《2.5三角函数的应用》专项练习1.某班同学在一次综合实践课上,测量校园内一棵树的高度.如图,测量仪在A处测得树顶D的仰角为45°,C处测得 树顶D的仰角为37°(点A,B,C在一条水平直线上),已知测量仪高度AE=CF=1.6米,AC=28米,求树BD的高度(结果保留小 数点后一位.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).2.2022年6月5日,“神舟十四 号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为 机械臂,OA=1m,AB=5m,BC=2m,∠ABC=143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离 ;(2)求OD长.(精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24) 3.随着我国科学技术的不断发展,科学幻想变为现实.如图1是我国自主研发的某型号隐形战斗机模型,全动型后掠翼垂尾是这款战斗机亮点之一 .图2是垂尾模型的轴切面,并通过垂尾模型的外围测得如下数据,BC=8,CD=2,∠D=135°,∠C=60°,且AB∥CD,求出垂 尾模型ABCD的面积.(结果保留整数,参考数据:≈1.414,≈1.732)4.如图,莲花山是大连著名的景点之一.游客可以从山底乘 坐索道车到达山顶,索道车运行的速度是1米/秒.小明要测量莲花山山顶白塔的高度,他在索道A处测得白塔底部B的仰角约为30°,测得白塔 顶部C的仰角约为37°,索道车从A处运行到B处所用时间约为5分钟.(1)索道车从A处运行到B处的距离约为 米;(2)请你利用小明 测量的数据,求白塔BC的高度.(结果取整数)(参考数据.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈ 1.73)5.如图,小睿为测量公园的一凉亭AB的高度,他先在水平地面点E处用高1.5m的测角仪DE测得∠ADC=31°,然后沿EB 方向向前走3m到达点G处,在点G处用高1.5m的测角仪FG测得∠AFC=42°.求凉亭AB的高度.(A,C,B三点共线,AB⊥BE ,AC⊥CD,CD=BE,BC=DE.结果精确到0.1m)(参考数据:sin31°≈0.52,cos31°≈0.86,tan31° ≈0.60,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)6.如图,小敏在数学实践活动中,利用所学知识对 他所在小区居民楼AB的高度进行测量,从小敏家阳台C测得点A的仰角为33°,测得点B的俯角为45°,已知观测点到地面的高度CD=36 m,求居民楼AB的高度(结果保留整数.参考数据:sin33°≈0.55,cos33°≈0.84,tan33°≈0.65).7.近年 来,无人机航拍测量的应用越来越广泛.如图,无人机从A处观测某建筑物至高点O时,俯角为37°;继续水平前行10米到达B处,观测点O, 此时的俯角为45°,已知无人机的水平飞行高度为45米.求这栋楼的高度是多少米.(结果精确到0.1)(参考数据:sin37°≈0.6 0,cos37°≈0.79,tan37°≈0.75,≈1.41)8.某数学兴趣小组去测量一座小山的高度,在小山顶上有一高度为20米 的发射塔AB,如图所示.在山脚平地上的D处测得塔底B的仰角为30°,向小山前进80米到达点E处,测得塔顶A的仰角为60°,求小山B C的高度.9.某数学小组要测量学校路灯P﹣M﹣N的顶部到地面的距离,他们借助皮尺、测角仪进行测量,测量结果如下:测量项目测量数据从 A处测得路灯顶部P的仰角αα=58°从D处测得路灯顶部P的仰角ββ=31°测角仪到地面的距离AB=DC=1.6m两次测量时测角仪之 间的水平距离BC=2m计算路灯顶部到地面的距离PE约为多少米?(结果精确到0.1米.参考数据:cos31°≈0.86,tan31° ≈0.60,cos58°≈0.53,tan58°≈1.60)10.如图是某水库大坝的横截面,坝高CD=20m,背水坡BC的坡度为i 1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:,求背水坡新起点A与原起点B 之间的距离.(参考数据:≈1.41,≈1.73.结果精确到0.1m)11.交通安全心系千万家,高速公路管理局在某隧道内安装了测速仪 ,如图所示的是该段隧道的截面示意图.测速仪C和测速仪E到路面之间的距离CD=EF=7m,测速仪C和E之间的距离CE=750m,一辆 小汽车在水平的公路上由西向东匀速行驶,在测速仪C处测得小汽车在隧道入口A点的俯角为25°,在测速仪E处测得小汽车在B点的俯角为60 °,小汽车在隧道中从点A行驶到点B所用的时间为38s(图中所有点都在同一平面内).(1)求A,B两点之间的距离(结果精确到1m); (2)若该隧道限速22m/s,判断小汽车从点A行驶到点B是否超速?通过计算说明理由.(参考数据:≈1.7,sin25°≈0.4,c os25°≈0.9,tan25°≈0.5,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)12.动感单车是一种新 型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长 为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin 58°≈0.85,cos58°≈0.53,tan58°≈1.60)13.图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图, 已知AB∥CD∥FG,A,D,H,G四点在同一直线上,测得∠FEC=∠A=72.9°,AD=1.6m,EF=6.2m.(结果保留小 数点后一位)(1)求证:四边形DEFG为平行四边形;(2)求雕塑的高(即点G到AB的距离).(参考数据:sin72.9°≈0.96 ,cos72.9°≈0.29,tan72.9°≈3.25)14.每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防 灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB可伸缩(最长可伸至20m),且可绕点B转动,其底部B离地面的距 离BC为2m,当云梯顶端A在建筑物EF所在直线上时,底部B到EF的距离BD为9m.(1)若∠ABD=53°,求此时云梯AB的长.( 2)如图2,若在建筑物底部E的正上方19m处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据 :sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)15.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节 气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当正午太阳照射在表上 时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平 面示意图,表AC垂直圭BC,已知该市冬至正午太阳高度角(即∠ABC)为37°,夏至正午太阳高度角(即∠ADC)为84°,圭面上冬至 线与夏至线之间的距离(即DB的长)为4米.(1)求∠BAD的度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin 37°≈,cos37°≈,tan37°≈,tan84°≈)16.某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探 究原理制作测角仪时,将细线一端固定在量角器圆心O处,另一端系小重物G.测量时,使支杆OM、量角器90°刻度线ON与铅垂线OG相互重 合(如图①),绕点O转动量角器,使观测目标P与直径两端点A、B共线(如图②),此时目标P的仰角∠POC=∠GON.请说明这两个角相 等的理由.(2)实地测量如图③,公园广场上有一棵树,为测树高,同学们在观测点K处测得树顶端P的仰角∠POQ=60°,观测点与树的距 离KH为5米,点O到地面的距离OK为1.5米,求树高PH.(≈1.73,结果精确到0.1米)(3)拓展探究公园高台上有一凉亭,为测 量凉亭顶端P距地面的高度PH(如图④),同学们经过讨论,决定先在水平地面上选取观测点E、F(E、F、H在同一直线上),分别测得点P 的仰角α、β,再测得E、F间的距离m,点O1、O2到地面的距离O1E、O2F均为1.5米.求PH(用α、β、m表示).17.如图所 示,体育场内一看台与地面所成夹角∠BAC=30°,看台最低点A到最高点B的距离为米,A,B两点正前方有垂直于地面的旗杆DE.在A, B两点处用仪器测量旗杆顶端E的仰角分别为60°和15°(仰角即视线与水平线的夹角).(1)求AE的长.(结果保留根号)(2)已知旗 杆上有一面旗在离地2米的F点处,这面旗以0.4米/秒的速度匀速上升,求这面旗到达旗杆顶端需要几秒?18.图1是新冠疫情期间测温员用 “额温枪”对居民张阿姨测温时的实景图,图2是其侧面示意图,其中枪柄CD和手臂BC始终在同一条直线上,枪身DE与额头F保持垂直.胳膊 AB=24cm,BD=40cm,肘关节B与枪身端点E之间的水平宽度为28cm(即BH的长度),枪身DE=8cm.(1)求∠EDC的 度数;(2)测温时规定枪身端点E与额头规定范围为3cm﹣5cm.在图2中若∠ABC=75°,张阿姨与测温员之间的距离为48cm.问 此时枪身端点E与张阿姨额头F的距离是否在规定范围内,并说明理由.(结果保留小数点后两位.参考数据:)19.图①是某小区折叠道闸的实 景图,图②是其工作示意图,道闸由垂直于地面的立柱AB,CD和折叠杆“AE﹣EF”组成,其中AB=CD=1.2m,AB,CD之间的水 平距离BD=2.5m,AE=1.5m.道闸工作时,折叠杆“AE﹣EF”可绕点A在一定范围内转动,张角为∠BAE(90°≤∠BAE≤ 150°),同时杆EF始终与地面BD保持平行.(参考数据:≈1.414,≈1.732)(1)当张角∠BAE为135°时,求杆EF与 地面BD之间的距离(结果精确到0.01m);(2)试通过计算判断宽度为1.8m,高度为2.45m的小型厢式货车能否正常通过此道闸?20.如图①,某款线上教学设备由底座,支撑臂AB,连杆BC,悬臂CD和安装在D处的摄像头组成.如图②是该款设备放置在水平桌面l上的示意图.已知支撑臂AB⊥l,AB=15cm,BC=30cm,测量得∠ABC=148°,∠BCD=28°,AE=9cm.求摄像头到桌面l的距离DE的长(结果精确到0.1cm).(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,≈1.73)学科网(北京)股份有限公司 1zxxk.com学科网(北京)股份有限公司 |
|