The interaction between atoms and lasers is the interaction between atoms and electromagnetic waves, and the effect of electromagnetic force.
献花(0)
+1
(本文系昵称4170856...首藏)