配色: 字号:
《測圓海鏡》之已知叀後求圓徑題之一(19)
2025-01-26 | 阅:  转:  |  分享 
  
《測圓海鏡》之已知叀後求圓徑題之一(19)提要:以下諸題源自《測圓海鏡?卷八》,所問者皆與“圓城圖式”有關,主要涉及勾股形之三邊成內接圓之切
線,而求圓徑之問題。本文之問在“圓城圖式”中,已知皇極、叀或明直角三角形之條件,求圓徑或相關勾股形之三邊長。關鍵詞: 弦 明弦 皇
極弦 泛率以下之問取材自《測圓海鏡?卷八》涉及皇極弦、弦或明弦三角形之條件之問。筆者已有多篇文章談及已知“圓城圖式”中之兩條件而求
圓徑之題,至於涉及皇極弦、弦或明弦三角形之條件之問題之文為〈《測圓海鏡》之已知叀前求圓徑題之一 (15) 〉、〈之二 (16)〉、
〈之三 (17)〉及〈之四 (18)〉,本文則談及“後”相關之題。以下為圓城之一般圖式:水心朱本文涉及以下之直角三角形:即日川為皇
極弦,日心為皇極股,川心為皇極勾,日川心乃為皇極弦三角形。又日月為明弦,日南為明股,月南為明勾,日月南乃為明弦三角形。又山川為弦,
山東為股,川東為勾,山川東乃為叀弦三角形。見上圖,注意直角三角形之勾、股及弦之名稱。以下各題之圖有紅線者乃已知長或有條件之長。所有
單位為“步”。﹝第一題﹞或問:出南門向東有槐樹一株、出東門向南有柳樹一株。丙、丁俱出南門,丙直行,丁往至槐樹下。甲、乙俱出東門,甲
直行,乙往至柳樹下。四人遙相望見,各不知所行步數,只云丙、丁共行了二百七步,甲、乙共行四十六步,又云甲、丙立處相距二百八十九步。問
答同前。題意指出南門P向東有槐樹H一株、出東門A向南有柳樹K一株。丙、丁俱出南門,丙直行至S,丁東行至槐樹H下。甲、乙俱出東門A,
甲直行至R,乙南行至柳樹K下。四人遙相望見,各不知所行步數,只云丙、丁共行 207步,即SP + PH = 207,甲、乙共行 4
6 步,即AR + AK = 46。又云甲、丙立處RS相距 289步。求圓徑。今將圖之重要部分放大如下:丙SU丁HPQZSP =
207 – xLPH = x乙KzO RS = 289甲RFXAK = y,RX = zAAR = 46 – yCME←D如果以
現代代數學方法解,則複雜。今先設PH = x,SP = 207 – x,AK = y,AR = 46 – y,RX = z,r 為
圓半徑。又 RS = 289。可列出相關方程式而解得AK = 30,AR = 16,PS = 135,PH = 72。以以下之方法
為佳:今先算出“平勾”RX 之長。為算出RX 之長,先將各長度以a1、b1及c1 表示,a1、b1及c1 乃最大三角形之勾、股及弦
之長,可參閱筆者另文。因為:SP = b14 = (c1 – a1)(– c1 + b1 + a1) ,PH = a14 = (c
1 – a1)(– c1 + b1 + a1) ,兩式相加得:b14 + a14 = (c1 – a1)(– c1 + b1 +
a1) + (c1 – a1)(– c1 + b1 + a1) = 207--- (1)又AK = b15 = (c1 – b1)
(– c1 + b1 + a1) ,AR = a15 = (c1 – b1)(– c1 + b1 + a1) ,以上兩式相加得:b
15 + a15 = (c1 – b1)(– c1 + b1 + a1) + (c1 – b1)(– c1 + b1 + a1)
= 46--- (2)又c12 = (– c1 + b1 + a1) = 289 ------------------------
----------------------- (3)式 (1) – (2) 得:(b1 – a1)(– c1 + b1 + a1
) + (b1 – a1)(– c1 + b1 + a1) = 207 – 46 = 161上式左方化簡得:(b1 – a1)(–
c1 + b1 + a1)[ + ] = (b1 – a1)(– c1 + b1 + a1)= (– c1 + b1 + a1
) -------------------------------------------- (4)又以 (3) – (4) 式
得: (– c1 + b1 + a1) – (– c1 + b1 + a1) = 289 – 161(– c1 + b1 + a1
) = 128,以勾股定化簡可寫成:(– c1 + b1 + a1) = 128(– c1 + b1 + a1) = 128(–
c1 + b1 + a1) = 128。(– c1 + b1 + a1) 即為平勾RX之雙倍,所以z = RX = 64。注意川地
夕﹝下平﹞﹝可參閱“圓城圖式”﹞川之地為下平弦,川之夕為股,夕之地為勾。下平弦﹝川地﹞:c9 = (– c1 + b1 + a1)
,下平股﹝川夕﹞:b9 = (– c1 + b1 + a1) ,下平勾﹝夕地﹞:a9 = (– c1 + b1 + a1) 。所
以《測圓海鏡》之法曰:以二共相減數,即207 – 46 = 161,又以減距數為實﹝為被除數﹞,即289 – 161 = 128,
二為法﹝為除數﹞,即:2z = 128z = z = 64。得平勾RX為64 步。得平勾後再算其他之長。從上圖可知ΔSHP 與ΔH
RX 相似,所以以下比例成立: = rx = 207z – xzrx = 13248 – 64x﹝以z = 64 代入﹞x(r +
64) = 13248x = ----------------------------------------- (5)又可知
ΔKRA 與ΔHRX 相似,所以以下比例成立: = = zy = rz – r2 + rx64y = 64r – r2 + r
x﹝以z = 64 代入﹞------- (6)ΔSHP 與ΔKRA 相似,所以以下比例成立: = 9522 – 207y –
46x + xy = xy46x = 9522 – 207y2x = 414 – 9yy = (414 – 2x) -------
--------------------------- (7)將 (7) 代入 (6) 得:64 × (414 – 2x) = 6
4r – r2 + rx26496 – 128x = 576r – 9r2 + 9rx26496 – 128×= 576r – 9
r2 + 9r×﹝將 (5) 式代人﹞26496r + 1695744 – 1695744 = 576r2 + 36864 r –
9r3 – 576r2 + 119232r9r3 + 26496r = 36864 r + 119232r9r3 – 12960
0r = 0r2 – 14400 = 0r = 120,即圓城半徑為120 步。本題之竅門為先求出平勾 RX 之 z。草曰:識別得
丙丁共,即明和也,甲乙共,即和也。相距步即極弦也,二共相併即極弦內少个虛黃也,又為極和內少个虛和也。二共相減餘為平勾髙股差也,又為
虛差極差共也,又為通差內減極差也。立天元z為平勾,加入二共相減數得z + 207 – 46 = z + 161為髙弦,又加天元得2
z + 161為極弦,寄左。以相距步289與左相消得:2z + 161 = 2892z = 128z = 64。上法下實,如法得六
十四,即平勾也。以二共相減數加平勾得二百二十五為髙股,即z + (207 – 46) = 64 + 161= 225為髙股SZ。復
以平勾乘之得 225 × 64 = 14400一萬四千四百步,開平方得一百二十步,即城半徑也。合問。又法:二共數併以減相距數餘者半
為“泛率”,即 289 – (207 + 46) = 289 – 253 = 36。泛率 = 36/2 = 18 。以泛率加丙丁共
為長 18 + 207 = 225。以泛率加甲乙共為闊長 18 + 46 = 64。長闊相乘為平方實,開方得半徑。即√ (225
× 64) = √ 14400 = 120。草曰:置極弦內減二共併數,餘三十六步,即虛黃也,即 289 – (207 + 46)
= 289 – 253 = 36。半之,即得 18 ,副置二位上,以加明和得二百二十五步為髙股也,即207 + 18 = 225。
下以加和 18 + (30 + 16) = 64 得六十四步為平勾也,二位相乘得一萬四千四百步,開平方得一百二十步,即半徑也合問。
即√ (225 × 64) = √ 14400 = 120。與筆者所得之結果相同。﹝第二題﹞或問:依前見丙丁共二百七步,甲乙共四十
六步。又云二樹相去一百二步,問答同前。題意指出南門P向東有槐樹H一株、出東門A向南有柳樹K一株。丙、丁同出南門,丙直行至S,丁東行
至槐樹H下。甲、乙同出東門A,甲直行至R,乙南行至柳樹K下。四人互相遙相望見,但各不知所行步數,只知丙、丁共行 207步,甲、乙共
行 46 步,而二樹KH相距 102步。求圓徑。今將圖之重要部分放大如下:丙SU丁HPQSP = 105 + LPH = 102
– y乙KzOKH = 102甲RFAK = yAAR = 46 – yCME←D今連HO及KO,注意ΔHPO 與ΔHLO 全等,
ΔKLO與ΔKAO 亦全等。今設AK = y,AR = 46 – y,KL = KA = y。LH = HP = 102 – y
,SP = 207 – (102 – y) = 105 + 。從上圖可知 ΔSPH 與ΔKAR 相似,所以 = ,即: = 10
2y – y2 = 4830 + 46y – 105y – y2161y = 4830y = 30。即 KL = KA = 30,
LH = HP = 102 – 30 = 72 ,SP = 105 + y = 105 + 30 = 135。AR = 46 –
y = 46 – 30 = 16。依勾股定理 KR = √(302 + 162) = √1156 = 34。今設圓半徑為 r,從圓
即可知 UH = r – 72,UK = r – 30,在直角三角形HUK中,依勾股定理可得:HU2 + UK2 = KH2 即(
r – 72)2 + (r – 30)2 = (72 + 30)2r2 – 144r + 5184 + r2 – 60r + 90
0 = 10222r2 – 204r + 6084 = 104042r2 – 204r – 4320 = 0r2 – 102r –
2160 = 0,分解因式得:(r – 120)(r + 18) = 0。取r = 120 ﹝步﹞,即圓城半徑為120 步。《測
圓海鏡》之法為先求KR,即弦。法曰:以甲乙共乘樹相去步得數 46 × 102 = 4692,又以自之為平實,即 46922 = 2
2014864,此即為方程式之常數。從空,即方程式x項之係數為0。併二共數為冪於上,即 (207 + 46)2 = 2532 =
64009,內減甲乙共自之數,即462 = 2116,丙丁共自之數,即2072 = 42849,64009 – 2116 – 42
849 = 19044﹝按或云二共數相乘倍之亦同﹞為益隅,得叀弦。可得方程式:19044x2 – 22014864 = 0x2 =
1156x = 34。草曰:識別得兩樹相去步即虛弦也。餘數具前。立天元一x為弦,置明和以天元乘之,207x合和除,不除,便以20
7x為明弦也,內帶和分母,乃置虛弦以分母叀和乘之得102 × 46 = 4692,加入明弦得 4692 + 207x為極股也﹝內帶
和分母﹞,以自之得下式:42849x2 + 1942488x + 22014864為極股冪內寄和羃為分母。又以天元加虛弦得 x +
102 為極勾,以自之得x2 + 204x + 10404,又以和冪 462 = 2116乘之得2116x2 + 431664x
+ 22014864為勾冪也。勾股相併得:42849x2 + 1942488x + 22014864 + 2116x2 + 43
1664x + 22014864= 44965x2 + 2374152x + 44029728為兩積一較冪也,內有和冪分母寄左。然
後置明弦207x於上,以和乘天元得46x,加上位得46x + 207x = 253x為二弦併。又置虛弦以和乘之得 102 × 46
= 4692併入上位得下式:4692 + 253x 為極弦,以自之得64009x2 + 2374152x + 22014864為
同數與左相消得:44965x2 + 2374152x + 44029728 = 64009x2 + 2374152x + 2201
486419044 x2= 22014864x2 = 1156x = 34。開平方,得三十四步,即弦也。又法:以樹相去步自之,即1
022 = 10404又以甲乙共乘之為平實,即10404 × 46 = 478584,此即為方程式之常數。從空,即為方程式x項之係
數為0。倍丙丁共為虛隅,2 × 207 = 414。可得方程式:414x2 – 478584 = 0x2 = 1156x = 34
。得弦。以下為筆者之另法:今設RK = u,HS = v。注意ΔSHP、ΔKRA相似,所以對應邊或對應邊之和成比例: = ,即:
= 即可得v =,即ΔSHP與ΔKRA三邊之比為9:2,從上文可知: = = 204 – 2y = 414 – 9y7y = 2
10y = 30,即AK股為30 步。又可得AR勾為46 – 30 = 16﹝步﹞。明勾股形三邊之長亦可依次算出。﹝第三題﹞或問:
皇極大小差共一百八十七步,明黃、叀黃共六十六步。問答同前。此題應為求虛黃。SUHPQZLNnNKzO RFXACME←D先注以下
勾股形之名稱:SR為皇極弦,SO為皇極股,RO為皇極勾,SRO為皇極勾股形。SH為明弦,SP為明股,HP為明勾,SHP為明勾股形。
KR為弦,KA為股,RA為勾,KRA為勾股形。HK為太虛弦,HN為太虛股,KN為太虛勾,HKN為太虛勾股形。“皇極”可簡稱為“極”
,“太虛”可簡稱為“虛”。題意指勾股形日川心是為皇極,其大差加小差共 187步,明黃、叀黃共 66步。勾股形月山水為太虛。求太虛黃
﹝可參閱首頁之“圓城圖式”﹞。注意“黃” = 勾 + 股 – 弦。勾股形日川心之皇極弦289,勾 136,股255,大差 = 弦
– 勾 = 289 – 136 = 153。小差 = 弦 – 股 = 289 – 255 = 34。和 = 大差 + 小差 = 1
53 + 34 = 187。勾股形日月南之日月為明弦,日南為股,南月為勾。若明弦153 ,明勾72 ,明股135,所以明黃 = 7
2 + 135 – 153 = 54。又弦34,叀勾16,叀股30。所以黃 = 16 + 30 – 34 = 12。所以明黃 +
黃 = 66。今先証明太虛黃= (叀黃 + 明黃)2 ÷ [皇極大小差之和 – (叀黃 + 明黃)]。今先求皇極大小差。皇極之弦、
股及勾如下:皇極弦﹝日川﹞:c12 = (– c1 + b1 + a1) ,皇極股﹝日心﹞:b12 = (– c1 + b1 +
a1) ,皇極勾﹝心川﹞:a12 = (– c1 + b1 + a1) 。即可知:皇極大差 = 皇極弦 – 皇極勾= (– c1
+ b1 + a1) – (– c1 + b1 + a1) = (– c1 + b1 + a1)。皇極小差 = 皇極弦 – 皇極股
= (– c1 + b1 + a1) – (– c1 + b1 + a1) = (– c1 + b1 + a1) 。所以大小差之和
= (– c1 + b1 + a1)。再求明黃。明之弦、股及勾如下:明弦﹝日月﹞:c14 = (c1 – a1)(– c1 +
b1 + a1) ,明股﹝日南﹞:b14 = = (c1 – a1)(– c1 + b1 + a1) ,明勾﹝南月﹞:a14 =
(c1 – a1)(– c1 + b1 + a1)。明黃 = 明勾 + 明股 – 明弦,即:(c1 – a1)(– c1 + b
1 + a1) + (c1 – a1)(– c1 + b1 + a1) – (c1 – a1)(– c1 + b1 + a1) =
(c1 – a1)(– c1 + b1 + a1) 。又求黃。之弦、股及勾如下:弦﹝山川﹞:c15 = (c1 – b1)(–
c1 + b1 + a1),股﹝山東﹞:b15 = = (c1 – b1)(– c1 + b1 + a1),勾﹝東川﹞:a15
= (c1 – b1)(– c1 + b1 + a1)。黃 = 勾 + 股 – 弦,即:(c1 – b1)(– c1 + b1 +
a1) + (c1 – b1)(– c1 + b1 + a1) – (c1 – b1)(– c1 + b1 + a1) = (c
1 – b1)(– c1 + b1 + a1) 。二黃共 = (c1 – a1)(– c1 + b1 + a1) + (c1 –
b1)(– c1 + b1 + a1)= (– c1 + b1 + a1)(c1 – a1+ c1 – b1)。= (– c1
+ b1 + a1)2 (2c1 – b1 – a1)。二黃共自乘為實,即 []2(– c1 + b1 + a1)4 (2c1
– b1 – a1)2 -------- (A)前後兩數差 (– c1 + b1 + a1) – (– c1 + b1 + a1)
2 (2c1 – b1 – a1)= (– c1 + b1 + a1)(2c1 – b1 – a1)[c1+ c1 – b1 –
a1]= (– c1 + b1 + a1)(2c1 – b1 – a1)2 ------------------------ (B
) 得: []2(– c1 + b1 + a1)4 (2c1 – b1 – a1)2 ÷ (– c1 + b1 + a1)(2c
1 – b1 – a1)2= (– c1 + b1 + a1)3= (– c1 + b1 + a1)2= (c12 + b12 +
a12– 2c1b1 + 2b1a1 – 2c1a1)= (2c12 – 2c1b1 + 2b1a1 – 2c1a1)= (c1
2 – c1b1 + b1a1 – c1a1)= (c1 – a1)(c1 – b1) --------------------------------------- (C)求太虛黃。太虛之弦、股及勾如下:太虛弦﹝月山﹞:c13 = (c1 – a1)(c1 – b1),太虛股﹝月水﹞:b13 = = (c1 – a1)(c1 – b1),太虛勾﹝水山﹞:a13 = (c1 – a1)(c1 – b1)。太虛黃 = 叀勾 + 叀股 – 叀弦,即:(c1 – a1)(c1 – b1) + (c1 – a1)(c1 – b1) – (c1 – a1)(c1 – b1)= (c1 – a1)(c1 – b1)。此式與 (C) 式相同。所以本題太虛黃求法如下:。法曰:後數自乘為實,662 = 4356,前後數相減餘為法,187 – 66 = 121,得虛黃方, = 36。以下為驗算:太虛弦102,太虛勾48,太虛股90。大差 = 102 – 48 = 54,小差 = 102 – 90 = 12, 大小差和= 66。虛黃 = 48 + 90 – 102 = 36。故以上算法正確。本題之解法與其他題不同,李冶可能先有答案而依答案而擬出問題。-1-
献花(0)
+1
(本文系瀟湘館112原创)
类似文章
发表评论: